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1 Introduction

It is believed by most astro-cosmologists as well as astro-particle physicists that the only

solution to resolve the flatness and horizon problems in the universe is to think of exponen-

tial expansion called inflation [1] right after birth of our universe. In recent years several

observational results to confirm the inflation were reported [2–5]. In particular, the most

important evidence in the present days to provide data is the temperature fluctuation of

the cosmic microwave background radiation (CMB) which shows us quantitatively that

there was the era of the inflation in the early universe. Using this data we can investigate

the mechanism of the inflationary expansion in detail. The CMB is the photon emitted in

the recombination era of which the wavelength is very long so that CMB reaches us with-

out much scattering afterwards. Therefore CMB carries to us the information of the early

universe. The most peculiar properties of CMB is that it is homogeneous and uniform

with very high accuracy and furthermore the spectrum agrees very well with the black

body radiation with the temperature 2.725 [K] while the temperature fluctuation δT
T is of

the order of 10−5. This temperature fluctuation is believed to come from the gravitational

potential Φ through Sachs-Wolfe effect δT
T = −3Φ [6]. In the usual inflation models the

gravitational potential Φ is believed to be created when the hypothetical scalar particle(s)

called inflaton(s) fluctuates quantum mechanically during rolling down classically along

with the potential. There are many models proposed for creation mechanism, such as

slow-roll inflation [7, 8], chaotic inflation [9] etc. Also some mechanisms which do not use

the inflaton have been discussed: for instance see [10] and [11–13].
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In our previous papers [14, 15], we show that the temperature fluctuation of CMB can

be explained as the vacuum fluctuation of a large number of matter fields. Here the matter

fields are originated from the string excited states and/or the Kaluza-Klein modes on the

compactified space. There appear very many kinds of fields in the exponentially expanding

universe, where the Hubble parameter plays the role of temperature. These fields fluctuate

around the bottom of the mass potential, and generate the energy density of fluctuation.

Finally the fluctuation creates the gravitational potential Φ through the Einstein equation.

Although each fluctuation due to single field is very small, but enormous number of species

of fields contribute and it turns out to be summed up to a huge fluctuation compatible

to the present observational value. Furthermore it is possible to determine the radii of

the compactified spaces, as well as the string coupling constant by comparison with the

observational values of CMB. The very merit of our theory is in the fact that we do not

need to put any assumption or fine-tuning on the form of the matter fields potential, but

we simply consider free fields. However in our above described theory there still are several

problems to be resolved. In the first place the spectral index ns which indicates the distance

dependence of the fluctuation or, in other words, the 2-point correlation function of the

fields exceeds one, i.e. ns ≥ 1 in our model, although the observed value of the Planck is

ns ' 0.96 [3, 4]. As was pointed out in our foregoing papers [14, 15] the reason why we

obtained ns ≥ 1 is in the fact that we assumed the background metric is exactly the de

Sitter space-time. In order to explain the experimental value of the spectral index, we may

have to introduce a time dependent Hubble parameter H(t), something like Ḣ
H2 ∼ −0.01.

So far we have not discussed the origin of the inflation, and simply assumed the de

Sitter space-time. In this paper we point out the possibility that the inflation is caused by

the vacuum energy of the many fields in the expanding universe.

It is the purpose of the present article that we present a self-consistent theory of the

time evolution of the universe by incorporating the backreaction of the quantized matter

fields.1 The main idea of the present paper follows our pervious articles [14, 15], except that

we do not assume de Sitter background and incorporate the backreaction of the matter

fields. In the early universe we consider N species of the free scalar fields. The time

evolution of the early universe is assumed to follow the classical Einstein equation,

Rµν −
1

2
gµνR = −8πG

N∑
i=1

〈T (i)
µν 〉. (1.1)

On the right hand side the energy-momentum tensor of the species i of the matter fields

is regarded as the vacuum expectation value 〈T (i)
µν 〉, in the metric gµν . When one expresses

〈T (i)
µν 〉 by a functional of arbitrary metric gµν , 〈T (i)

µν 〉[g], the Einstein equation (1.1) describes

the time evolution of gµν caused by the backreaction from the matter fields. Here we take

the vacuum of the Bunch-Davies type in the calculation of 〈T (i)
µν 〉[g]. As we will see 〈T (i)

µν 〉[g]

is proportional to H4(t). Therefore in the early universe, where H(t) is large, we can ignore

the initial state dependence of the energy-momentum tensor and simply take 〈T (i)
µν 〉[g].

1The effect of backreaction has been taken into account, in [16, 17]. However in our analysis, the method

of approximation and the choice of parameters are different from them so that the results and interpretation

are really different.
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We mainly use the Eikonal approximation to make solutions of the equation of motion

of the matter fields. Then we perform the 1-loop momentum integration to calculate the

correlation functions. By so doing the eq. (1.1) becomes a second order differential equation

for H(t).

The present paper is organized as follows. In section 2, we review briefly the Eikonal

approximation. Then we investigate the solution of matter field of mass m in two cases,

that is, for the cases of m� H and m� H, and evaluate 〈Tµν〉 for each cases. In section 3

we assume that there exist both light and heavy particles in the universe and search for

de Sitter-like expanding solutions of eq. (1.1), where H(t) is almost constant. Then we

examine the solutions when the Hubble parameter is very small compared to that of the

de Sitter-like expanding era. From this analysis we will see that the Hubble parameter

becomes zero and the de Sitter era ends for a certain region of the initial conditions.

Section 4 is devoted to conclusion and outlook. In appendix A we describe in detail the

calculation by using the Airy function around boundary between UV and IR regimes in the

Eikonal approximation. In appendix B we show the calculation of the correlation functions

using the solution in the IR regime in the Eikonal approximation.

2 Scalar field in the Friedmann-Robertson-Walker space-time and the

Eikonal approximation

It is legitimate to assume that the background metric is homogeneous and uniform as are

indicated from CMB data. We thus start with investigating the one species of the scalar

field described by the action

S =

∫
dnx

an−1

2

{
φ̇2 − 1

a2
(∇φ)2 −m2φ2

}
(2.1)

in the Friedmann-Robertson-Walker space-time

gµν(x) =


1 0 0 0

0 −a2(t) 0 0

0 0 −a2(t) 0

0 0 0 −a2(t)

 . (2.2)

For the later convenience to apply the dimensional regularization, the space-time dimension

in eq. (2.1) is taken to be n = 4− ε with 0 < ε� 1. In terms of the co-moving time

dτ =
dt

a
, (2.3)

we write the differentiation as

F ′ =
d

dτ
F = a

d

dt
F = aḞ , (2.4)

and then the Fourier mode χk(τ) of the rescaled scalar field

χ(τ, ~x) ≡ a
n−2
2 (t)φ(t, ~x) (2.5)

– 3 –
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obeys the following equation of motion:

χ′′k +
(
k2 − V [a]

)
χk = 0. (2.6)

Here the potential V [a] is defined by

V [a] ≡
(

1− ε

2

) a′′
a
− ε
(

1

2
− ε

4

)(
a′

a

)2

−m2a2

=
(

1− ε

2

)
a2
(

2H2 + Ḣ
)
− ε
(

1

2
− ε

4

)
a2H2 −m2a2, (2.7)

where H(t) is the Hubble parameter

H(t) =
ȧ(t)

a(t)
. (2.8)

The quantity we are interested in is the (0, 0)-component of the energy-momentum tensor

as a functional of a(t) (or H(t)),

〈T00〉[a] =
µ4−n

2

〈
φ̇2 +

1

a2
(∇φ)2 +m2φ2

〉
=

µε

2a4−ε

{〈(
χ′
)2〉− (1− ε

2

)
aH

〈
χ′χ+ χχ′

〉
+
(

1− ε

2

)2
a2H2

〈
χ2
〉

+
〈

(∇χ)2
〉

+m2a2
〈
χ2
〉}

. (2.9)

Here a mass scale µ is introduced to keep the mass dimension of the energy-momentum

tensor.

We solve the equation of motion (2.6) with recourse to the Eikonal approximation by

putting

χk = Ae−if . (2.10)

Then by using the boundary condition

χk ∼
1√
k
e−ikτ , (τ → −∞) (2.11)

and the assumption of the Eikonal approximation(
f ′
)2 � A′′

A
, (2.12)

(2.6) has the solution

χk =
1√
2f ′

e−if , f ′ =
√
k2 − V [a]. (2.13)

Here the Wronskian is used to normalize the solution:

χk(χ
∗
k)
′ − χ∗kχ′k = i. (2.14)

– 4 –
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The general solution for χ(τ, ~x) is given by

χ(τ, ~x) =

∫
d3−ε~k

(2π)3−ε

{
1√

2f ′(k, τ)
e−if(k,τ)−i

~k·~xa~k + c.c.

}
(2.15)

in the oscillatory region,

k2 − V > 0. (2.16)

We then quantize the field χ canonically by using the commutation relation

[χ(τ, ~x), χ′(τ, ~y)] = iδ3−ε(~x− ~y). (2.17)

The vacuum state is defined as usual

a~k|0〉 = 0 (2.18)

so that the vacuum expectation value of an operator O is given by 〈O〉 = 〈0|O|0〉.
In the following we consider the situation where Ḣ(t) and Ḧ(t) are much smaller than

H(t) itself,

Ḣ

H2
� 1 and

Ḧ

H3
� 1, (2.19)

which means that H(t) and Ḣ(t) vary much slower than the time evolution of the universe.

2.1 Energy density for the case of a large Hubble parameter: H(t)� m

In this subsection we evaluate the energy density ρ of a scalar field when Hubble parameter

is much larger than mass; H(t)� m. It is well known that if H(t) is constant ρ is given by

ρ = 〈T00〉 =
3

32π2
H4

{
1 +O

(
m2

H2

)}
. (2.20)

Note that this result is obtained without using the Eikonal approximation.

When Ḣ
H2 � 1 and Ḧ

H3 � 1, the potential (2.7) is always positive, i.e.

V [a] > 0. (2.21)

Then the eq. (2.16) is not always satisfied, and we should analyze the following three

momentum regions to continue the solution χk ∼ e−ikτ in the ultra-violet limit τ → −∞
(equivalently k →∞) into the infrared region:

(i)
√
V < k <∞

In this region the solution is oscillatory as

χk(τ) =
1√
2

1
4
√
k2 − V (τ)

e
−i

∫ τ
τk
dτ ′
√
k2−V (τ ′)

. (2.22)

Here τk is determined from k2 = V (τk).
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(ii) k0 < k <
√
V

The solution is expressed in terms of the Airy function

χk(τ) =
e−i

π
4

√
2
B−

1
6

{
iAi

(
B

1
3 (τ − τk)

)
+Bi

(
B

1
3 (τ − τk)

)}
, B ≡ V ′(τk). (2.23)

(iii) 0 ≤ k < k0

The damping and enhancing solutions given by

χk(τ) =
e−i

π
4

√
2

1
4
√
V (τ)− k2

{
i

2
e
−

∫ τ
τk
dτ ′
√
V (τ ′)−k2

+ e
+

∫ τ
τk
dτ ′
√
V (τ ′)−k2

}
. (2.24)

In the above (ii) and (iii), the boundary k0 is chosen to satisfy the validity condition of the

Eikonal approximation (2.12). In fact,

(
f ′
)2 � A′′

A
⇒

(
1

f ′

)′
� 1 ⇒ k �

√
V −

(
V ′

2

) 2
3

≡ k0. (2.25)

Here V ′ is obtained from (2.4) and (2.7),

V ′ =
(

1− ε

2

)
a3
(

4H3 + 6HḢ + Ḧ
)
− ε
(

1− ε

2

)
a3
(
H3 +HḢ

)
− 2m2a3H . (2.26)

We next evaluate the vacuum expectation value of the energy density in each region.

In the region (i) it is given by

〈T00〉H�m =
1

32π2

(
−m4 + 2m2H2 − 6H2Ḣ − 2HḦ + Ḣ2

) 1

ε

− 1

384π2
1

2H2 + Ḣ −m2

×

[
6

{
4

3
H4−2

(
log 4π−γ+

1

3

)
m2H2+

(
log 4π−γ+

3

2

)
m4

}(
2H2−m2

)
+ 6

{
12 (log 4π − γ − 2)H4 − 8

(
log 4π − γ − 5

4

)
m2H2

+

(
log 4π − γ − 5

2

)
m4

}
Ḣ

+ 12

{
+ (log 4π − γ − 1) Ḣ +

(
log 4π − γ − 5

3

)(
2H2 −m2

)}
HḦ

+ 6

{
4

(
log 4π − γ − 7

4

)
H2 +

(
log 4π − γ − 5

2

)
m2

}
Ḣ2

− 6

(
log 4π − γ − 3

2

)
Ḣ3 + Ḧ2

]

− 1

64π2

(
−m4+2m2H2−6H2Ḣ−2HḦ+Ḣ2

)
log

2H2+Ḣ−m2

µ2
+O(ε). (2.27)
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Only in this region there appears an ultra-violet divergence which should be renormalized.

Indeed in (2.27), the 1
ε term gives the divergence in dimensional regularization. There

are five terms in the coefficient of 1
ε . The m4 and m2H2 terms are renormalized into

the cosmological constant term
∫
d4x
√
−g and the Einstein-Hilbert action

∫
d4x
√
−gR,

respectively. The rest three terms are H2Ḣ, HḦ, and Ḣ2 and from the dimensional

analysis their counter terms are given by
∫
d4x
√
−gR2 and

∫
d4x
√
−gRµνRµν . In the

case of FRW metric (2.2), these two actions give the following additional terms to the

Euler-Lagrange equation:∫
d4x
√
−g R2 ⇒ 18

(
−6H2Ḣ − 2HḦ + Ḣ2

)
,∫

d4x
√
−gRµνRµν ⇒ 6

(
−6H2Ḣ − 2HḦ + Ḣ2

)
. (2.28)

Therefore the three coefficients of the 1
ε term can be renormalized by these two counter

terms. In principle we may introduce finite renormalization for the three terms m4, m2H2

and
(
− 6H2Ḣ − 2HḦ + Ḣ2

)
. However, since we have to make the same renormalization

to the two cases H(t) � m and H(t) � m of the single theory, we relegate to argue

this problem after the following subsection 2.2 for the case of a small Hubble parameter

H(t)� m.

Then we make use of the minimal subtraction, and expand (2.27) for large H(t) as-

suming H(t)� m, Ḣ
H2 � 1 and Ḧ

H3 � 1:

〈T00〉H�m '
1

64π2

{
− 4

3
H4 − 6

(
log 4π − γ − 19

9

)
H2Ḣ − 2

(
log 4π − γ − 5

3

)
HḦ

+

(
log 4π − γ − 17

6

)
Ḣ2

}

− 1

64π2

(
−6H2Ḣ − 2HḦ + Ḣ2

)
log

2H2

µ2
+ · · · . (2.29)

For the regions (ii) and (iii) the contributions to 〈T00〉H�m are described in the appen-

dices A and B respectively. We here show the combined result of (ii) and (iii) calculated

numerically under the conditions H(t)� m, Ḣ
H2 � 1 and Ḧ

H3 � 1:

〈T00〉H�m ' 0.01365H4 + 0.01333H2Ḣ + 0.0005572HḦ + 0.02139Ḣ2 + · · · . (2.30)

Note that the coefficient of HḦ does not remain stationary when we vary the artificial

parameter k0, which was introduced to separate two regions (ii) and (iii). However this

coefficient is very small compared to the other terms and does not affect the physical result.

2.2 Energy density for the case of a small Hubble parameter: H(t)� m

In this subsection we derive the energy density in the case of a small Hubble parameter,

H(t) � m. In the same manner as the previous subsection 2.1 we calculate the vacuum

– 7 –
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expectation value of the energy density. Again we assume that the change of the Hubble

parameter is fairly slow,

Ḣ

H2
� 1,

Ḧ

H3
� 1.

In this case the potential term (2.7) of the equation of motion (2.6) is always negative,

V [a] < 0. (2.31)

Then the solution of the Eikonal approximation (2.13) is expressed as

f ′ =
√
k2 + (−V [a]).

Apparently any turning point does not exist so that the solution (2.13) is valid in the whole

region of 0 ≤ k <∞.

Thus we obtain the energy density as

〈T00〉H�m=
1

32π2

(
−m4+2m2H2−6H2Ḣ−2HḦ+Ḣ2

) 1

ε

+
1

384π2
1

m2−2H2−Ḣ

×

[
− 6

{(
log 4π−γ+

3

2

)
m4−2

(
log 4π−γ+

1

3

)
m2H2+

4

3
H4

}(
m2−2H2

)
+ 6
{(

log 4π−γ− 5

2

)
m4−8

(
log 4π−γ− 5

4

)
m2H2

+ 12 (log 4π−γ−2)H4
}
Ḣ

+ 12

{
−
(

log 4π−γ− 5

3

)(
m2−2H2

)
+(log 4π−γ−1) Ḣ

}
HḦ

+ 6

{(
log 4π−γ− 5

2

)
m2+4

(
log 4π−γ− 7

4

)
H2

}
Ḣ2

− 6

(
log 4π−γ− 3

2

)
Ḣ3+Ḧ2

]

− 1

64π2

(
−m4+2m2H2−6H2Ḣ−2HḦ+Ḣ2

)
log

m2−2H2−Ḣ
µ2

+O(ε). (2.32)

We then make the renormalization by using the minimal subtraction, and the expansion

assuming H(t)� m, Ḣ
H2 � 1 and Ḧ

H3 � 1 gives the result,

〈T00〉H�m '
1

64π2

{
−
(

log 4π − γ +
3

2

)
m4 + 2

(
log 4π − γ − 2

3

)
m2H2

+
2

3
H4 − 6

(
log 4π − γ − 19

9

)
H2Ḣ − 2

(
log 4π − γ − 5

3

)
HḦ

+ (log 4π − γ − 2) Ḣ2

}

− 1

64π2

(
−m4 + 2m2H2 − 6H2Ḣ − 2HḦ + Ḣ2

)
log

m2

µ2
+ · · · . (2.33)
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Hereby we next make use of the finite renormalization for the cosmological constant

term
∫
d4x
√
−g and the Einstein-Hilbert action

∫
d4x
√
−gR in such a way that m4 and

m4 log m2

µ2
terms and m2H2 and m2H2 log m2

µ2
terms are set to zero.2 The reason for so

doing is because the energy density for small values of H(t) should be zero. Although

we should add the same counter terms to (2.29), such terms are negligible when H(t) is

much larger than m. Furthermore we may make a finite renormalization for
∫
d4x
√
−gR2

and
∫
d4x
√
−gRµνRµν which generates an additional term λ

64π2

(
−6H2Ḣ − 2HḦ + Ḣ2

)
to (2.33).

3 Solution of the Einstein equation including backreaction

So far we have obtained the energy density of a single scalar field for two cases. The explicit

form for the case of a large Hubble parameter is given by

〈T00〉H�m =
1

64π2

(
−4

3
H4 +

38

3
H2Ḣ +

10

3
HḦ − 17

6
Ḣ2

)
+

1

64π2

(
log 4π − γ − log

2H2

µ2
+ λ

)(
−6H2Ḣ − 2HḦ + Ḣ2

)
+ 0.01365H4 + 0.01333H2Ḣ + 0.0005572HḦ + 0.02139Ḣ2 (3.1)

which is the sum of (2.29) and (2.30). For the case of a small Hubble parameter we have

〈T00〉H�m =
1

64π2

(
2

3
H4 +

38

3
H2Ḣ +

10

3
HḦ − 2Ḣ2

)
+

1

64π2

(
log 4π − γ − log

m2

µ2
+ λ

)(
−6H2Ḣ − 2HḦ + Ḣ2

)
. (3.2)

We next consider the Einstein equation assuming that there are many fields with

various masses. Then the total energy density is written as

〈T00〉 = N1 〈T00〉H�m +N2 〈T00〉H�m , (3.3)

where N1 and N2 stand for the numbers of the fields whose masses are lighter and heavier

than the Hubble parameter, respectively. The ratio of N1 to N2 may vary as the Hubble

parameter evolves in time. However, the coefficients of each terms in (3.1) and (3.2) are

roughly the same, so that we may replace 〈T00〉H�m and 〈T00〉H�m with their average.

Then (3.3) becomes

〈T00〉 =
N

2

(
〈T00〉H�m + 〈T00〉H�m

)
,

where N is the total number of the species. Then the (0, 0)-component of the Einstein

equation reads

R00 −
1

2
g00R = −8πGN × 1

2

(
〈T00〉H�m + 〈T00〉H�m

)
. (3.4)

2Note that we do not assert that the cosmological constant does not need fine tuning. Rather we make

a renormalization such that the renormalized cosmological constant becomes zero so as to agree with the

observational value.
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Rewriting this equation after plugging (3.1) and (3.2), we obtain the equation of describing

the time evolution of the Hubble parameter H(t):

−3H2=−8πGN× 1

2

{
1

64π2

(
−2

3
H4+

76

3
H2Ḣ+

20

3
HḦ− 29

6
Ḣ2

)

+
1

32π2

(
log 4π−γ−log

√
2Hm

µ2
+λ

)(
−6H2Ḣ−2HḦ+Ḣ2

)
+ 0.01365H4 + 0.01333H2Ḣ+0.0005572HḦ+0.02139Ḣ2

}
, (3.5)

where m is the typical mass of the fields heavier than the Hubble parameter. A comment

is in order: the mass scale µ is originally arbitrary, but as a cut-off scale in the general

relativity, field theories and/or string theory, it may be natural to choose Planck scale mpl

or string scale ms.

3.1 Inflationary solution

In this subsection we analytically solve the above eq. (3.5) by using linear approximation

around the de Sitter solution. It is clear that the eq. (3.5) has the solution, where H(t) is

a constant,

H(t) =
1√

8πGN
3 × 1

2

{
− 1

64π2
2
3 + 0.01365

} ' 4.353×
mpl√
N
≡ H0, (3.6)

which is nothing but the de Sitter solution. We next consider a fluctuation H̃ around this

solution H0,

H = H0 + H̃. (3.7)

In the linear approximation the eq. (3.5) becomes

r ¨̃H +
q
√
p

˙̃H + 2H̃ = 0. (3.8)

where p, q and r are constants given by

p =
8πN

3m2
pl

× 1

2

{
− 1

64π2
2

3
+ 0.01365

}
,

q =
8πN

3m2
pl

× 1

2

{
1

64π2
76

3
− 6

32π2

(
log 4π − γ − log

√
2H0m

µ2
+ λ

)
+ 0.01333

}
,

r =
8πN

3m2
pl

× 1

2

{
1

64π2
20

3
− 2

32π2

(
log 4π − γ − log

√
2H0m

µ2
+ λ

)
+ 0.0005572

}
. (3.9)

The general solution reads

H = H0

(
1− C1e

h1t − C2e
h2t
)
, C1, C2 � 1,

h1, h2 =
− q√

p ±
√

q2

p − 8r

2r
. (3.10)
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Let us turn to investigate the behavior of the solution (3.10) by using observational

values. If we assume that the matter field potential is about the forth power of the GUT

scale, V ∼ 1065 [GeV4] [5], we obtain

H2
0 =

8πG

3
V ⇒ H0 ' 1014 [GeV]. (3.11)

Consequently, from (3.6), the number of species N is evaluated as

N ' 1011. (3.12)

In fact if we consider in a bona fide manner of field theory, the radiative corrections may

appear in a proportional way to N . If we can renormalize the low energy effective action

by adding such counterterms that all the large N dependence are cancelled, the above

described argument is justified. If not so, the gravitational vacuum polarization from the

huge number of scalars may create problems, and we need to consider 1/N resummation

which may lead to other problems.3

Let us, for example, choose µ and m in (3.5) as

µ = 1018 [GeV],

m = 1016 [GeV]. (3.13)

In the case of λ = 0, in which we do not make an additional finite renormalization to the

minimal subtraction, the solution (3.10) becomes

H(t) ' H0

(
1− C1e

−12.48mpl√
N
t − C2e

0.4527
mpl√
N
t
)

' H0

(
1− C1e

−2.866H0t − C2e
0.1040H0t

)
. (3.14)

If C2 satisfies

C2 . 10−4,

the duration of the inflation becomes

∆t &
60

H0
,

3If we consider this large value N a là string theory, we can interpret in the following way: if the 6

dimensional compactified space has a volume V6, the quantity N may be expressed in terms of the string

scale ls as N ∼ V6
l6s

. Here ls is in fact written as 1
ls
∼ mpl√

N
by means of reduction from the 10 dimensional

action

S10 =
1

l8s
V6

∫
d4x
√
−g4R4 ∼

N

l2s

∫
d4x
√
−g4R4.

By comparing this expression with that of (3.6), we find H0 ∼ 1
ls

. Therefore if we regard our field theoretical

calculation as a low energy effective theory of string theory, it may be reliable quantitatively within the

order of O(1) corrections.
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C1 = 10−2

C2 = 10−2

– 25 –

Figure 1. The time evolution of the Hubble parameter H(t): The inflation.

i.e. the e-folding number exceeds 60. In figure 1(a) we depict the time evolution of the

Hubble parameter with the choices C1 = 10−4 and C2 = 10−4. The present approximation
Ḣ
H2 � 1 and Ḧ

H3 � 1 is valid in the region

0 .
mpl√
N
t . 14. (3.15)

In view of (3.6) this is nothing but the region

0 . H0t . 60. (3.16)

However, if we introduce an additional finite renormalization in the form of

λ

64π2

(
−6H2Ḣ − 2HḦ + Ḣ2

)
,

we can relax the condition of C2 by choosing appropriate λ. For instance if we choose

λ = 25, the solution (3.10) reads

H(t) ' H0

(
1− C1e

−12.85mpl√
N
t − C2e

0.1530
mpl√
N
t
)

' H0

(
1− C1e

−2.952H0t − C2e
0.03514H0t

)
. (3.17)

H(t) is depicted in figure 1(b) for C1 = 10−2 and C2 = 10−2, which indicates that H(t) is

close to H0 in the region (3.15).

3.2 End of the inflation

In the previous subsection 3.1, we have found the inflationary solution has a sufficiently

large e-folding number, and after the exponential expansion, the Hubble parameter starts

to decrease.
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In this subsection we show that in the above solution the Hubble parameter becomes

zero for large t, which indicates that the inflation will end automatically. As we have

seen in the previous subsection the eq. (3.5) becomes invalid sometime after H(t) starts to

decrease. However the eq. (3.5) becomes valid again if H(t) is sufficiently small. Therefore

if we assume that H(t) continues to decrease, we can use eq. (3.5) to describe how the

inflation stops. In this region H4 term on the right hand side of (3.5) is much smaller than

H2 term on the left hand side because they balanced before H(t) becomes small:

GNH4 � H2.

Thus the eq. (3.5) reads

H2 = PH2Ḣ +QHḦ +RḢ2 + S
(
−6H2Ḣ − 2HḦ + Ḣ2

)
log

√
2Hm

µ2
, (3.18)

where the constants P, Q, R and S are given by

P =
8πN

3m2
pl

× 1

2

{
1

64π2
76

3
− 6

32π2
(log 4π − γ + λ) + 0.01333

}
,

Q =
8πN

3m2
pl

× 1

2

{
1

64π2
20

3
− 2

32π2
(log 4π − γ + λ) + 0.0005572

}
,

R =
8πN

3m2
pl

× 1

2

{
− 1

64π2
29

6
+

1

32π2
(log 4π − γ + λ) + 0.02139

}
,

S = −8πN

3m2
pl

1

64π2
. (3.19)

Here N and µ are given by (3.12) and (3.13).

The solution H(t) of (3.18) rapidly decreases as t increases and then, with small os-

cillation, H(t)→ 0 as t→∞ for various choices of m with m� H(t). For example when

we impose an appropriate initial condition so as to satisfy H(0)� m and Ḣ
H2 (0)� 1 and

perform the numerical calculation for two cases m = 1016 and 1013 [GeV]. The results are

depicted in figure 2. Here figure 2(a) and figure 2(b) shows the results for λ = 0 and λ = 25

respectively.

4 Conclusion and outlook

In the present paper we investigate the effect of the backreaction to the expansion of the

space-time due to the matter fields existing in the universe. On arbitrary Friedmann-

Robertson-Walker space-time, we quantize, as an example of the matter field, the scalar

field and then we calculate the vacuum expectation value of the energy density. Since we

are not able to obtain the exact solution of the scalar field, we make use of the Eikonal

approximation to construct the solution. We then plug it in the energy density of the matter

field. Combining it with the Friedmann equation we obtain a self-consistent equation that

describes the time evolution of the space-time.

Thus we can determine the behavior of the early universe including the backreaction

of the matter fields. As a result we find the following two eras in the early universe:
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Figure 2. The time evolution of the Hubble parameter H(t) with the initial condition
√
N

mpl
H(0) =

10−2 and N
m2
pl
Ḣ(0) = −10−6.

(1) We obtain the inflationary solution with the e-folding number & 60 if we make a

fine tuning of few orders of magnitude for the initial condition. This initial condition

may be determined by a scenario of the birth of the universe in string theory and/or

quantum gravity.

(2) After the era (1) the Hubble parameter will continue to decrease and then with small

oscillation H(t) goes to zero asymptotically. Then finally the inflation ends.

In this manner by imposing some reasonable conditions we can make a inflation scenario

without inflaton.

The problems next to be discussed are why the temperature fluctuation in the observed

CMB is of the order δT
T ∼ 10−5 and very small non-Gaussianity is realized (cf. [3, 4],

f local
NL = 2.7 ± 5.8 (95% CL)). In our previous papers [14, 15], by using the de Sitter

background without incorporating the backreaction, we estimated the CMB temperature

fluctuation and non-Gaussianity fNL using our theory of many scalar fields, and obtained

that if δTT ∼ 10−5 then fNL < 10−4. The difference between the present and previous papers

ia in the fact that in the present paper we incorporated the effect of backreaction, which

may not affect largely to the fluctuation, because in both cases the fluctuation is produced

during the exponentially expanding era. Furthermore in the previous papers [14, 15] we

had the problem that the spectral index ns exceeded 1 and contradicted the observed

value. However as is mentioned in section 1 in the present paper the condition for ns . 1

translated into Ḣ < 0 and
∣∣∣ ḢH2

∣∣∣ � 1 is satisfied in the whole range of the inflation era

(see figure 3).

Furthermore we consider a new mechanism to produce the temperature fluctuation in

CMB that is different from our previous papers [14, 15]. In [14, 15], we pointed out that
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Figure 3. Ḣ(t) for the case of figure 1(a).

the fluctuation of the energy density δρ = δT00 in the universe creates the gravitational

potential Φ through the Einstein equation and turns to be the temperature fluctuation of

CMB. A new mechanism we would like to discuss here is that the fluctuation δtend of the

time tend at which the inflation ends generates the density perturbation, as in the ordinary

scenario with the inflaton, δ = −Hδtend. δtend can be roughly estimated as follows. First

we express tend in terms of the initial values H(0) and Ḣ(0). We define tend as the time t

when the third term of the eq. (3.14) becomes of order 0.1:

C2e
0.1012H0tend ' 0.1. (4.1)

On the other hand from (3.14) we obtain

H(0) = H0 (1− C1 − C2) ,

Ḣ(0) = H0 (2.869H0C1 − 0.1012H0C2) . (4.2)

By combining (4.1) and (4.2), we obtain

tend '
1

0.1012H0
log

0.1

C2
' 10

H0
log

0.1

1− H(0)
H0
− Ḣ(0)

3H2
0

. (4.3)

Then δtend is given by

δtend ' −
10

H0

− δH(0)
H0
− δḢ(0)

3H2
0

1− H(0)
H0
− Ḣ(0)

3H2
0

' 10
δH(0)

H2
0

. (4.4)

On the other hand by taking the variation of the Friedmann equationH2
0 ' 8πG

3 T00, we have

H0δH(0) ' 4πG

3
δT00. (4.5)
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From (4.4) and (4.5) we obtain the density perturbation as

δ ' −H0δtend ' −10
δT00
T00

∼ − 10√
N
. (4.6)

Using the eq. (3.12), δ is evaluated as

δ ∼ 10−5, (4.7)

which is consistent with the observational value. It would be interesting to investigate this

new mechanism in detail.
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A 〈T00〉 in the region (ii) in the subsection 2.1

In the region k0 < k <
√
V , there is no ultra-violet divergence, so that we can take ε = 0.

The solution of the scalar field in this region is given by the eq. (2.23),

χ(t, ~x) =

∫
d3~k

(2π)3

{
χke

−i~k·~xa~k + c.c.
}
,

χk =
e−i

π
4

√
2
B−

1
6

{
iAi

(
B

1
3 (τ − τk)

)
+Bi

(
B

1
3 (τ − τk)

)}
, B ≡ V ′(τk), (A.1)

where the lower end of the integration of k is in fact the boundary k0 obtained in eq. (2.25),

k0 =

√
V −

(
V ′

2

) 2
3

.

In order to carry out the k-integration of the correlation functions such as
〈
χ2
〉
, let us

evaluate τk and B approximately under the conditions Ḣ
H2 � 1 and Ḧ

H3 � 1. Firstly, τk is

determined from the equation

k2 = V (τk) = a2H2

(
2 +

Ḣ

H2
− m2

H2

)
(τk).

Imposing the condition Ḣ
H2 � 1, we can approximate the scale factor a(t) to be the pure

de Sitter one, a ' − 1
Hτ , and obtain

k2 ' 1

τ2k

(
2 +

Ḣ

H2
− m2

H2

)
=

1

τ2k

V

a2H2
.
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Thus τk is evaluated as

τk ' −
√
V

aH

1

k
. (A.2)

In the same manner B becomes

B = V ′(τk) = a3H3

(
4 + 6

Ḣ

H2
+

Ḧ

H3
− m2

H2

)
(τk) ' −

1

τ3k

V ′

a3H3

' V ′

V
3
2

k3. (A.3)

Then we would like to calculate the four kinds of correlation functions in eq. (2.9) in

order. Firstly,
〈
χ2
〉

is calculated as

〈
χ2
〉

=

∫
d3~k

(2π)3
|χk|2

=
1

(2π)3
2π

3
2

Γ
(
3
2

) ∫ √V
k0

dk k2 × 1

2B
1
3

{
Ai2

(
B

1
3 (τ − τk)

)
+Bi2

(
B

1
3 (τ − τk)

)}
=

1

4π2

√
V

(V ′)
1
3

∫ √V
k0

dk k

{
Ai2

(
(V ′)

1
3

√
V

√
V − k
aH

)
+Bi2

(
(V ′)

1
3

√
V

√
V − k
aH

)}
.

Here (A.2) and (A.3) are used to obtain the last line. After the change of variable x =
(V ′)

1
3√

V

√
V−k
aH , this integration turns to be

〈
χ2
〉

=
aH

4π2
V

3
2

(V ′)
2
3

∫ x0

0
dx

(
1− aH

(V ′)
1
3

x

){
Ai2(x)+Bi2(x)

}
(A.4)

=
a2H2

4π2

(
2+

Ḣ

H2
−m

2

H2

) 3
2
(

4+6
Ḣ

H2
+
Ḧ

H3
−2

m2

H2

)− 2
3 ∫ x0

0
dx
{
Ai2(x)+Bi2(x)

}
− a2H2

4π2

(
2+

Ḣ

H2
−m

2

H2

) 3
2
(

4+6
Ḣ

H2
+
Ḧ

H3
−2

m2

H2

)−1 ∫ x0

0
dx x

{
Ai2(x)+Bi2(x)

}
.

Here we define the upper end of the integration region as

x0 ≡
(V ′)

1
3

√
V

√
V − k0
aH

=
(V ′)

1
3

aH

1−

√
1− 1

V

(
V ′

2

) 2
3

 .
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By assuming that Ḣ
H2 ,

Ḧ
H3 and m2

H2 are small, this upper end can be approximated as

x0 =
(V ′)

1
3

aH

1−

√
1− 1

V

(
V ′

2

) 2
3


=

(
4 + 6

Ḣ

H2
+

Ḧ

H3
− 2

m2

H2

) 1
3

1−

√√√√√1− 1

2 + Ḣ
H2 − m2

H2

(
4 + 6 Ḣ

H2 + Ḧ
H3 − 2m

2

H2

2

) 2
3


' 4

1
3

1−

√
1− 2

2
3

2

 . (A.5)

Then we perform the integrations including the Airy functions numerically and expand

them in terms of Ḣ
H2 ,

Ḧ
H3 and m2

H2 .

In the same way, we calculate the correlations
〈

(∇χ)2
〉

,
〈

(χ′)2
〉

and 〈χ′χ+ χχ′〉 as

follows:〈
(∇χ)

2
〉

=

∫
d3~k

(2π)3
k2 |χk|2

=
1

(2π)3
2π

3
2

Γ
(
3
2

) ∫ √V

k0

dk k4 × 1

2B
1
3

{
Ai2

(
B

1
3 (τ−τk)

)
+Bi2

(
B

1
3 (τ−τk)

)}
=

1

4π2

√
V

(V ′)
1
3

∫ √V

k0

dk k3

{
Ai2

(
(V ′)

1
3

√
V

√
V −k
aH

)
+Bi2

(
(V ′)

1
3

√
V

√
V −k
aH

)}

=
aH

4π2

V
5
2

(V ′)
2
3

∫ x0

0

dx

(
1− aH

(V ′)
1
3

x

)3 {
Ai2(x)+Bi2(x)

}
=
a4H4

4π2

(
2+

Ḣ

H2
−m

2

H2

) 5
2
(

4+6
Ḣ

H2
+
Ḧ

H3
−2

m2

H2

)− 2
3 ∫ x0

0

dx
{
Ai2(x)+Bi2(x)

}
− a4H4

4π2

(
2+

Ḣ

H2
−m

2

H2

) 5
2
(

4+6
Ḣ

H2
+
Ḧ

H3
−2

m2

H2

)−1
× 3

∫ x0

0

dx x
{
Ai2(x)+Bi2(x)

}
+
a4H4

4π2

(
2+

Ḣ

H2
−m

2

H2

) 5
2
(

4+6
Ḣ

H2
+
Ḧ

H3
−2

m2

H2

)− 4
3

× 3

∫ x0

0

dx x2
{
Ai2(x)+Bi2(x)

}
− a4H4

4π2

(
2+

Ḣ

H2
−m

2

H2

) 5
2
(

4+6
Ḣ

H2
+
Ḧ

H3
−2

m2

H2

)− 5
3 ∫ x0

0

dx x3
{
Ai2(x)+Bi2(x)

}
.

(A.6)

〈
(χ′)

2
〉

=

∫
d3~k

(2π)3
|χ′k|

2

=
1

(2π)3
2π

3
2

Γ
(
3
2

) ∫ √V

k0

dk k2 × B
1
3

2

{
Ai′2

(
B

1
3 (τ−τk)

)
+Bi′2

(
B

1
3 (τ−τk)

)}
=

1

4π2

(V ′)
1
3

√
V

∫ √V

k0

dk k3

{
Ai′2

(
(V ′)

1
3

√
V

√
V −k
aH

)
+Bi′2

(
(V ′)

1
3

√
V

√
V −k
aH

)}

=
aH

4π2
V

3
2

∫ x0

0

dx

(
1− aH

(V ′)
1
3

x

)3 {
Ai′2(x)+Bi′2(x)

}
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=
a4H4

4π2

(
2+

Ḣ

H2
−m

2

H2

) 3
2 ∫ x0

0

dx
{
Ai′2(x)+Bi′2(x)

}
− a4H4

4π2

(
2+

Ḣ

H2
−m

2

H2

) 3
2
(

4+6
Ḣ

H2
+
Ḧ

H3
−2

m2

H2

)− 1
3

× 3

∫ x0

0

dx x
{
Ai′2(x)+Bi′2(x)

}
+
a4H4

4π2

(
2+

Ḣ

H2
−m

2

H2

) 3
2
(

4+6
Ḣ

H2
+
Ḧ

H3
−2

m2

H2

)− 2
3

× 3

∫ x0

0

dx x2
{
Ai′2(x)+Bi′2(x)

}
− a4H4

4π2

(
2+

Ḣ

H2
−m

2

H2

) 3
2
(

4+6
Ḣ

H2
+
Ḧ

H3
−2

m2

H2

)−1 ∫ x0

0

dx x3
{
Ai′2(x)+Bi′2(x)

}
.

(A.7)

〈χ′χ+χ′χ〉 =

∫
d3~k

(2π)3
(χ′kχ

∗
k+χ′∗k χk)

=
1

(2π)3
2π

3
2

Γ
(
3
2

) ∫ √V

k0

dk k2
{
Ai′
(
B

1
3 (τ−τk)

)
Ai
(
B

1
3 (τ−τk)

)
+Bi′

(
B

1
3 (τ−τk)

)
Bi
(
B

1
3 (τ−τk)

)}
=

1

2π2

∫ √V

k0

dk k2

×

{
Ai′

(
(V ′)

1
3

√
V

√
V −k
aH

)
Ai

(
(V ′)

1
3

√
V

√
V −k
aH

)
+Bi′

(
(V ′)

1
3

√
V

√
V −k
aH

)
Bi

(
(V ′)

1
3

√
V

√
V −k
aH

)}

=
aH

2π2

V
3
2

(V ′)
1
3

∫ x0

0

dx

(
1− aH

(V ′)
1
3

x

)2

{Ai′(x)Ai(x)+Bi′(x)Bi(x)}

=
a3H3

2π2

(
2+

Ḣ

H2
−m

2

H2

) 3
2
(

4+6
Ḣ

H2
+
Ḧ

H3
−2

m2

H2

)− 1
3 ∫ x0

0

dx {Ai′(x)Ai(x)+Bi′(x)Bi(x)}

− a3H3

2π2

(
2+

Ḣ

H2
−m

2

H2

) 3
2
(

4+6
Ḣ

H2
+
Ḧ

H3
−2

m2

H2

)− 2
3

× 2

∫ x0

0

dx x {Ai′(x)Ai(x)+Bi′(x)Bi(x)}

+
a3H3

2π2

(
2+

Ḣ

H2
−m

2

H2

) 3
2
(

4+6
Ḣ

H2
+
Ḧ

H3
−2

m2

H2

)−1 ∫ x0

0

dx x2 {Ai′(x)Ai(x)+Bi′(x)Bi(x)} .

(A.8)

B 〈T00〉 in the region (iii) in the subsection 2.1

Similarly to the region (ii), we do not have the ultra-violet divergence in the region 0 ≤
k < k0, so that we take ε = 0. As we stated in the subsection 2.1, from (2.25), we have the

upper end of this region

k0 =

√
V −

(
V ′

2

) 2
3

,
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and the solution of the scalar field is given by eq. (2.24):

χ(t, ~x) =

∫
d3~k

(2π)3

{
χke

−i~k·~xa~k + c.c.
}
,

χk =
e−i

π
4

√
2

1
4
√
V (τ)− k2

{
i

2
e
−

∫ τ
τk
dτ ′
√
V (τ ′)−k2

+ e
+

∫ τ
τk
dτ ′
√
V (τ ′)−k2

}
. (B.1)

Here let us calculate τ integration of the exponent of the Fourier mode χk∫ τ

τk

dτ ′
√
V (τ ′)− k2 =

∫ τ

τk

dτ ′
{
a2
(

2H2 + Ḣ −m2
)
− k2

} 1
2
,

under the condition Ḣ
H2 � 1. In this situation we can approximate the scale factor as the

pure de Sitter solution a(t) ' − 1
Hτ , and we obtain

∫ τ

τk

dτ ′
√
V (τ ′)−k2 '−

∫ τ

τk

dτ ′

τ ′

√
2+

Ḣ

H2
−m

2

H2
−k2τ ′2

' −

√
2+

Ḣ

H2
−m

2

H2
−k2τ2+

1

2

√
2+

Ḣ

H2
−m

2

H2
log

√
2+ Ḣ

H2−m2

H2 +

√
2+ Ḣ

H2−m2

H2−k2τ2√
2+ Ḣ

H2−m2

H2−
√

2+ Ḣ
H2−m2

H2−k2τ2

= −
√
V −k2
aH

+
1

2

√
V

aH
log

√
V +
√
V −k2√

V −
√
V −k2

. (B.2)

Now we evaluate the four kinds of correlation functions included in the energy density (2.9).

Firstly, as for the correlation
〈
χ2
〉
, applying the result (B.2), we find

〈
χ2
〉

=

∫
d3~k

(2π)3
|χk|2

=
1

(2π)3
2π

3
2

Γ
(
3
2

) ∫ k0

0
dk k2

1

2
√
V −k2

(
1

4
e
−2

∫ τ
τk
dτ ′
√
V−k2

+e
+2

∫ τ
τk
dτ ′
√
V−k2

)
=

1

4π2

∫ k0

0
dk

k2√
V −k2

{
1

4

(√
V+
√
V−k2√

V−
√
V−k2

)−√V
aH

e2
√
V−k2
aH +

(√
V+
√
V−k2√

V−
√
V−k2

)√V
aH

e−2
√
V−k2
aH

}
.

By changing the integration variable as z =
√
V−k2√
V

, and using the lower end of z integration,

z0 ≡
√
V − k20√
V

=
1√
V

(
V ′

2

) 1
3

,

we rewrite
〈
χ2
〉

as

〈
χ2
〉

=
V

4π2

∫ 1

z0

dz
√

1− z2

1

4

(
1 + z

1− z

)−√V
aH

e2
√
V

aH
z +

(
1 + z

1− z

)√V
aH

e−2
√
V

aH
z

 .
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Furthermore we expand
√
V

aH =

√
2 + Ḣ

H2 − m2

H2 with respect to Ḣ
H2 and m2

H2 :〈
χ2〉

=
a2H2

4π2

(
2+

Ḣ

H2
−m

2

H2

)
×

[∫ 1

z0

dz
√

1−z2
{

1

4

(
1+z

1−z

)−√2

e2
√
2z+

(
1+z

1−z

)√2

e−2
√
2z

}

−
√

2

4

(
Ḣ

H2
−m

2

H2

)∫ 1

z0

dz
√

1−z2
(

log
1+z

1−z−2z

){
1

4

(
1+z

1−z

)−√2

e2
√
2z−

(
1+z

1−z

)√2

e−2
√
2z

}
+

1

32

(
Ḣ

H2
−m

2

H2

)2

×
∫ 1

z0

dz
√

1−z2
{

1

4

(
(
√

2−8z) log
1+z

1−z+2

(
log

1+z

1−z

)2

−2
√

2z+8z2
)(

1+z

1−z

)−√2

e2
√
2z

−

(
(
√

2+8z) log
1+z

1−z−2

(
log

1+z

1−z

)2

−2
√

2z−8z2
)(

1+z

1−z

)√2

e−2
√
2z

}

+ · · ·

]
. (B.3)

Here, in each terms with
(
Ḣ
H2 − m2

H2

)n
, (n = 0, 1, 2, · · · ), we approximate the lower end z0

of the z integration as

z0 =
1√
V

(
V ′

2

) 1
3

=
1√

2 + Ḣ
H2 − m2

H2

(
4 + 6 Ḣ

H2 + Ḧ
H3 − 2m

2

H2

2

) 1
3

' 2
1
3

√
2
. (B.4)

Here we have used (2.7) and (2.26) to obtain the second equality. In practice we calculate

the z integrations numerically.

In the same manner we evaluate the rest correlations
〈

(∇χ)2
〉

,
〈

(χ′)2
〉

and 〈χ′χ+χχ′〉.

〈
(∇χ)2

〉
=

∫
d3~k

(2π)3
k2 |χk|2

=
1

(2π)3
2π

3
2

Γ
(
3
2

) ∫ k0

0

dk k4
1

2
√
V −k2

(
1

4
e
−2

∫ τ
τk
dτ ′
√
V−k2

+e
+2

∫ τ
τk
dτ ′
√
V−k2

)

=
1

4π2

∫ k0

0

dk
k4√
V −k2

1

4

(√
V +
√
V −k2√

V −
√
V −k2

)−√V
aH

e2
√
V−k2
aH +

(√
V +
√
V −k2√

V −
√
V −k2

)√V
aH

e−2

√
V−k2
aH


=

V 2

4π2

∫ 1

z0

dz
(
1−z2

) 3
2

1

4

(
1+z

1−z

)−√V
aH

e2
√
V

aH
z+

(
1+z

1−z

)√V
aH

e−2
√
V

aH
z


=
a4H4

4π2

(
2+

Ḣ

H2
−m

2

H2

)2

×

[∫ 1

z0

dz
(
1−z2

) 3
2

{
1

4

(
1+z

1−z

)−√2

e2
√
2z+

(
1+z

1−z

)√2

e−2
√
2z

}

−
√

2

4

(
Ḣ

H2
−m

2

H2

)∫ 1

z0

dz
(
1−z2

) 3
2

(
log

1+z

1−z−2z

){
1

4

(
1+z

1−z

)−√2

e2
√
2z−

(
1+z

1−z

)√2

e−2
√
2z

}
+

1

32

(
Ḣ

H2
−m

2

H2

)2
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×
∫ 1

z0

dz
(
1−z2

) 3
2

{
1

4

(
(
√

2−8z) log
1+z

1−z+2

(
log

1+z

1−z

)2

−2
√

2z+8z2
)(

1+z

1−z

)−√2

e2
√
2z

−

(
(
√

2+8z) log
1+z

1−z−2

(
log

1+z

1−z

)2

−2
√

2z−8z2
)(

1+z

1−z

)√2

e−2
√
2z

}

+ · · ·

]
. (B.5)

〈(
χ′
)2〉

=

∫
d3~k

(2π)3
∣∣χ′k∣∣2

=
1

(2π)3
2π

3
2

Γ
(
3
2

) ∫ k0

0

dk k2
1

2

[
1

4

{
V ′

4
(V −k2)−

5
4 +(V −k2)

1
4

}2

e
−2

∫ τ
τk
dτ ′
√
V−k2

+

{
V ′

4
(V −k2)−

5
4 −(V −k2)

1
4

}2

e
+2

∫ τ
τk
dτ ′
√
V−k2

]

=
1

4π2

∫ k0

0

dk k2
[

1

4

{
V ′

4
(V −k2)−

5
4 +(V −k2)

1
4

}2(√
V+
√
V−k2

√
V−
√
V−k2

)−√V
aH

e2
√
V−k2
aH

+

{
V ′

4
(V −k2)−

5
4 −(V −k2)

1
4

}2(√
V+
√
V−k2

√
V−
√
V−k2

)√V
aH

e−2

√
V−k2
aH

]

=
V 2

4π2

∫ 1

z0

dz z2
√

1−z2

1

4

{
1

4

V ′

V
3
2

1

z3
+1

}2(
1+z

1−z

)−√V
aH

e2
√
V

aH
z+

{
1

4

V ′

V
3
2

1

z3
−1

}2(
1+z

1−z

)√V
aH

e−2
√
V

aH
z


=

1

4π2

(V ′)2

V
× 1

16

∫ 1

z0

dz

√
1−z2
z4

1

4

(
1+z

1−z

)−√V
aH

e2
√
V

aH
z+

(
1+z

1−z

)√V
aH

e−2
√
V

aH
z


+

1

4π2
(V ′)2

√
V × 1

2

∫ 1

z0

dz

√
1−z2
z

1

4

(
1+z

1−z

)−√V
aH

e2
√
V

aH
z−
(

1+z

1−z

)√V
aH

e−2
√
V

aH
z


+

1

4π2
V 2

∫ 1

z0

dz z2
√

1−z2

1

4

(
1+z

1−z

)−√V
aH

e2
√
V

aH
z+

(
1+z

1−z

)√V
aH

e−2
√
V

aH
z


=
a4H4

4π2

(
4+6

Ḣ

H2
+
Ḧ

H3
−2

m2

H2

)2(
2+

Ḣ

H2
−m

2

H2

)−1

×

[
1

16

∫ 1

z0

dz

√
1−z2
z4

{
1
4

(
1+z
1−z

)−√2

e2
√
2z+

(
1+z
1−z

)√2

e−2
√
2z

}

−
√

2

64

(
Ḣ

H2
−m

2

H2

)∫ 1

z0

dz

√
1−z2
z4

(
log 1+z

1−z−2z
){

1
4

(
1+z
1−z

)−√2

e2
√
2z−

(
1+z
1−z

)√2

e−2
√
2z

}
+

1

16× 32

(
Ḣ

H2
−m

2

H2

)2

×
∫ 1

z0

dz

√
1−z2
z4

{
1
4

(
(
√

2−8z) log 1+z
1−z +2

(
log 1+z

1−z

)2
−2
√

2z+8z2
)(

1+z
1−z

)−√2

e2
√
2z

−
(

(
√

2+8z) log 1+z
1−z−2

(
log 1+z

1−z

)2
−2
√

2z−8z2
)(

1+z
1−z

)√2

e−2
√
2z

}
+ · · ·

]

+
a4H4

4π2

(
4+6

Ḣ

H2
+
Ḧ

H3
−2

m2

H2

)(
2+

Ḣ

H2
−m

2

H2

) 1
2
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1
4
8

×

[
1

2

∫ 1

z0

dz

√
1−z2
z

{
1
4

(
1+z
1−z

)−√2

e2
√

2z−
(

1+z
1−z

)√2

e−2
√
2z

}

−
√

2

8

(
Ḣ

H2
−m

2

H2

)∫ 1

z0

dz

√
1−z2
z

(
log 1+z

1−z−2z
){

1
4

(
1+z
1−z

)−√2

e2
√
2z+

(
1+z
1−z

)√2

e−2
√
2z

}
+

1

64

(
Ḣ

H2
−m

2

H2

)2

×
∫ 1

z0

dz

√
1−z2
z

{
1
4

(
(
√

2−8z) log 1+z
1−z +2

(
log 1+z

1−z

)2
−2
√

2z+8z2
)(

1+z
1−z

)−√2

e2
√
2z

+

(
(
√

2+8z) log 1+z
1−z−2

(
log 1+z

1−z

)2
−2
√

2z−8z2
)(

1+z
1−z

)√2

e−2
√
2z

}
+ · · ·

]

+
a4H4

4π2

(
2+

Ḣ

H2
−m

2

H2

)2

×

[∫ 1

z0

dz z2
√

1−z2
{

1
4

(
1+z
1−z

)−√2

e2
√
2z+

(
1+z
1−z

)√2

e−2
√
2z

}

−
√

2

4

(
Ḣ

H2
−m

2

H2

)∫ 1

z0

dz z2
√

1−z2
(

log 1+z
1−z−2z

){
1
4

(
1+z
1−z

)−√2

e2
√
2z−

(
1+z
1−z

)√2

e−2
√
2z

}
+

1

32

(
Ḣ

H2
−m

2

H2

)2

×
∫ 1

z0

dz z2
√

1−z2
{

1
4

(
(
√

2−8z) log 1+z
1−z +2

(
log 1+z

1−z

)2
−2
√

2z+8z2
)(

1+z
1−z

)−√2

e2
√
2z

−
(

(
√

2+8z) log 1+z
1−z−2

(
log 1+z

1−z

)2
−2
√

2z−8z2
)(

1+z
1−z

)√2

e−2
√
2z

}
+ · · ·

]
. (B.6)

〈
χ′χ+ χχ′

〉
=

∫
d3~k

(2π)3
(
χ′kχ

∗
k + χ′∗k χk

)
=

1

(2π)3
2π

3
2

Γ
(
3
2

) ∫ k0

0

dk k2
[
− 1

4

{
V ′

4
(V − k2)−

3
2 + 1

}
e
−2

∫ τ
τk
dτ ′
√
V−k2

−
{
V ′

4
(V − k2)−

3
2 − 1

}
e
+2

∫ τ
τk
dτ ′
√
V−k2

]

= − 1

2π2

∫ k0

0

dk k2
[

1

4

{
V ′

4
(V − k2)−

3
2 + 1

}(√
V+
√
V−k2

√
V−
√
V−k2

)−√V
aH

e2
√
V−k2
aH

+

{
V ′

4
(V − k2)−

3
2 − 1

}(√
V+
√
V−k2

√
V−
√
V−k2

)√V
aH

e−2

√
V−k2
aH

]

= −V
3
2

2π2

∫ 1

z0

dz z
√

1−z2

1

4

(
1

4

V ′

V
3
2

1

z3
+1

)(
1+z

1−z

)−√V
aH

e2
√
V

aH
z+

(
1

4

V ′

V
3
2

1

z3
−1

)(
1+z

1−z

)√V
aH

e−2
√
V

aH
z


= − 1

4π2
V ′ × 1

2

∫ 1

z0

dz

√
1− z2
z2

1

4

(
1 + z

1− z

)−√V
aH

e2
√
V

aH
z +

(
1 + z

1− z

)√V
aH

e−2
√
V

aH
z


− 1

4π2
V

3
2 × 2

∫ 1

z0

dz z
√

1− z2

1

4

(
1 + z

1− z

)−√V
aH

e2
√
V

aH
z −

(
1 + z

1− z

)√V
aH

e−2
√
V

aH
z


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)
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= −a
3H3

4π2

(
4 + 6

Ḣ

H2
+

Ḧ

H3
− 2

m2

H2

)
×

[
1

2

∫ 1

z0

dz

√
1− z2
z2

{
1
4

(
1+z
1−z

)−√2

e2
√
2z +

(
1+z
1−z

)√2

e−2
√
2z

}

−
√

2

8

(
Ḣ

H2
− m2

H2

)∫ 1

z0

dz

√
1− z2
z2

(
log 1+z

1−z − 2z
){

1
4

(
1+z
1−z

)−√2

e2
√
2z −

(
1+z
1−z

)√2

e−2
√
2z

}
+

1

64

(
Ḣ

H2
− m2

H2

)2

×
∫ 1

z0

dz

√
1− z2
z2

{
1
4

(
(
√

2− 8z) log 1+z
1−z + 2

(
log 1+z

1−z

)2
− 2
√

2z + 8z2
)(

1+z
1−z

)−√2

e2
√
2z

−
(

(
√

2 + 8z) log 1+z
1−z − 2

(
log 1+z

1−z

)2
− 2
√

2z − 8z2
)(

1+z
1−z

)√2

e−2
√
2z

}
+ · · ·

]

− a3H3

4π2

(
2 +

Ḣ

H2
− m2

H2

) 3
2

×

[
2

∫ 1

z0

dz z
√

1− z2
{

1
4

(
1+z
1−z

)−√2

e2
√
2z −

(
1+z
1−z

)√2

e−2
√
2z

}

−
√

2

2

(
Ḣ

H2
− m2

H2

)∫ 1

z0

dz z
√

1− z2
(

log 1+z
1−z − 2z

){
1
4

(
1+z
1−z

)−√2

e2
√
2z +

(
1+z
1−z

)√2

e−2
√

2z

}
+

1

16

(
Ḣ

H2
− m2

H2

)2

×
∫ 1

z0

dz z
√

1− z2
{

1
4

(
(
√

2− 8z) log 1+z
1−z + 2

(
log 1+z

1−z

)2
− 2
√

2z + 8z2
)(

1+z
1−z

)−√2

e2
√
2z

+

(
(
√

2 + 8z) log 1+z
1−z − 2

(
log 1+z

1−z

)2
− 2
√

2z − 8z2
)(

1+z
1−z

)√2

e−2
√
2z

}
+ · · ·

]
. (B.7)
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