
Title Dilatancy of granular materials in a strain space multiple
mechanism model

Author(s) Iai, Susumu; Tobita, Tetsuo; Ozutsumi, Osamu; Ueda, Kyohei

Citation International Journal for Numerical and Analytical Methods in
Geomechanics (2010), 35(3): 360-392

Issue Date 2010-03-11

URL http://hdl.handle.net/2433/197181

Right

This is the peer reviewed version of the following article: Iai,
S., Tobita, T., Ozutsumi, O. and Ueda, K. (2011), Dilatancy of
granular materials in a strain space multiple mechanism model.
Int. J. Numer. Anal. Meth. Geomech., 35: 360‒392, which has
been published in final form at
http://dx.doi.org/10.1002/nag.899

Type Journal Article

Textversion author

Kyoto University



Short title: Dilatancy of granular materials 

 

 

 

Dilatancy of granular materials in a strain space multiple mechanism model 

 

 

 

 

Susumu Iai1, Tetsuo Tobita1, Osamu Ozutsumi2, and Kyohei Ueda1 

 

 

 

 

 

 

1Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, Kyoto, 
611-0011 Japan 
2Meisosha Co., Sun Ikebukuro I-408, Ikebukuro 1-8-7, Toshima-ku, Tokyo 170-0014 
Japan 
 
 
Correspondence to: 
Susumu Iai 
Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, Kyoto, 
611-0011 Japan 
e-mail: iai@geotech.dpri.kyoto-u.ac.jp 
TEL 81-774-38-4090 
FAX 81-774-38-4094 
 

1 

mailto:iai@geotech.dpri.kyoto-u.ac.jp


SUMMARY 

 

A granular material consists of an assemblage of particles with contacts newly formed 

or disappeared, changing the micromechanical structures during macroscopic 

deformation. These structures are idealized through a strain space multiple mechanism 

model as a two fold structure consisting of a multitude of virtual two dimensional 

mechanisms, each of which consists of a multitude of virtual simple shear mechanisms 

of one dimensional nature. In particular, a second order fabric tensor describes direct 

macroscopic stress strain relationship, and a fourth order fabric tensor describes 

incremental relationship. In this framework of modeling, the mechanism of interlocking 

defined as the energy less component of macroscopic strain provides an appropriate 

bridge between micromechanical and macroscopic dilative component of dilatancy. 

Another bridge for contractive component of dilatancy is provided through an obvious 

hypothesis on micromechanical counterparts being associated with virtual simple shear 

strain. It is also postulated that the dilatancy along the stress path beyond a line slightly 

above the phase transformation line is only due to the mechanism of interlocking and 

increment in dilatancy due to this interlocking eventually vanishes for a large shear 

strain. These classic postulates form the basis for formulating the dilatancy in the strain 

space multiple mechanism model. The performance of the proposed model is 

demonstrated through simulation of undrained behavior of sand under monotonic and 

cyclic loading.  

 

Key words: constitutive equation; dilatancy; fabric tensor; granular material; 

micromechanics; steady state 
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1. INTRODUCTION 

 

The micromechanical structures of granular materials consist of an assemblage of 

particles with contacts newly formed or disappeared during macroscopic deformation. 

Among the various constitutive models proposed for granular materials, a strain space 

multiple mechanism model is one of the promising examples to relate these 

micromechanical structures to macroscopic deformation of granular materials [1-3]. The 

model consists of a multitude of simple shear mechanisms with each oriented in an 

arbitrary direction and can describe the behavior of granular materials under 

complicated loading paths, including the effect of rotation of principal stress axes [1,4]. 

The model has been implemented in a finite element program and used in the analysis 

of numerous problems in practice for evaluating seismic performance of geotechnical 

works including level ground, retaining structures, embankments, and underground 

structures [5-12]. 

In the previous studies along the line of a strain space multiple mechanism model, 

dilatancy was formulated either as a function of macroscopic cumulative shear work or 

with an assumption of stress-dilatancy relation in the microscopic level [1,2,13-15]. 

Although there is nothing wrong with those assumptions made as a part of numerical 

modeling, they seem to be made on an ad hoc basis and lack explicit discussions on the 

origin of dilatancy that reflects the micro/macro relationship on strain energy. A further 

discussion with respect to the origin of dilatancy may be beneficial to the better 

understanding of mechanics of granular materials along the line of thought in the strain 

space multiple mechanism. 
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The objective of this study is to review the theoretical link between the 

micromechanical and macroscopic strain energy of granular materials and apply this 

link to the formulation of dilatancy in the strain space multiple mechanism model. The 

scope of this study is centered round the presentation of the formulation. The examples 

presented in this paper will be limited to those that are sufficient to confirm the 

fundamental applicability of the model. The specific advantages of the strain space 

multiple mechanism model will be discussed elsewhere. 

 

2. MULTIPLE MECHANISM IDEALIZED THROUGH FABRIC TENSORS 

 

2.1 Concept and theoretical background 

Stress in granular materials as defined for continuum is given by a certain average of 

contact forces between the particles. In an assemblage of spherical particles, the contact 

force P  can be partitioned into the direction of contact normal (or along the branch 

connecting the particle centers) n  and tangential direction t  as (see Figure 1) 

 F S= +P n t  (1) 

Macroscopic stress is given by taking an average over the contact forces within the 

representative volume element having volume V  as (e.g. Reference [16]) 

 ( )
1' l F S
V

= ⊗ + ⊗∑σ n n t n  (2) 

where l  denotes length of the branch. 

  Before taking the average over all the contacts of random orientation, a structure can 

be identified by systematically grouping the contacts according to the orientation. The 

first level of structures is identified by choosing those pairs of a contact force and a 
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contact normal that are parallel to a plane specified by the local co-ordinates , ,x y z    

with z  axis normal to the plane as shown in Figure 2. Assemblage of those pairs on 

the plane constitutes a virtual two dimensional mechanism. The direction n  within the 

plane is measured relative to the local coordinate x  with an angle / 2ω . The average 

of these two dimensional mechanisms over a surface of a unit sphere with respect to the 

solid angle Ω  defines the strain space multiple mechanism model. 

  By systematically sorting out the isotropic and deviator components of the second 

order tensors in Equation (2) and by taking the number of summation to infinity, 

Equation (2) is rewritten as follows [17,18]: 

 ( )
1' d d

4 F Sp q q ω
π

= − + ⊗ + ⊗ Ω∫∫σ I n n t n  (3) 

 ⊗ = ⊗ − ⊗n n n n t t  (4) 

 ⊗ = ⊗ + ⊗t n t n n t  (5) 

where p  denotes effective confining pressure (compression positive), I  denotes 

second order identity tensor, ,F Sq q  denote micromechanical stress contributions to 

macroscopic deviator stress due to normal and tangential components of contact forces. 

Equation (3) represents the mechanisms with the combination of biaxial shear 

⊗n n  and the simple shear ⊗t n . However, once they are idealized in terms of the 

second order tensors, they become indistinguishable except for the difference in the 

orientation with an angle of / 4π  as shown in Figure 3 [19]. Consequently, the term 

⊗t n , i.e. virtual simple shear mechanism, will be kept in use throughout this paper in 

order to maintain the consistency with those used in the previous papers [1,2]. Thus, 

Equation (3) is rewritten as [19-21]: 
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 1' d d
4

p q ω
π

= − + ⊗ Ω∫∫σ I t n  (6) 

Equation (6) represents the two fold structure defined by the double integration to 

describe the macroscopic effective stress through a second order fabric tensor (for 

definition of fabric tensors, refer to e.g. [22]). 

 

2.2 Integrated form 

The integrated form of the constitutive equation, i.e. direct stress strain relationship, 

is derived by relating the macroscopic strain tensor ε  to the macroscopic effective 

stress 'σ  through the structure defined by Equation (6). The first step to derive this 

relationship is to define the volumetric strain ε  (extension positive) and the virtual 

simple shear strains γ  as the projections of the macroscopic strain field to the second 

order tensors representing volumetric and virtual simple shear mechanisms as follows: 

 :ε = I ε  (7) 

 :γ = ⊗t n ε  (8) 

where the double dot symbol denotes double contraction. In order to take into account 

the effect of volumetric strain due to dilatancy dε , effective volumetric strain 'ε  [23] 

is introduced by 

 d'ε ε ε= −  (9) 

where the rate of volumetric strain due to dilatancy is given by the projection of strain 

rate field to a second order tensor dI  as 

 d d :ε = I ε   (10) 

The scalar variables defined in Equations (8) and (9) as the projection of macroscopic 
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strain field are used to define the isotropic stress p  and virtual simple shear stress 

q in Equation (6) through path dependent functions as 

 ( ')p p ε=  (11) 

 ( )q q γ=  (12) 

In the strain space multiple mechanism model, the virtual simple shear mechanism is 

formulated as a non-linear hysteretic function, where a back-bone curve is given by the 

following hyperbolic function [24]; 

 ( )
v

v
v

/
1 /

q qγ γ
γ

γ γ
=

+
 (13) 

The parameters v v and q γ  defining the hyperbolic function are the shear strength and 

the reference strain of the virtual simple shear mechanism, respectively. 

The strain space multiple mechanism model formulated with Equations (11) and (12) 

is the simplest in its kind to relate the macroscopic strain field to the macroscopic 

effective stress through a second order fabric tensor with strain induced anisotropy. This 

model fundamentally differs from a family of the multiple slip/multi-laminate models 

by Calladine [25,26] and Pande and Sharma [27] among others. As shown in Figure 4, 

the strain space multiple mechanism model or its family assumes that the particles in the 

granular materials moves, in average, consistently with the macroscopic strain field. 

This assumption allows defining the micromechanical strain as a projection of the 

macroscopic strain field through Equations (7) and (8). On the other hand, the family of 

the multiple slip/multi-laminate models assumes that the local strain is due to the 

multiple slip that can be significantly different from the macroscopic strain field. 

Although these two families of the models coincides with each other if the linear-elastic 

behavior is assumed for the micro (local) mechanism level, they are fundamentally 
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different in its behavior if non-linear relationship or failure criteria is assumed for the 

micro (local) mechanism level. 

As an example, two dimensional fabric mobilized by macroscopic simple shear in 

x y−  plane by the strain space multiple mechanism model is shown in Figure 5. The 

fabric in strain space is defined in terms of γ , computed through Equation (8), and 

shown in Figure 5 (a). The fabric in stress space is defined in terms of q , given by a 

transformation of the strain space fabric through the non-linear path dependent function 

in Equation (12). In this example, the hyperbolic function in Equation (13) is used to 

obtain the stress space fabric shown in Figure 5 (b). The plus (+) and minus (-) symbols 

in Figure 5 indicate the signs of  and qγ . As shown in Figure 5, the strain space fabric 

evolves by increasing its magnitude in proportion to the macroscopic simple shear strain 

xyγ  without changing its shape whereas the stress space fabric evolves from a slim 

shape of a four leaf clover into full bodied four leaves that cover an entire circle having 

a radius of the virtual shear strength vq . When the circle is fully covered, the material 

undergoes the macroscopic shear failure in the strain space multiple mechanism model. 

In the mutliple slip/multi-laminate models, the orientation distributions of local stress 

is consistent with the macroscopic stress field because the local stress is given as a 

projection of macroscopic stress field. Because of the slip-mechanism assumed in the 

local plane, local shear strain tends to localize in the first slip plane that satisfies the 

failure criteria. An example may be found in reference [28] among others. Thus, the two 

families of the models are fundamentally different with each other. 

 

2.3 Inherent anisotropy 
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The inherent anisotropy due to the texture of granular material can be readily introduced 

by generalizing the functions in Equations (11) and (12) being dependent on the 

orientation. By introducing the direction dependent parameters as 

 ( )v v ,  p p ω= Ω  (14) 

 ( )v v ,  ε ε ω= Ω  (15) 

 ( )v v ,  q q ω= Ω  (16) 

 ( )v v ,  γ γ ω= Ω  (17) 

the constitutive equation with inherent anisotropy may be written as follows: 

 1 1' * d d d d
4 4

p qω ω
π π

= − ⊗ Ω+ ⊗ Ω∫∫ ∫∫σ n n t n  (18) 

 ⊗ = ⊗ + ⊗n n n n t t  (19) 

 v v* *( '/ )p p pε ε=  (20) 

 v v( / )q q qγ γ=  (21) 

where *p  and q  are path dependent non-linear functions without direction 

dependency. This formulation is general enough to allow introduction of the higher 

modes of anisotropy in addition to the fundamental mode. 

For example, the transformation process from the strain space fabric γ  to the stress 

space fabric q  through Equation (21) takes the following steps: (a) v/γ γ γ , (b) 

v v/ /q qγ γ   and (c) v/q q q . The inherent anisotropy comes into effect in the 

steps (a) and (c) that are linear transformation. The inherent anisotropy does not affect 

the transformation process in the step (b) that is essential for describing the non-linear 

evolution of stress space fabric such as shown in Figure 5 through Equation (13). Thus 
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the generalization to include the inherent anisotropy for describing the texture of the 

material in various order of complexity is, in principle, simple in the strain space 

multiple mechanism model. 

 

2.4 Incremental form 

Incremental form of the constitutive equation is derived by taking the time derivative of 

both sides of Equation (6) as 

 1' d d
4

p q ω
π

= − + ⊗ Ω∫∫σ I t n    (22) 

 d '
d '

pp ε
ε

=   (23) 

 qq γ
γ

∂
=
∂

  (24) 

Substitution of Equations (7) through (10) yields the incremental form of the 

constitutive equation as follows: 

 ' :=σ ε    (25) 

 L/U L/U L/U d
1 d d

4
K G Kω

π
= ⊗ + ⊗ ⊗ ⊗ Ω− ⊗∫∫I I t n t n I I  (26) 

where the terms of the tangential stiffness 

 L/U
d
d '

pK
ε

= −  (27) 

 L/U
qG
γ

∂
=
∂

 (28) 

are given as path dependent functions and defined depending on the sign of strain rate 

component by 
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 L
L/U

U

   if ' 0 (loading/neutral)
   if ' 0 (unloading)

K
K

K
ε

ε

≥
= 

<




 (29) 

 L
L/U

U

   if 0 (loading/neutral)
   if 0 (unloading)

G
G

G
γ

γ

≥
= 

<




 (30) 

Thus the incremental form of the strain space multiple mechanism model is given 

through a fourth order fabric tensor   with strain induced anisotropy. The first and 

second terms of Equation (26) represent volumetric and deviator relationships, being 

major symmetric. The third term represents the effect of dilatancy that is formulated as a 

coupling between the volumetric and deviator mechanisms, being major unsymmetric. 

 

3. GENERALIZED MULTIPLE MECHANISM 

 

3.1 Integrated form 

The fundamental form of the constitutive equations reviewed above can be generalized 

as follows. With holding Equations (6) through (8) being the same, dilatancy in 

Equation (9) is decomposed into contractive component c
dε  and dilative component 

d
dε  as 

 c d
d d dε ε ε= +  (31) 

The physical motivation for such split may be given as follows. One motivation is 

due to the dilatancy at the minimum void ratio of sand (i.e. in a fully packed state). At 

this void ratio, contraction due to dilatancy is not possible so that the mechanism of 

dilatancy produces only the dilative volumetric strain. This conceptual experiment 

motivates for the concept of the dilative component of dilatancy to be defined as a 

mechanism different from the mechanism of dilatancy for producing contractive 
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volumetric strain. The other motivation is due to the dilatancy during cyclic shear in the 

laboratory at the void ratio larger than the minimum. During the cyclic shear, 

accumulated volumetric strain is contractive as if sand accumulates non reversible 

damage. This evidence motives for the concept of the contractive component of 

dilatancy to be defined as a mechanism different from the mechanism of dilatancy for 

producing dilative volumetric strain. The underlying concept described above may be 

illustrated as shown in Figure 6. This concept was originally proposed by Fukutake [29] 

in the context of a bowl shaped dilative component of dilatancy. 

By using the contractive component, virtual effective volumetric strain "ε  is 

defined as follows: 

 c
d"ε ε ε= −  (32) 

The virtual effective volumetric strain "ε  is the component of the effective volumetric 

strain without the effect of dilative component of dilatancy and will be used to represent 

the degree or state of liquefaction. 

With holding Equation (11) being the same, Equation (12) is generalized in order take 

into account the various failure criteria defined for three dimensional model [19], and 

the effects of effective stress and state of liquefaction by introducing additional 

variables as 

 2( ,  ', ",  , )q q Jγ ε ε θ=  (33) 

where 2J  and θ  denote the second invariant of stress tensor and Lode angle. 

 

2.2 Incremental form 

Derivation of the incremental form is given step-by-step as follow. First of all, the time 
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derivative of both sides of Equation (33) yields 

 2
2

' "
' "

q q q q qq J
J

γ ε ε θ
γ ε ε θ

∂ ∂ ∂ ∂ ∂
= + + + +
∂ ∂ ∂ ∂ ∂

    (34) 

Volumetric strain rate due to dilatancy is given through the derivation described later as 

follows: 

 d d d: : 'ε = +I ε J σ    (35) 

 c c
d d :ε = I ε   (36) 

Consequently, the strain rates appearing in the right side of Equation (34) are written as 

 :γ = ⊗t n ε   (37) 

 ( )d d' : : 'ε = − −I I ε J σ    (38) 

 ( )
c
d" :ε = −I I ε   (39) 

Similarly, the stress rates appearing in the right side of Equation (34) are written as 

 2
2 : '

'
JJ ∂

=
∂

σ
σ

   (40) 

 : '
'

θ
θ

∂
=
∂

σ
σ

   (41) 

Substitution of Equations (37) through (41) into Equations (23) and (34) yields 

 ( )d d
d d: : '
d ' d '

p pp
ε ε

= − −I I ε J σ    (42) 

 
( )

( )

d d

c 2
d

2

: : : '
' '

     : : '
" ' '

q q qq

Jq q q
J

γ ε ε

θ

ε θ

∂ ∂ ∂
= ⊗ + − −
∂ ∂ ∂

 ∂∂ ∂ ∂ ∂
+ − + + 
∂ ∂ ∂ ∂ ∂ 

t n I I ε J σ

I I ε σ
σ σ

  

 

ε

 (43) 

By substituting these equations into Equation (22), the generalized incremental 

constitutive equation is given as follows: 
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 ' : : '= +σ ε σ      (44) 

 
( ) ( )

L/U L/U L/U d

c
d d

1 d d
4

1 1    d d d d
4 4

K G K

H L

ω
π

ω ω
π π

= ⊗ + ⊗ ⊗ ⊗ Ω− ⊗

+ ⊗ Ω⊗ − + ⊗ Ω⊗ −

∫∫

∫∫ ∫∫

I I t n t n I I

t n I I t n I I



 (45) 

 L/U d d
1 1d d d d

4 4 qK H ω ω
π π

= − ⊗ − ⊗ Ω⊗ + ⊗ ⊗ Ω∫∫ ∫∫I J t n J t n J  (46) 

where 

 
'

qH
ε

∂
=
∂

 (47) 

 
"

qL
ε

∂
=
∂

 (48) 

 2

2 ' 'q
Jq q

J
θ

θ

∂∂ ∂ ∂
= +
∂ ∂ ∂ ∂

J
σ σ

 (49) 

The first through third terms in the right side of Equation (45) are the same as those 

appearing in the fundamental form given in Equation (26). The generalized form 

includes the fourth term representing the dependency of shear mechanism on effective 

stress and the fifth term on the state of liquefaction. The third through fifth terms 

represent coupling between the volumetric and shear mechanisms, being major 

unsymmetric. Equation (46) also includes the effects of the second invariant of stress 

tensor 2J  and Lode angle θ  on the shear and dilatancy as represented by the fourth 

order fabric tensor  . 

 

4. STRAIN ENERGY AND DILATANCY 

 

4.1 Micro- and macroscopic strain energy 
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As a prelude to the formulation of dilatancy in the strain space multiple mechanism 

model, relationship between the microscopic and macroscopic strain energies are 

identified as follows. First of all, the rate of strain energy in the strain space multiple 

mechanism model W  is computed through Equations (6), (7) and (8) as 

 1 1' : d d : d d
4 4

W p q p qω ε γ ω
π π

 
= = − + ⊗ Ω = − + Ω 

 
∫∫ ∫∫σ ε I t n ε     (50) 

Equation (50) can be rewritten as 

 v
1' : d d

4p qW W W ω
π

= = + Ω∫∫σ ε    (51) 

where 

 pW pε= −   (52) 

 vqW qγ=   (53) 

Equation (51) defines the fundamental relationship between the macroscopic strain 

energy rate ' :W = σ ε   and the microscopic strain energy rate vqW qγ=   given by the 

individual virtual simple shear mechanism that constitutes the strain space multiple 

mechanism model. This relationship will play a major role in formulating dilatancy as 

described later. This relationship plays another major role in formulating hysteretic 

damping during cyclic shear but this part of the discussions, though important, will be 

left to the references [30,31] in order to streamline the paper. 

Based on Equations (9) and (31), the volumetric strain rate is divided into three 

components, i.e. component due to isotropic stress change, and contractive and dilative 

components of dilatancy as follows: 

 c d
d d'ε ε ε ε= + +     (54) 

Substitution of Equation (54) into Equation (51) yields 
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 dc dd
v

1' : ' d d
4p p p qW W W W W ω
π

= = + + + Ω∫∫σ ε      (55) 

where 

 ' 'pW pε= −   (56) 

 dc c
dpW pε= −   (57) 

 dd d
dpW pε= −   (58) 

 

4.2 Dilative component of dilatancy 

 Following the classic postulate of interlocking that is defined as the energy less 

component of deformation by Taylor [32], a hypothesis is made in this study that a 

fraction of the shear strain energy is consumed in the mechanism of interlocking as 

 dd dd
v

1 d d 0
4p qW W ω
π

+ Ω =∫∫
   (59) 

where, by using the parameter 
d

r
ε

, the fraction of the shear strain energy rate is given 

by 

 
d d

dd
v vq qW r W r q

ε ε
γ= =    (60) 

The strain energy relation hypothesized in the original Cam-Clay model [33,34] may be 

interpreted as a special case where the parameter 
d

r
ε

 is reduced to unity so that the 

strain energy is only due to the contractive component of dilatancy dc c
dpW pε= −   

defined in Equation (57). 

In this study, it is also postulated that the shear stress contribution q  to the 

interlocking in Equation (60) refers to the backbone curve in Equation (13). This 

postulate is made in order to avoid accumulation of dilative component of dilatancy 
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during cyclic loading and thus simplifies the formulation of dilatancy. A conceptual 

background to the mechanism of interlocking may well be given by imagining a 

fictitious structure consisting of void (to be called void skeleton) that supplements the 

soil skeleton to form a specific continuum to idealize the behavior of granular materials 

with an assumption that the work done by the void skeleton is none [35]. 

  Based on these postulates together with Equations (53) and (58), dilative component 

of dilatancy is given by 

 
d

d v
d fv

v

/1 d d
4 1 /

r
ε

γ γ
ε γ ω

π γ γ
= Μ Ω

+
∫∫   (61) 

where 

 v
fv

q
p

Μ =  (62) 

is nothing but a slope of the shear failure line defined for the virtual simple shear 

mechanism. Equation (61) is integrated with respect to γ  with the condition that 

d
d 0ε =  for 0γ =  to derive an integrated form of dilative component of dilatancy as 

 
d

d
d v fv

v v

1 ln 1 d d
4

r
ε

γ γ
ε γ ω

π γ γ

  
= − + Μ Ω  

 
   

∫∫  (63) 

Thus the macroscopic dilative component of dilatancy is given from the 

micromechanical counterparts that are defined as a function of strain. Since stress is not 

directly involved in the mechanism formulated in this study, the dilatancy may well be 

interpreted as kinematic constraints due to the existence of particles and voids in 

granular materials. 

  Substitution of Equation (37) into Equation (61) yields the incremental relationship 

between the dilative component of dilatancy and the macroscopic strain through a 
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second order fabric tensor d
dI  as follows: 

 d d
d d :ε = I ε   (64) 

 
d

d v
d fv

v

/1 d d
4 1 /

r
ε

γ γ
ω

π γ γ
= Μ ⊗ Ω

+
∫∫I t n  (65) 

The dilative component of dilatancy during cyclic simple shear idealized through 

Equations (63) through (65) is shown in Figure 7. The curve forms a shape similar to 

the vertical cross section of a cocktail glass top and gradually approaches a straight line 

at both ends as the shear strain increases in its magnitude. 

The formulation given above is the fundamental form of the dilative component of 

dilatancy. This formulation is extended for describing the steady state of soil by 

introducing an upper limit to the dilative component of dilatancy. In order to formulate 

this limit, Equation (63) may be extended by introducing a parameter vusγ  representing 

an asymptote limit state as follows: 

 
d

d
d v fv

v v

1 ln 1 d d
4

r
ε

γ γ
ε γ ω

π γ γ

  
= − + Μ Ω  

 
   

∫∫
 

 (66) 

 vus

v vus v

1 exp
γ γγ

γ γ γ

  
= − −   

  


 (67) 

The incremental form is given by replacing Equation (65) with 

 ( )
d

d v
d fv

v vus

/1 sgn exp d d
4 1 /

r
ε

γγ γ
γ ω

π γ γ γ

 
= − Μ ⊗ Ω 

+  
∫∫I t n




 (68) 

Later on in this paper, the formulation is further generalized to take into account the 

dependency of vγ  on the virtual effective strain "ε . 

 

4.3 Contractive component of dilatancy 
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 The contractive component of dilatancy is given by the simple hypothesis in that the 

macroscopic component is given from those of microscopic counterparts associated 

with the virtual simple shear strain rate as follows: 

 c
d v p

1 d d
4

ε γ ω
π

= − Μ Ω∫∫   (69) 

where pγ  denotes irreversible (plastic) portion of virtual simple shear strain, being 

defined by 

 p 1 ecγ γ γ= −    (70) 

A parameter 1c  controls the elastic range and, if 1 ecγ γ≤  , then p 0γ = . By applying 

Equations (13) and (28) for a small strain range, Equation (70) is rewritten as 

 L/U
p 1

L0

1 Gc
G

γ γ
  

= −   
  

   (71) 

where, if L/U
1

L0

1 Gc
G

 
<  

 

, then p 0γ =  and 

 v
L0

v

= qG
γ

 (72) 

Consequently, the contractive component of dilatancy is given by 

 c L/U
d v 1

L0

1 1 d d
4

Gc
G

ε γ ω
π

  
= − Μ − Ω   

  
∫∫   (73) 

and, if L/U
1

L0

1 Gc
G

 
<  

 

, that component of the term in integral vanishes. 

Thus, the contractive component of dilatancy is formulated through another second 

order fabric tensor c
dI  as follows: 

 c c
d d :ε = I ε   (74) 
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*c L/U

d v 1
L0

1 1 d d
4

Gc
G

ω
π

  
= − Μ − ⊗ Ω   

  
∫∫I t n  (75) 

where, if : 0⊗ ≥t n ε , then 

 
*

⊗ = ⊗t n t n  (76) 

and , if : 0⊗ <t n ε , then 

 
*

⊗ = − ⊗t n t n  (77) 

 The formulation given above is the fundamental form of the contractive component 

of dilatancy. Later on in this paper, the formulation will be generalized by introducing 

parameters for controlling the rate and the dependency on the virtual effective strain "ε . 

It will also be postulated that no increase is allowed for contractive component of 

dilatancy along the stress path beyond a limiting line that is defined between the failure 

line and the phase transformation line [36]. 

Figure 8 shows the position of this limiting line relative to the phase transformation 

and failure lines in a stress plane defined by effective confining pressure p  and shear 

stress 2 cosJτ θ= . In particular, the zone above the limiting line indicated by 

hatching in Figure 8 allows only dilative component of dilatancy due to interlocking; 

the steady state cannot be reached without going through this zone to the failure line. 

This line of thought is getting along the modern interpretation of strain energy [37]. 

However, this type of modeling is general enough to allow variation depending on the 

type and state of soil. For example, the failure and limiting lines are allowed to coincide 

with the phase transformation line. In this case, the stress path similar to that given by 

the original Cam-Clay model [33,34] is realized when the steady state (i.e. the critical 
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state) is approached from the wet side. 

 

5. MODEL PARAMETERS 

 

5.1 Parameters for volumetric mechanism 

In order to study the applicability of the dilatancy model proposed in Chapter 4, the 

model is applied for two dimensional analysis of sand by reducing the double 

integration such as shown in Equation (6) to single integration with respect to ω . For 

the sake of simplicity, the texture of the material is assumed to be isotropic. Details, 

including the vector-matrix representation used for numerical analysis, may be found in 

the previous studies [2,38]. The model parameters and the functions required to 

complete the description of the constitutive equation are as follows. 

  By assigning the reference confining pressure ap , bulk moduli in Equation (29) are 

given, for normal consolidation, by 

   L La
a

Kn
pK K
p

 
=  

 

 (78) 

and, for over consolidation, by 

 U Ua
a

Kn
pK K
p

 
=  

 

 (79) 

In the analysis of liquefaction and other undrained or partially drained behavior of sand, 

this is extended, by referring to the initial confining pressure 0p , as 

 L/U U0
0

Kl

K
pK r K
p

 
=  

 

 (80) 

The parameter Kr  is introduced to account for the difference in the bulk modulus for 
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drained and undrained conditions. The power index Kl  is allowed to take the value  

larger than or equal to unity in order to simulate the liquefaction phenomena where the 

contractive component of dilatancy reaches the volumetric strain, ranging from one to 

five percent, that exceeds the volumetric strain induced by normal consolidation 

preceding the undrained cyclic loading [39]. Integrated form of Equation (80) is given, 

for 1Kl ≠ , by 

 ( ) K

1
10 1 lp p η −= +  (81) 

 0 m0(1 )( ' ') /Klη ε ε ε= − − −  (82) 

and, for 1Kl = , by 

 0 expp p η=  (83) 

 0 m0( ' ') /η ε ε ε= − −  (84) 

where the term 

 ( )m0 0 U0/ Kp r Kε =  (85) 

may well be called the reference volumetric strain from the analogy to the reference 

strain defined for shear. 

 

5.2 Parameters for shear mechanism 

The parameters v v and q γ  defining the shear mechanism such as defined in Equation 

(13) are given from the macroscopic shear strength mτ  and elastic shear modulus mG  

as follows [2]: 

 m m
v

1

2sin
I

i
i

q τ τ

ω ω

=

= ≈

∆∑

 (86) 
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π

γ γ γ

ω ω

=

=
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 = ≈

 
∆ 

 

∑

∑

 (87) 

where m m m/ Gγ τ=  is the reference strain often referred to in the discipline of soil 

dynamics and / Iω π∆ =  when the integration is replaced by summation in the 

numerical analysis. The slope of the failure line for virtual simple shear is given, by 

using Equations (62) and (86), as 

 f f
fv

1

2sin
I

i
i

ω ω

=

Μ Μ
Μ = ≈

∆∑

 (88) 

The tangent stiffness used for the incremental relationship is given, from Equations 

(28) and (13), for the backbone curve as 

 
( )

v
L 2

vv

1
1 /

qqG
γ γγ γ

∂
= =
∂ +

 (89) 

For the formulation of hysteretic behavior, refer to [30,31]. 

Confining pressure dependency is introduced to these parameters as follows: 

 m f fsinp pτ φ= = Μ  (90) 

 m ma
a

Gm
pG G
p

 
=  

 

 (91) 

 m
m 1

m ma a

Gm
p pm

G G p
τ

γ

−

 
= =  

 

 (92) 

where fφ  denotes internal friction angle to define the slope of failure line  

f fsinφΜ = . 

In the analysis of liquefaction of sand, dependency on confining pressure and the 

state of liquefaction is introduced in reference to the previous study on modeling of 
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cyclic mobility [2] and more recent laboratory studies under undrained condition [40] as 

follows: 

for 0 0bdS S> : 

 m m0Sτ τ=  (93) 

 m m m0/G τ γ=  (94) 

 m m0γ γ=  (95) 

and, for 0 0bdS S< : 

 m m0Sτ τ=  (96) 

 m m m/G τ γ=  (97) 

 m m0 0 0bd/( / )S Sγ γ=  (98) 

where 

 0bd 1.0S =  (99) 

and the terms m0τ  and m0γ  are defined through Equations (90) and (92) by referring 

to the initial confining pressure 0p  in the analysis of liquefaction. The state variable 

S  and the liquefaction front parameter 0S  appearing in Equations (93) through (98) 

are defined as follows: 

 0/S p p=  (100) 

 ( )0 0min ''/S p p=  (101) 

where the lower limit for 0 and S S  is given by a parameter 1S  being a small positive 

number. The virtual effective stress "p  appearing in Equation (101) is defined similar 

to Equation (81) by replacing the effective volumetric strain 'ε  with the virtual 
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effective volumetric strain "ε  as follows: 

for 1Kl ≠ : 

 ( )
1

1
0" " 1 Klp p η −= +  (102) 

 ( )0 m0" (1 ) '' '' / "Klη ε ε ε= − − −  (103) 

and, for 1Kl = : 

 0" exp "p p η=  (104) 

 0 m0" ( " ") / "η ε ε ε= − −  (105) 

where the term 

 ( )m0 0 U0" / "Kp r Kε =  (106) 

is defined by using a parameter "Kr  similar to Kr . For the sake of simplicity, "Kr  

may be taken equal to Kr . 

 

5.3 Parameters for contractive component of dilatancy 

The fundamental form of the fabric tensor to represent the contractive component of 

dilatancy in Equation (75) is extended, by using the parameter 
d

r
ε

 being common to 

that for dilative component of dilatancy, and an additional parameter c
d

r
ε

 specific to the 

contractive component of dilatancy, as follows: 

 cd 0d

*c L/U
d t v 1

L0

1 1 d d
4 S

Gr r r r c
Gε ε

ω
π

  
= − Μ − ⊗ Ω   

  
∫∫I t n  (107) 

This three dimensional form is reduced for two dimensional analysis as 

 cd 0d

*c
d v dSr r r

ε ε
ω= − Μ ⊗∫I t n  (108) 
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v t v 1

L0

1 Gr c
G

  
Μ = Μ −   

  

 (109) 

The term 
0Sr  in Equation (108) controls the rate of increase in magnitude depending on 

the state of liquefaction and, by using the parameters 1q  and 2q , is defined as follows: 

for *
0 bi ( 0.8)S S> = : 

 ( ) ( )2

0

* * *
0 0 bi 1 0 bi(1 ) / 1q

Sr S S S q S S = − + − −
 

 (110) 

and, for *
0 bi ( 0.8)S S≤ = : 

 2

0

*
0

q
Sr S=  (111) 

where 

 *
0 0"/S p p=  (112) 

and *
0 1S S≥ . 

The parameter vΜ  in Equation (109) controlling the contractive component of 

dilatancy is related with the phase transformation angle pφ  through 

 p p
pv

1

2sin
I

i
i

ω ω

=

Μ Μ
Μ = ≈

∆∑

 (113) 

 p psinφΜ =  (114) 

The term in Equation (113) is used, by specifying the upper limit in magnitude for 

contractive component of dilatancy cm
dε  and additional parameter 3( 1.0)q = , to define 

the term vΜ  as follows: 

 
( )

3c
d

v pvcm
d

1

q
ε

ε

 −
 Μ = − Μ
 
 

 (115) 
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where, if c cm
d dε ε− > , then v =0Μ . For cm

dε = ∞ , the parameter vΜ  is reduced to 

pvΜ . 

The term tr  in Equation (109) is introduced, in reference to [36], to impose the 

limiting line located between the failure and phase transformation lines as follows: 

 t tv tv r( / ) / ( )r q p= Μ − Μ −Μ  (116) 

where, if tv/q p ≥ Μ , then t 0r = , and, if r/q p ≤ Μ , then t 1r = .  

In this study, the limit tvΜ  is given as an averaged slope of the failure and phase 

transformation lines in the virtual simple shear mechanism as follows: 

 tv fv pv( ) / 2Μ = Μ +Μ  (117) 

 r pv0.67Μ = Μ  (118) 

where fvΜ  is given by Equation (88). 

 
5.4 Parameters for dilative component of dilatancy 

The dilative component of dilatancy for three dimensional analysis in Equation (63) is 

reduced for two dimensional analysis as 

 
d

d
d v fv

v v

ln 1 dr
ε

γ γ
ε γ ω

γ γ

  
= − + Μ  

 
   
∫  (119) 

For describing the steady state of soil, Equation (66) is similarly reduced to  

 
d

d
d v fv

v v

ln 1 dr
ε

γ γ
ε γ ω

γ γ

  
= − + Μ  

 
   
∫

 
 (120) 

where the term v/γ γ  is given by Equation (67) using the parameter vusγ . This gives 

the dilative component of dilatancy at the steady state in asymptote as 
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 d vus vus
d us v fv

v v

ln 1
d

r
ε

γ γ
ε γ π

γ γ

  
= − + Μ  

  

 (121) 

As described earlier, contractive component of dilatancy ceases to increase in its 

magnitude along the stress path beyond the limiting line specified by Equation (117) 

and thus keeps the same value assigned at the limiting line when the steady state is 

eventually reached. This process can be described as follows. First of all, Equation (81) 

is rewritten in terms of state variable S  as 

 ( )
1

0 m0
1' ' 1

1
Kl

K

S
l

ε ε ε
−

− = − −
−

 (122) 

For a quasi-static undrained shear process keeping the total confining pressure constant, 

a change in the volume of soil skeleton is the same as the change in the volume of pore 

water. This process is written, by using porosity n , bulk modulus of pore water fK , 

and initial volumetric strain 0ε , as 

 ( )0 0
f

1n S p
K

ε ε− = − −  (123) 

By assuming that the volumetric strain due to dilatancy is zero at the initiation of 

liquefaction analysis, then 0 0'ε ε=  to give 

 0 0'ε ε ε ε− = −  (124) 

Therefore, the dilatancy at the steady state is given, with the state variable being cS S=  

and using Equations (122) through (124), by 

 ( ) ( )
1c d

d us d us dus c m0 c 0
f

1 1 1
1

Kl

K

nS S p
l K

ε ε ε ε
−

+ = = − − −
−

 (125) 

Based on this relationship, if ( )
c c d
d d us d us dusε ε ε ε− > − = − , then the dilative component of 
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dilatancy at the steady state is updated in association with the current value of c
dε  by 

 d c
d us dus dε ε ε= −  (126) 

The parameter vusγ  is updated also by back-calculation through Equation (121). 

The state variable at the steady state cS  is computed from the undrained shear 

strength usq  as 

 c us m0/S q τ=  (127) 

where m0 f 0pτ = Μ .  

 

5.5 Summary of model parameters and examples 

  The model parameters described above is summarized in Table I. The strain space 

multiple mechanism model proposed in this study has 15 primary parameters for the 

analysis of liquefaction; three specify volumetric mechanism, three specify shear 

mechanism, and the rest control dilatancy. In particular, the undrained shear strength 

usq  is treated as one of the input parameters by following the current Japanese practice 

in design. The undrained shear strength usq  together with other parameters, however, 

may be tied down with void ratio and other indices that characterizes soils [41,42]. 

The terms required in incremental form in Equation (45) other than those discussed 

earlier are derived by simple and straight forward differentiation with respect to the 

relevant variables. The results are summarized in APPENDIX. 

As an example of the model performance, drained behavior during isotropic 

compression up to the confining pressure of 98kPa is shown in Figure 9. The parameters 

shown in Table II are used for the simulation with a power index of 0.5Kn = . By using 
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the same parameters except for the parameter c
d

5.0r
ε
= , the analysis of a single soil 

element under defined monotonic simple shear from the various initial confining 

pressure is shown in Figure 10. Number of the virtual simple multiple mechanisms used 

for the simulation are 24 for the range from / 2 0ω =  to / 2π . The results shown in 

Figure 10 indicate that the dilatancy is initially contractive, and then turns into a dilative 

regime with an increasing shear strain. The tendency to dilate is more significant for a 

smaller initial confining pressure. 

 

6. SIMULATION OF STEADY STATE AND CYCLIC MOBILITY 

 

6.1 Steady state 

Performance of the strain space multiple mechanism model incorporating the proposed 

dilatancy model is studied for its capability to simulate steady state and cyclic mobility. 

Typical steady state behavior of sand identified through the laboratory studies [42,43] is 

the target of the simulation. In particular, four types of behavior designated by the 

alphabets A through D in Figure 11 are identified through these laboratory studies. The 

type A indicates that steady state is reached with monotonic increase in shear stress 

without decrease in effective confining pressure. The type B indicates that steady state 

is reached with monotonic increase in shear stress involving decrease in effective 

confining pressure before going through the phase transformation line. The type C 

indicates that steady state is reached after going through a peak in shear stress and 

quasi-steady state. The type D indicates that steady state is reached after going through 

a peak.  

  In Figure 11(b), the slopes (tangential directions) of the stress path curves at the stress 
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points on the phase transformation line are in the vertical direction. The slopes 

(tangential directions) of the stress-strain curves shown in Figure 11(a) coincides with 

the horizontal direction at quasi-steady state and the stead state. The term ‘critical state’ 

widely quoted in the literatures on critical state soil mechanics is not used in this study 

because this term implies that the steady state are defined on the phase transformation 

line. In this study, the authors take a generalized view that the steady state may not 

always be on the phase transformation line. 

The standard set of model parameters used for simulation is shown in Table II. 

Specific parameters varied from the standard set will be described in the relevant parts 

of the text. The formulation of saturated medium [44] is adopted for the numerical 

analysis with undrained condition. 

  The first series of the simulations are performed for undrained condition with 

monotonic increase in simple shear strain starting from an isotropic stress condition. 

This loading process is called 'monotonic loading' throughout the paper although the 

stress might not show a monotonic increase depending on the conditions. The initial 

confining pressures are varied from 20 to 200kPa. For a small undrained shear strength 

us 5kPaq =  with 2 0.2q = , c
d

30r
ε
=  and cm

d 2.0ε = , the steady state is reached after 

going through a peak in shear stress as shown in Figure 12. The results basically 

represent the type D in Figure 11. However, if the shear strain is kept increasing beyond 

20 percent range, shear stress is gradually recovered and reached the specified steady 

state of us 5kPaq =  at a large shear strain. The authors are aware of the fact that the 

small strain/small displacement formulation given in the previous chapters is not 

applicable to a very large strain range such as shown in Figure 12(a). However, the 
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results in this strain range are intentionally shown in order to study the performance of 

the present formulation as is. Obviously the next step of the study should include the 

finite strain/large deformation formulation to discuss the applicability of the model to 

describe actual behavior of soils. 

  For an intermediate undrained shear strength of us 30kPaq =  with c
d

30r
ε
=  shown 

in Figure 13, the steady state is reached after going through a peak and also going 

through a quasi-steady state [42], that is more clearly seen than in the case with the 

small undrained shear strength previously shown in Figure 12. The results basically 

represent the type C in Figure 11. For an undrained shear strength of us 200kPaq =  

with c
d

30r
ε
=  shown in Figure 14, similar trend is also observed with a more marked 

tendency in increase in the shear resistance in the large shear strain range. 

  In all cases, the steady state specified by the parameter usq  is reached irrespective of 

the initial confining pressures, being consistent with the results of the studies through 

laboratory tests [42,43,45]. 

 

6.2 Effects of parameters 

Effects of the parameters c
d

r
ε

, 2q , and usq  are studied more systematically by varying 

only one parameter at a time and keeping the initial confining pressure the same. The 

rest of the parameters for dilatancy, i.e. 
d

r
ε

, 1q , 1S , and 1c , are more or less relevant 

to the cyclic behavior rather than the steady state; 
d

r
ε

 controls overall behavior for 

dilative and contractive component of dilatancy, 1q  controls initial phase of excess 

pore water pressure generation, 1S  has minor effects except for avoiding numerical 
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difficulties associated with the condition at zero confining stress, and 1c  controls 

threshold limit for liquefaction as described earlier. 

The effect of the parameter c
d

r
ε

 ranging from 1 to 50 is shown in Figure 15. 

Although the same steady state is eventually reached in all cases, transient behavior is 

significantly affected by this parameter. In particular, for a small c
d

r
ε

, say less than 10 

with the given set of the parameters, shear stress monotonically increases with higher 

rate for smaller c
d

r
ε

. In particular, the case with c
d

1r
ε
=  (or less) represents the type A in 

Figure 11 whereas the cases with c
d

r
ε

varying from 2 to 10 represent the type B in Figure 

11. For a large c
d

r
ε

, say larger than 20, the shear stress strain path goes through a peak, 

and then goes through a quasi-steady state before arriving at the steady state, 

representing the type C in Figure 11.  

The effect of the parameter 2q  varying from 0 to 5 with c
d

10r
ε
=  is more or less 

restricted to the stress path in the vicinity of phase transformation line as shown in 

Figure 16. The steady state is reached faster for a larger 2q . 

The effect of usq , if all the rest of the parameters are kept the same with c
d

10r
ε
= , is 

not significant for the behavior up to the phase transformation line as shown in Figure 

17 (b) and (c), but after that, the effect of usq  becomes significant as shown in Figure 

17 (a). The authors are aware of the extreme end of the range set for this parameter as 

usq =1000kPa that is usually unachievable unless a very high back-pressure is applied 

but this is intentional to study the model performance as is. 

To summarize, the parameter c
d

r
ε

 controls the strain range in the vicinity of the peak 
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as well as around the phase transformation line whereas the parameter 2q  controls the 

behavior restricted around the phase transformation line. The parameter usq  primarily 

governs the behavior at a large strain range. Together with the results shown in Section 

6.1, the strain space multiple mechanism model proposed in this study shows a 

reasonable capability to simulate various types of behavior, including the types A 

through D shown in Figure 11, being consistent with the laboratory studies [42,43,45] 

Another interesting feature noted in the stress strain behavior is that, even if the shear 

stress strain path does not go through a peak, all the stress strain curves show 'a 

shoulder' located at a relatively small strain range before eventually arriving at the 

specified steady state as shown in Figure 15 (b) through 17 (b). Since this shoulder 

might have a significant effect on the deformation of soil, more detailed look into this 

aspect of soil behavior might be necessary in future. 

 

6.3 Measured and computed results for monotonic loading 

In order to study the applicability of the strain space multiple mechanism model to 

typical laboratory results, an attempt is made to simulate a series of the laboratory test 

results obtained by Yoshimine et al[46]. The laboratory test was performed on Toyoura 

sand for undrained simple shear condition with the void ratio ranging from 0.804e =  

through 0.888. The parameters used for the simulation varied from those shown in Table 

II are the internal friction angle f 42.7φ = ° , with the parameter 2q  linearly varied from 

1.0 to 0.2, and c
d

r
ε

 from 5 to 30. The undrained shear strength was kept at a value large 

enough (i.e. 500kPa) for the simulation with void ratio less than 0.863. For the void 

ratio of 0.876 and 0.888, usq  of 10 and 1 are used. The measured and computed results 
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are shown in Figure 18. The void ratio written for the computed results in Figures 18(b) 

and (d) are estimated by linear interpolation between 0.804e =  and 0.888. Although 

there are uncertainty in the measured and computed void ratio, the strain space multiple 

mechanism model demonstrates its capability to capture the essential features of 

laboratory test results for monotonic loading. 

 

6.4 Steady state with strain reversal 

The behavior with strain reversal after reaching a steady state is studied with the 

parameters us 30kPaq =  and c
d

20r
ε
= . In this simulation, shear strain is at first 

increased up to 40%xyγ =  towards right in Figure 19 (a) and (b), and then decreased 

back to zero but kept on going in the negative direction towards left in these figures 

until another steady state is reached. After this process, the shear strain is reversed again 

back to zero. This simulation results in an extremely large shear strain in magnitude as 

shown in Figure 19. It might be too early to make judgment on the validity of the model 

with respect to this extreme condition of loading because it is difficult to perform 

laboratory tests with such an extreme loading history. However, the specified undrained 

shear strength us 30kPaq =  is confirmed to be reached at both ends of the steady states 

as the model is intended to. 

 

6.5 Cyclic behavior 

Performance of the model for cyclic loading under undrained condition is studied 

without considering the effect of steady state. In this simulation, laboratory test results 

by Matsuo et al [47] are used as a reference for the simulation. The soil element is at 
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first isotropically consolidated with a confining pressure of 0 65.3kPap = , and then is 

subject to a cyclic simple shear with an amplitude of 14kPaxyτ = , that corresponds to 

the stress ratio of 0/ 0.21xy pτ = , for 15 cycles. The parameters varies from those 

shown in Table II for the simulation includes c
d

45 , 26 , 1.2f p r
ε

φ φ= ° = ° =  and 1 5q = . 

The measured and computed results are shown in Figure 20. The behavior of sand under 

this type of loading forms a basis for the studies of one dimensional response and 

liquefaction of horizontally layered ground during an earthquake. In addition, the 

relations between the cyclic stress ratio and number of cycles of loading are shown in 

Figure 21. The results with the double strain amplitudes ranging from 1 to 10% shown 

in this figure show the trend similar to the typical laboratory cyclic loading test results 

such as presented by Inagaki et al [48], basically support the applicability of the strain 

space multiple mechanism model. 

Another type of simulation for cyclic loading is performed in an anisotropic stress 

field. In this simulation, the soil element is initially consolidated with a vertical 

confining pressure of 0 ' 87kPayσ− =  with a horizontal confining pressure of 

0 ' 43.5kPaxσ− =  with an average confining pressure of 0 65.3kPap = . By keeping this 

axial stress difference constant ' ' 43.5kPax yσ σ− =  throughout the simulation, a cyclic 

simple shear with amplitude that corresponds to the same shear stress amplitude of 

14xy kPaτ =  is applied for 10 cycles. The same parameters used for the cyclic loading 

in the isotropic stress field are used for this simulation. The results are shown in Figure 

22. In particular, the stress and strain curve for xy xyτ γ− , shown in Figure 22 (a)(b), 

indicates gradual growth in the amplitude of xyγ  with overestimation in computed 
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results, whereas the axial strain difference x yε ε− , shown in Figure 22 (c)(d), exhibits a 

cumulative increase about the same order in the measured and computed results. These 

stress strain behaviors are associated with the stress path, shown in Figure 22 (e)(f), that 

gradually approaches the lower limit in the effective confining pressure. In accordance 

with this approach, the stress path in the normalized pτ −  plane, shown in Figure 22 

(g), approaching a limiting line for contractive component of dilatancy. The behavior of 

sand under this type of loading forms a basis for the studies on the deformation of 

soil-structure systems having two dimensional configuration during an earthquake 

where an anisotropic stress field is imposed due to gravity before the dynamic loading 

due to the earthquake. 

 Except for the overestimation in terms of xyγ  shown in Figure 22, the computed 

results shown in Figures 20 through 22 reasonably capture the essential features of the 

sand behavior subject to cyclic loading under undrained condition as studied in the 

laboratory tests [49,50]. 

 

7. CONCLUSIONS 

 

A theoretical link between the micromechanical and macroscopic strain energies of 

granular materials is studied and the results are applied for formulation of dilatancy 

through a strain space multiple mechanism model. Primary conclusions of this study are 

summarized as follows: 

 

1) The macroscopic deviator strain energy is given as an integral of microscopic strain 
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energy given by the individual virtual simple shear mechanism that constitutes the 

strain space multiple mechanism model. The macroscopic volumetric strain energy is 

given as a summation of component due to isotropic stress change, and contractive 

and dilative components of dilatancy. 

2) The classic postulate of interlocking that is defined as the energy less component of 

deformation forms the basis for dilative component of dilatancy as an integral of 

those counterparts in the virtual simple shear mechanism. Contractive component of 

dilatancy is given through an obvious postulate that the macroscopic component is 

given as an integral of those of microscopic counterparts. The incremental 

relationship between the macroscopic volumetric strain due to dilatancy and the 

macroscopic strain tensor is formulated through second order fabric tensors. 

3) Performance of the dilatancy model described above is demonstrated for monotonic 

and cyclic loading under undrained condition. In particular, the model shows 

reasonable capability to simulate the essential features of the behavior of sand, 

including the peak, quasi-steady state, and steady state for monotonic loading. The 

model also shows reasonable performance to simulate cyclic behavior of sand under 

isotropic and anisotropic stress fields. 

 

APPENDIX 

 

Three dimensional multiple mechanism model generalized in Chapter 3 is reduced to 

two dimensional multiple mechanism model as follows. In two dimension, Equations 

(33) and(35) are reduced to 

 ( ,  ', ")q q γ ε ε=  (128) 

38 



 d d :ε = I ε   (129) 

Consequently the generalized incremental constitutive equation in Equation (44) is 

given by 

 ' :=σ ε    (130) 

 
( ) ( )
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d d

d

    d d

K G K

H L

ω

ω ω

= ⊗ + ⊗ ⊗ ⊗ − ⊗

+ ⊗ ⊗ − + ⊗ ⊗ −

∫

∫ ∫
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 (131) 

Differentiation with respect to the relevant variables yields the terms L/UK , 

L/UG , c
d d,  ,   and H L I I  in Equation (131). Among these terms, the terms L/UK , L/UG , 

and c
dI  are given in Equations (78) through (80), (89), and (108) in the main text. After 

some straight forward manipulation, the terms  and H L  are given as follows: 

 v vm m
L/U

v m v m'
qq q qH K

q p p
γτ γ

ε τ γ γ

 ∂ ∂∂ ∂∂ ∂ ∂
= = − + 
∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 (132) 

and, if 0 0bdS S< , d " 0p <  and 0 0"/S p p≥ , then 

 v L/Um

0 v m 0

"KqL
S p

γγ

γ γ

∂∂
=

∂ ∂
 (133) 

otherwise 0L = . The terms in Equations (132) and (133) are given, for the backbone 

curve, by 

 v

v v

/
1 /

q
q

γ γ

γ γ

∂
=

∂ +
 (134) 

 
( )

v v
2

v vv

/
1 /

qq γ γ

γ γγ γ

∂
= −

∂ +

 (135) 

 f
m

p
τ∂

= Μ
∂

 (136) 
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 m

f m

0 (for liquefaction analysis)
(1 ) / (for static gravity analysis)Gm Gp

γ ∂
= 

− Μ∂ 

 (137) 

and the rest of the terms are given by Equations (86) and (87). For the formulation of 

hysteretic part, see the reference [38]. 

The second order fabric tensor for dilative component of dilatancy for liquefaction 

analysis d
dI  is given, if 0 0bdS S< , d " 0p <  and 0 0"/S p p≥ , by 

 ( )
d

d
d cv d v L/U
d fv d

v v 0 0

/ "d
1 /

Kr
S pε

γ γ ε γ
ω

γ γ γ

∂
= Μ ⊗ + −

+ ∂
∫I t n I I  (138) 

and, otherwise, by 

 
d

d v
d fv

v

/ d
1 /

r
ε

γ γ
ω

γ γ
= Μ ⊗

+
∫I t n  (139) 

where 

 
d

vd
fv

v v v

/
ln 1 d

1 /d
r
ε

γ γε γ
ω

γ γ γ γ

  ∂
= − + Μ  

  ∂ +
  

∫  (140) 

Finally the second order fabric tensor for dilatancy is given by 

 c d
d d d= +I I I  (141) 

For representing steady state, the second order fabric tensor d
dI  is given, if 0 0bdS S< , 

d " 0p <  and 0 0"/S p p≥ , by 

 ( ) ( )
d

d
d cv d v L/U
d fv d

v vus v 0 0

/ "sgn exp d
1 /

Kr
S pε

γγ γ ε γ
γ ω

γ γ γ γ
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+ ∂ 
∫I t n I I
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otherwise 

 ( )
d

d v
d fv
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/ sgn exp d
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r
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where 
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and the term v/γ γ  is given by Equation (67) using the parameter vusγ . 

For static gravity analysis, the second order fabric tensor for dilatancy dI is given by 

 

d

1d d
cd v v d vm m

d L/U d fv L/U
v m v v m

/= 1 d
1 /

K r K
p pε

ε γ γ γ ε γγ γ
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Table I. Model parameters. 
Symbol Mechanism Parameter designation 

L/UaK  Volumetric Bulk modulus 

Kr  Volumetric Reduction factor of bulk modulus for liquefaction analysis 

Kl  Volumetric Power index of bulk modulus for liquefaction analysis 

maG  Shear Shear modulus 

fφ  Shear Internal friction angle 

maxh  Shear Upper bound for hysteretic damping factor 

pφ  Dilatancy Phase transformation angle 

d
r
ε

 Dilatancy Parameter controlling dilative and contractive components 

c
d

r
ε

 Dilatancy Parameter controlling contractive component 

1q  Dilatancy Parameter controlling initial phase of contractive component 

2q  Dilatancy Parameter controlling final phase of contractive component 
cm
dε  Dilatancy Limit of contractive component 

1S  Dilatancy Small positive number to avoid zero confining pressure 

1c  Dilatancy Parameter controlling elastic range for contractive component 

usq  Dilatancy Undrained shear strength (for steady state analysis) 
 
 
 
Table II. Model parameters used as the standard set for simulation. 

L/UaK  Kr  Kl  maG  fφ  maxh  pφ  
d

r
ε

 c
d

r
ε

 1q  2q  cm
dε  1S  1c  usq  

(kPa)   (kPa) ( ° )  ( ° )        (kPa) 
220300 0.5 2 84490 39.7 0.24 28.0 0.1 1.5 1.0 1.0 0.2 0.005 1.0 200 
( a 98kPap = ) 
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Figure 1. Contact normal n , tangential direction t  and contact force P . 
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Figure 2. Local co-ordinate , ,x y z    for defining the virtual two dimensional 
mechanism. 
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Figure 3. Stress component in the direction of / 2ω  relative to the reference local 
coordinate x  in the virtual plane for defining two dimensional mechanisms: (a) biaxial 
shear ⊗n n ; (b) simple shear ⊗t n . 
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Figure 4. Conceptual background to the two families of multiple mechanism models. 
 

 
Figure 5. Evolution of fabric mobilized by macroscopic simple shear in  plane: 
(a) fabric in strain space; (b) fabric in stress space. 
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Figure 6. Schematic figure for dilative and contractive components of dilatancy. 
 

 
Figure 7. Dilative component of dilatancy ( ,  and ). 
 

 
Figure 8. Zoning of stress plane with respect to dilatancy. 
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Figure 9. Drained behavior during isotropic compression. 
 

 
Figure 10. Drained behavior under monotonic loading; (a) stress-strain relationship; (b) 
volumetric strain-shear strain relationship. 
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Figure 11. Schematic figure of undrained behavior of sand under monotonic loading 
(modified after [43]): (a) stress-strain relationship; (b) stress path. 
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Figure 12. Undrained behavior under monotonic loading ( ): (a) overall 
stress-strain relationship; (b) stress-strain relationship for small strain range; (c) stress 
path. 
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Figure 13. Undrained behavior under monotonic loading ( ): (a) overall 
stress-strain relationship; (b) stress-strain relationship for small strain range; (c) stress 
path. 
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Figure 14. Undrained behavior under monotonic loading ( ): (a) overall 
stress-strain relationship; (b) stress-strain relationship for small strain range; (c) stress 
path. 
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Figure 15. Undrained behavior under monotonic loading (with various ): (a) overall 

stress-strain relationship; (b) stress-strain relationship for small strain range; (c) stress 
path. 
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Figure 16. Undrained behavior under monotonic loading (with various ): (a) overall 
stress-strain relationship; (b) stress-strain relationship for small strain range; (c) stress 
path. 
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Figure 17. Undrained behavior under monotonic loading (with various ): (a) overall 
stress-strain relationship; (b) stress-strain relationship for small strain range; (c) stress 
path. 
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Figure 18. Undrained behavior under monotonic loading (with various void ratios) 
(measured data after Yoshimine et al. [46]); stress-strain relationship (measured (a), 
computed (b)); stress path (measured (c), computed (d)). 
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Figure 19. Undrained behavior under monotonic loading with strain reversal on both 
ends: (a) overall stress-strain relationship; (b) stress-strain relationship for initial half 
cycle; (c) stress path. 
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Figure 20. Cyclic undrained behavior (measured data after Matsuo et al. [47]; 
stress-strain relationship (measured (a), computed (b)); stress path (measured (c), 
computed (d)). 
 
 

 
Figure 21. Computed and measured cyclic shear stress ratios (Measured data after [47]). 
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Figure 22. Cyclic undrained behavior with a constant axial stress difference (measured 
data after [47]); shear stress-shear strain relationship (measured (a), computed (b)); 
shear stress-axial strain difference relationship (measured (c), computed (d)); stress path 
in  plane (measured (e), computed (f)); computed stress path in  plane 
(g). 
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