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Higher order Painlevé systems of type A,
Drinfeld-Sokolov hierarchies and Fuchsian
systems

Takao Suzuki | Kenta Fuji *

Abstract

Recently, higher order generalizations of Py has been studied from
two viewpoints, similarity reductions of infinite dimensional integrable
hierarchies and monodromy preserving deformations of Fuchsian sys-
tems. The aim of this article is to clarify the relationship between
them.

1 Introduction

The connection between the second Painlevé equation and the KdV equation
was clarified by Ablowitz and Segur [2]. Since their result, a relationship
between (higher order) Painlevé systems and infinite-dimensional integrable
hierarchies has been studied. By means of a viewpoint of the Drinfeld-Sokolov
hierarchies [3, 6], we list the known connections between Painlevé systems
and integrable hierarchies in Table 1 and 2.

Table 1. Painlevé equations and DS hierarchy
Painlevé eq. | P Py Py Py Py1
Lo alg, | AW | AW [ AW [ AW (AP AP | AW | DF
Conj. class || (2) | (1,1)] (3) | (2,1)| (4) |(1,1,1)](2,2) | (2,
Ref. (2] | [14] | [1] | [13] | [1] [15] [5] [4
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Table 2. 2n-th order Painlevé systems and DS hierarchy

Painlevé sys. || Coupled Py | Coupled Py | Coupled Py; | Coupled Py
Lie alg. Agl)—p Agl) Agz)a Agz)ﬂ Agl)y Agz)-i-l Dgz)-i-Q
Conj. class | (2n—1,1) (2n,1) (n,n,1) (n+1,n+1)
(2n+1) 2n+2) |(n+1,n+1)
Ref. [5, 18, 20] | [5, 18, 20] [5, 20] 4]

Remark 1.1 ([6, 17]). The Drinfeld-Sokolov hierarchies are characterized by
the Heisenberg subalgebras of the affine Lie algebras. And the isomorphism
classes of the Heisenberg subalgebras are in one-to-one correspondence with
the conjugacy classes of the finite Weyl group.

Remark 1.2 ([24]). The higher order Painlevé system of type DSZ)JFQ was
first proposed by Sasano as an extension of Pyy for the affine Weyl group
symmetry with the aid of algebraic geometry for initial value space.

Remark 1.3 ([25, 26]). Several Painlevé systems are also derived from the
UC' hierarchy, which is an extension of the KP hierarchy to the universal
character.

On the other hand, a classification of higher order Painlevé systems has
been studied from a viewpoint of the monodromy preserving deformations of
Fuchsian systems. It is shown in [19] that any irreducible Fuchsian system can
be reduced to finite types of systems by using Katz’s two operations, addition
and middle convolution [11]. It is also shown in [8] that the isomonodromy
deformation equation is invariant under Katz’s two operations. Based on
them, Sakai constructed a classification theory of four-dimensional Painlevé
equations [23]. We list the known connections between Painlevé systems and
Fuchsian systems in Table 3.

Table 3. 2n-th order Painlevé systems and Fuchsian systems

Painlevé sys. Spectral type Ref.
Coupled Pyp of type A&)H (n,1),(n, 1), (1", (171) | [23, 26]
Coupled Py of type DS, | (20— 1,1), (n2), (n2), (12") | [9, 23]

Matrix type (n?), (n?), (n?), (n,n —1,1) | [12, 23]

As is seen above, Painlevé systems have two origins, integrable hierar-
chies and Fuchsian systems. But the relationship between them has not
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been clarified. In this article, we consider the coupled Painlevé VI system of
type Agif +1; we denote it by Pp,41,n41). It is derived from two origins, the
Drinfeld-Sokolov hierarchy associated with the conjugacy class (n+1,n+ 1)
and the Fuchsian system with the spectral type {(n, 1), (n, 1), (1**1), (1"*1)}.
We investigate a relationship between them with the aid of a Laplace trans-
formation for a system of linear differential equations.

The system P,11,,41) was proposed in [20] and [26] independently. It is
expressed as a Hamiltonian system of order 2n with the coupled Painlevé VI
Hamiltonian. It also admits an affine Weyl group symmetry of type ASL) 1
and a particular solution in terms of the generalized hypergeometric function
nt1Fn [21, 27]. In a recent work [22], we introduce a system of g-difference
equations ¢- P41 n+1), which has similar properties as P, 41,,+1) and reduces
to Piim+1) Via a continuous limit ¢ — 1. In this article, we investigate
such g-difference system. Namely, we show that the Lax form for ¢-F, ) is
transformed into a system of linear g-difference equations which reduces to a
Fuchsian system via a continuous limit ¢ — 1; we call it a g-Fuchsian system.

This article is organized as follows. In Section 2, we review the system g¢-
P, ) and its several properties. In section 3, a g-Fuchsian system is derived
from the Lax form for ¢-P ). In section 4, we investigate Lax forms for
four-dimensional Painlevé differential equations derived from the Drinfeld-
Sokolov hierarchy of type A.

Remark 1.4 ([15]). The Garnier system in m-variables is an extension
of Py1 to independent variables of number m. It is also derived from two
origins, the Drinfeld-Sokolov hierarchy associated with the conjugacy class
(1™*2) and the Fuchsian system with the spectral type {(1?) x (m+3)}. The
relation between them has been already clarified by Kakei and Kikuchi.

Remark 1.5 ([26]). An extension of the Garnier system was proposed by
Tsuda. He considered a similarity reduction of a UC hierarchy, whose Lax
form is equivalent to a Fuchsian system with the spectral type {(n,1) x (m +
1), (1") x 2}, and derived a Hamiltonian system of order 2mn. In the case
m =1, the Hamiltonian system is equivalent to Py 1 nq1)-
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2 Higher order ¢g-Painlevé system

The main object of this article is the higher order g-Painlevé system g-F, )
proposed in [22]. It is described as

P _ a;r;(qt) __ biamia(gt)
e AR s s A 21)
b,yl(t) a'iyi—l(t) ‘

yi(qt) — yi-1(qt) = 1+ z(q)yi(t) 1+ zi(qt)yiq(t)

fori=1,...,n, where
bo=q 'bn,  wo(t) =tx,(t), yo(t) =q 't yn(t),

with relations

n

e Lt aigt)yi(t) _ w-vye
1+ 2(qt)yia (t)

i=1
The system g-Ps 9) coincides with g- Py; proposed by Jimbo and Sakai in [10].
Hence we can regard ¢-F, ) as a generalization of g-Py;.

The system ¢-F, ) admits the affine Weyl group symmetry of type Agﬁf_l.
Let r; (j =0,...,2n — 1) be birational transformations defined by

roj-2(a;) = bj1, 1a-2(bj-1) = aj,

roj—o(xj_1(t)) = zj-1(t), 7T2j—2(yi—1(y)) = yj—1(t) + bj—1—a;

zj(t) — i (t)’

sz—z(ai) = ay, T2j—2(bi—1) = bi_1,
roj—2(i-1(t)) = wima(t),  roj—2(Vi-1(y)) = yi-1(t) (i # J),

and

a; — b,
yi(t) — yj-1(t)’
) = Qy, T2j—1(bi) = by,
roj-1(xi(t)) = wi(t), ro1(yi(y)) = wi(t) (i #J).

Then we have

roj—1(y;(t)) = y;(t),

Theorem 2.1 ([22]). The system q-F, ) is invariant under actions of the
transformations ro, . .., Ton_1. And the group of symmetries (rq,...,ron_1) 18
isomorphic to the affine Weyl group of type A;L)_l.
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The system ¢-F(,») also admits a particular solution in terms of the g-
hypergeometric function ,,¢,_1.

Theorem 2.2 ([22]). Under the system q-FPp, ), we consider a specialization

Then a vector of the variables x(t) = *[z1(t), ..., x,(t)] satisfies a system of
linear q-difference equations

A

-1 1

X )= Ay + — | x(¢
(q ) ( 0 1 q_lt) ( )7
with n X n matrices

n n

A= biEj;+ Y > (bj—a)Ey A=Y (a;—b)E;.
j=1

i=1 j=i+1 i=1 j=1

The aim of this article is to investigate Lax forms for ¢- P, ). Let My(z,t)
and By(z,t) be 2n x 2n matrices defined by

K1 Q01 —1
Ky @2 —1
Mo(Z, t) - ®on—3 -1 )
Kon—2 $Pon—2 —1
—tz Kon—1  $P2n—1
_(POZ —Zz Raon i

and

Uy (%1 -1
Uy V3 0
Uz Vs -1
Ug Uy 0
Bo(Z, t) =
Vap—3  —1
Ugp—2 Up—2 0

—tz Ugp—1 V2p—1
VoZ 0 Uzn,

185
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where

Koi—1 = Qj, Ko = b; (Z =1,... 777/)7
Voico = () — i1 (t), w21 =wi(t) —vica(t) (i=1,...,n),

a; .
, e = 14 z;(qt)y;(t 1=1,...,n

vo = —twp(qt), vy = —zi(qt) (1=1,...,n—1),
vaic1 = %i(t) (i=1,...,n).

Ugi—1 =

Then we have

Theorem 2.3 ([22]). The system q-P(, ) is given as the compatibility con-
diton of a system of linear q-difference equations

\Ilo(qz,t) = Mo(Z,t)\If()(Z,t), \IJ()(Z,qt) = Bo(Z,t)‘I’()(Z,t). (22)

In the next section, we show that the system (2.2) reduces to a g-Fuchsian
system with n x n matrices; see Theorem 3.6. The following lemma is needed
to prove the main theorem.

Lemma 2.4. We have
det Mo(z,t) = (¢ /2 —t2) (g™ D2k .. Kap — 2),
det By(z,t) = ¢ V2 — ¢tz

Proof. The determinant of the matrix By(z,t) is obtained as follows:

2n n—1
det By(z,t) = H u; — 2(Von—1v0 + tugy,) H(UZZ'—I'U% + ug;) = V2 ¢z,
i=1 i=1

On the other hand, we set Bg(z,t) = My(z,t)By ' (z,t). It is given explicitly
by

[, c
uf vy 0
usg v§ —1

C .
Bo(z7 t) - t. 9

C

Von—3 0
(4 C

Up—g Ugpo —1

C C
O u2n—1 U2n—1

VgZ —Z Uy
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where
us;_q =1+ zi(qt)yi—1(t), us; = R Rw—Y (1=1,...,n)
Ugio = Ti(qt), v5y = —yi1(t) (=1,....,n).
Similary as above, we obtain
det BS(z,t) = ¢ "V 2k . kgp — 2

Hence this lemma is proved. O

3 ¢-Fuchsian system

In this section, we show that the Lax form (2.2) is transformed into a ¢-
Fuchsian system with the aid of g-Laplace transformations (cf. [7, 16]). In
order to achive it, we propose Lax forms

(Lj): Wilgz,t) = M;(z,0)V5(2,1),  Wy(z,qt) = By(2,1)¥;(2,1),
with (2n — j) x (2n — j) matrices for j =0,1,...,n — 1 and
(L) Wo(qg'2,t) = My(2, )W, (2,1), U,(z,qt) = Bu(z,t)¥,(z,1),

with n x n matrix. Then the system L,, is equivalent to our purpose.
The systems L1, ..., L,_q are obtained as follows. Foreach j =1,...,n—
1, we can take a function 7;(z, t) satisfying

Tj(qz,t) _ /ijfl Tj(zaqt) — ujfl, Ko = Ug = 1’

7i(2,1) qr; - Ti(z,t) u;

under the system L;_;. By using it, we consider a gauge transformation

1 *
\Ilj_l(z, t) — m\yj_1<z, t)

We next consider a g-Laplace transformation

¢j—1(<—7 t) - (Dj—l(q_1C7 t)
eC ’

\Ij;—l(qza t) - qilq)jfl(q71<_7 t)

where £ =1 — ¢. Via a Mobius transformation ¢ — 27!, the system L;_; is
transformed into

(p]'_l(q27t) = Nj_l(Z,t)q)j_l(Z,t), <I>]-_1(z, qt) = Cj_l(z,t)(pj_1(27t),
(3.1)

25 (2,t) —



188

TAKAO SUZUKI AND KENTA FuJi

with

Nj1(z,t) = (I + 5_1QZM;—1,1(t))_l(qM;—Lo(t) + 5_1(12M;—1,1(t))
= My o(1) + &7 gzM (O - gM of0)),
Cior(z,t) = Bjyolt) + 7 2B} 11 (I — Njoa(2,1))
= Bj_10(t) + 5_123;—1,1(t>(] — qMj_, (1)),

where
H'_ * *
’ le_l(z,t) = Mj—l,O(t) + ZMj—l,l(t)v
qr;
Wi
;AlBj—l(zaw = B;—I,O(t> + ZB;—I,I(t)'
j
Note that

(M7, (1)) =0, By ()M} ,(t) = 0.

For each of the matrices N;_1(z,t) and C;_1(z,t), the first column is equiv-
alent to the fundamental vector ?[1,0,...,0]. Hence the system (3.1) can be
restricted to Lj;.

The coefficient matrices M;(z,t) = M, o(t) + 2M;1(t) are of the form

Kjt1 $j+1 —1 0
Kit2 @jr2 —1
1 - - -
M',O(t) - ' ' ) )
’ K Kon—2 Pom-2 —1
Ron—1  P2on-1
L O KRon ]
and
_ 0 -
1 O : 0
M'l t) = - O 3
I ( ) Ky ... Iﬁ}j_llsz m(]) m(]) 0 0 0
1,1 1"{“ 0
-mg,i mgﬁrl Myjip 0 0]
for j=1,...,n — 1. The components are given by the following recurrence
relations:
j i—1 i—1 j—1 , ,
my) = my ) = gpaamy; V(5 = mp)mi) (=105 + 1),
i—1 i—1 j—1
mgi = -, mgj,o ) = mgj,j%—% = mgj,j+% =0,
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and
mg) =m Y = opam Y 4 (5 — mpdmEy (=1, +2),
myy =0, myy =1 mys" =mgy=mgl =0,
forj=1,...,n—1. Note that mgj;])-H = —t and mg])»w = —1. The coefficient

matrices B;(z,t) = Bj(t) + 2B;(t) are of the form

B —14(=1)7+! 7
Ujrr Yjy1 — 5 _ 0
,1+(,1)J+2
Uj+2 Uj+2 - 2
1
Bio(t) = —
jo(t) u; Ugp—3  Vzp—3 —1 ’
U2 V2p—2 0
U2pn—1 V2n—1
| O U2p
and
0
‘ . ,
J EIRy ... Kjuj 1,1 Lj+1
1
-1
_—t Uo_

forj=1,....,n—1.
Lemma 3.1. We have
(¢ D72 — eit2) (V25 L kg —€772)

2n—j+1 ’
Ri... /ij_llij

det M;(z,t) =

forg=1,...,n—1.

Proof. We can prove by using Lemma 2.4 and

det M;(z,t) = det Nj_y(z,t) = (L= y2n=3+1 det M;_, (e 2, ¢).
Kj

Lemma 3.2. We have

(n=1)/2 _ =iy
det Bj(z,t) = a c T2

2n—j+17
Ug ... uj_luj

forg=1,...,n—1.

189
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Proof. Let
—14(=1)9+1
Uj+1 Ui+l % , 0
_1+(_1)J+2
Uj+2 Uj+2 2
A]’ - )
Ugji1 vgj1 —1
U2j+2 V2542
(4) (4) (4) (4)
ml’l m1’2 . .. . .. m17] ml’]+1
for j=1,...,n— 1. Then we can show that
K1 K4 R1...Kj
Alz——t, AjI—JAj_lz—ijt (] :2,. ,n—l),
(751 Uj Uy ...Uj

by a direct computation. By using it, we obtain

u?"_j det B;(z,t)

_1+(_1)j+1
Uj+1 Uivr T o o

Ugji1 Vi1 —1
Ugjyo Vojy2 0O

U2n—1 3
_ vomiyz ol 0 0 u
Ejﬁl...ﬁjt tee Ejh‘/ll..h‘/jt e v n
n—2
z
EVRY ... Rj el
i=j+1

q(n_l)/Q — €_jtZ

Uy .. . Uj—1U;j

O

The system L, is obtained in a similar way. We can take a function
To(z,t) satisfying

To(qz,t)  Kp—1 To(Z,qt)  Up_q

Ta(2,t)  qkn Ta(z,t) U,

under the system L, ;. By using it, we consider a gauge transformation

1
\Iln— 7t *_ 7t .
1(2 )_) Tn(Z,t) n l(z )
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We also consider a g-Laplace transformation

®,_1(C,t) — p1(q7C, 1)

* t
n—l(zv ) - 8( )
U1 (gz,t) — ¢ ' @1 (g ¢, 8).

Then the system L,,_; is transformed into

CI)n_l(q_IC’ t) = Nn—l(C7 t)(I)n_l(C, t)? (bn—l(Ca qt) = Cn—1<ga t)q)n—l(Cv t)’

A

(3.2)
with
N,-1(¢,t) = (I‘{‘EilqcilMZ 11( )~ 1<an 10( )+571‘I<71MZ—1,1(’5))
—]+(I+5_1QC My (8)THgM o) — 1),
Cona(Ct) = By 1 o(t) + ¢ By 1 () (I = Ny 1(( t),
where
My (2,) = Moo (1) + 2Mi (1),

—— B, 1(z,t) = B;—Lo( )+ 2B, 1, 1 (1)
For each of the matrices N, _1(z,t) and C,,_1(z,t), the first column is equiv-
alent to the fundamental vector *[1,0,...,0]. Hence the system (3.2) can be
restricted to L,, via a transformation of independent variable

z
—_— .
E"K1...Kp
Note that
(1+5_1QC_1M:{—1,1( ! ‘C .
€ f<1 Kn
SR
=1 ! O (n 1) (n 1)
=T+ — 1 miy om0
(n—1)
2,n
L™ =1
0
1 : (n—1) (n—1) (n—1)  (n—1)
. n—1 m ms oy n—1 my, Mg, n—1
Fog | | et Ty ]



192 TAKAO SUZUKI AND KENTA FuJi

and
qMy_10(t) — 1
[0 ©On -1 O ]
Rn+1 — Rn ©n+1 -1
1
Kn Kon—2 — Kn Pon—2 -1
Ron—1 — Rn Pon—1
O Ron — Kp
(n—1) _ (n—1) _
We also recall that m;,, = —t and my,, . = —1.

The coefficient matrix M, (z,t) is of the form

Mo (t) | Mia(t)

M, (z,t) = M, «(t) +

9

z—1 z—1

where
—/‘fn+1 Ony1 —1 O |
Knt2 Pne2  —1
1
Mn,oo(t):_ )
Kn Kon—2 Pan—2 —1
Ron—1 $2on-1
L O Ron |
-0 T
1 :
Mo (t) = — | 0 [mgw mﬁfﬂ,
Ko | _1
(n—1)
2,n
L™ —1 4
0
M (t) = — [ iz ]
’ Kn | 0 ! "
—1

The components are given by

(TL,E) (n—l,ﬁ) (TL—I,E) (n—1,§) (Z — 1

m; =My T Pty + (Fn = Fnti) My NN OL
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for £ =t,1, where

m{i" =0, m{ =0,
[
™ =D ) e T ey

7 12 )

(n_lvt) I (n_lvl) — (n_l)
nt1 =0, om0 = Mg pt1-

The coefficient matrix B, (z,t) is of the form

B, (t
B(z,t) = Bpool(t) + nat( ),
z—1
where
— _ _1\n+1 7
Unp+1  Unt1 % , )
_ _1\nt+
Unp 42 Un+-2 %
] .
Byoo(t) = U, Ugn—3 Von—3  —1 ’
Ugp—2 Vo2n—2 0
Uon—1 V2n-1
| O Uon, i
and _ -
0
1 : (n.1) (n,t)
Budt) = | 0 [ml’ mn’].
" 1
—t_l'l)o

Lemma 3.3. We have

(z—q " D2k kpt) (Kng - - Koz — ¢ Y/2)

det M, (z,t) = ki(z —1)(z — t)

Proof. We can prove by using Lemma 3.1 and

det M,,(z,t) = det N,,_1(z,t)

22 Rp—1

- (z—t)(z—l)( Fon

)n+1 det Mn_l(En_l/fl cee K/nz_17 t)

Lemma 3.4. The eigenvalues of k,M,(0,t) are given by K1, ..., Kp.
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Proof. We can prove by using
det kK, M, (0,t) = K1,. .., Kn,

and

Kn My, (0, 1) = koM, (0,t) — M.

Ki—Ki—A

Lemma 3.5. We have

_ g~ (n=1)/2
U co o Uop (2 K1...Kpt
det B, (z,t) = ntl 2n( d ! t)
up(z —1)
Proof. Let
_ _1\n+1
Un+1  Un+t1 %
—14(=1n+2
Un+2 Un+-2 — 3
A, =
U2n—1 Vo1 —1
Uon
mgn’t) mgn’t) . . m%n’t) —t
Then we can show that
Kn Kil...Kp
Ap= "Ny y = 0,

Unp Uy ...Up
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by a direct computation. By using it, we obtain

uyy det B, (z,t)

_ _1\n+1
Un+1 Un+1 % @)
—14+(—1)"t2
Un+42 Un4-2 —
a Ugp—2 U2p—2 0
U2n—1 %
_vom(ln’t) _vomgn’t) _”Omgﬁ) R
t(z—t) t(z—t) T T e—t) U2n t(z—t)
(n,t)
—u w U — Up41 - - - U2p—1V0Mn
n+1- .- U2n—-1U2n t(Z — t)
—14(=pn*!
Up+1  Un41 % O
—14(=1)"+2
Un42 Un+2 —
1
+ t
= Uzn—3 Vo3  —1
U2n—2 U2n—2
m{"™ ) . o m{"
_ Un+1 - - - U2pR + An
z—1
_ Unyr - (2 — V25 k)
z—t ’
O
We consider a gauge transformation
Tni1(2, 1) O
—1p,-1. -1 2 n+1(25
tz7; Z;
Y(z,1) = G (¢! ql )Oof)q dE P)V,(z,1).
ESpST
1 4 oo O Ton (2, 1)
where 7,41(2,t),...,Ton(z,t) are functions such that

n el D) )
7j(2,t) ToTmnt) -

and P(t) is a n x n matrix such that
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Note that P(t) is an upper triangular matrix whose diagonal elements are all
1. Then the system L, is transformed into

Y(qg 'z, t) = M(2,t)Y (2,1), Y(z,qt) = B(z’t)Y(z,t). (3.3)

z
Theorem 3.6. The coefficient matrices satisfy
M(z,t) = Mo(t) + 2My(t) + 22 My,
Kn41 )
My = . . Mo(t) has eigenvalues tky, . .. tky,
O Ran
d _ n—1 n—1 Ki...kKn (n—1)/2
et M(z,t) =(z—1t)"" (2 — 1) (Z—Wt)(nnﬂ...ngnz—q ),
and
B(z,t) = Bo(t) + 21, det B(z,1) = (2 — )"\ (z = o00t).
q\"

We can show it by a direct computation with Lemma 3.3, 3.4, 3.5 and
the following lemma.

Lemma 3.7. The matriz P(qt) B, o (t)P(t)™" turns to be a diagonal matriz.
Proof. The system (L,,) implies
Mp,00(qt) Br,oo (t) = B oo (t) Mn,oo (1),
from which we obtain
MoP(qt) Buoo(t) P(t) ™ = P(qt) Ba,oo(t) P(t) " M.

The matrix M5 is a diagonal one whose components are mutually distinct.
Therefore P(qt)B.oo(t)P(t)~" is also diagonal. O

Remark 3.8. Via a continuous limit ¢ — 1, the system (3.3) reduces to a
Fuchsian system with a spectral type {(n — 1,1), (n — 1,1), (1), (1™)}.

4 Fourth order Painlevé systems and laplace
transformations

Three types of fourth order Painlevé type ordinary differential equations,
whom we denote by P(s), P(s), P(3,3), have been studied from a viewpoint
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of affine Lie algebra of type A [5, 18]. They are expressed as Hamiltonian

systems
dg; 0Hy, dp;  0OH,

dt ~— op;’ dt  Og

with the coupled Hamiltonians

Py :

Hsy = Hiv(q1,p1; 0, 1) + Hiv(go, p2; au, a1 + as) + 2q1p1p2,
tH) = Hy(qu,p1; 0,01, 00 + a3)
+ Hv (g2, p2; cu, a1 + az, an + a3) + 2q1p1(g2 — 1)pa,
t(t —1)Hzz) = Hyi(qr, p1; a2, 1 — a1 — g — a3 — as, a3 + as — n,nay)
+ Hyi(qz,p2; 1 — ay — ag — ag — a5, 0, a1 + a3 — 1), 1)0x5)
+ (1 — t)(q2 — 1) {(q1p1 + @1)p2 + p1(p2ge + 5) }

where

Hiv(q,p;a,b) = qp(p — g — 1) — ag — bp,
Hy (g, p;a,b,¢) = q(q — L)p(p + 1) + atq + bp — cqp,

Hvi(q,p;a,b,¢,d) = q(q — 1)(q = t)p* — {(a = 1)gq(q — 1)

+bg(g—t) +clg—1)(g—t)}p +dg.
Note that the symbol A corresponds to a partition of a natural number; see

[5].

The system P33 is obtained as the compatibility conditions of Lax pairs
of two types, Borel type [5] and Fuchsian type [23, 26]. In this section, we

clarify the relations between them with the aid of Laplace transformations.
We also consider the same for the other two systems.

4.1 Coupled Painlevé VI system

The system P33 is derived from a Lax pair

z%\%(z,t) = Mg(z,t)Ug(2,1), %\Ifﬁ(z,t) = Bs(z,t)We(z, 1), (4.1)

with 6 X 6 matrices

[ -1 —py 1 0 0 0 |
0 ) q2 — 1 1 0 0
B 0 0 K3  qip1+ q2p2 + 1 1 0
Ms(z,8) = 0 0 0 K —a-t 1|
tz 0 0 0 Ks —tpy
(1 — @)z 2 0 0 0 Ke |
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where .
nl:—1+Za6_J (1=2,...,6),
j=1
and

[0 v, 1 0 0
0 U V2 0 0
0 0 U3 Vs 1
0 0 0 Uyg Vg 0
tz 0 0 0 wuy vy
[voz 0 0 0 0 g

The components us, ..., us and vy, ..., vs are polynomial in ¢, go, p1, p2; We
do not give its explicit formulas here.
Via a Laplace transformation

o O O

1
Bﬁ(zat) = ;

0 0
amﬁ(zvt) - Cq)6(€7t)7 Z\Ij6(27t) - _6_<<I>6(C7t)7
and a Mobius transformation ¢ — 27!, we obtain
z%q)f;(z,t) = Ng(z,t)Pg(2, 1), %@G(Z,t) = Cg(2,1t)Dg(2, 1), (4.2)
with
No(z,t) = (I — 2Ms ()~ (I + Mg (1)),
06(2, t) = BG,O(t) + ZB6’1(t) (I — ZM6’1 (t))il(l + Mﬁp(t)),
where

Mﬁ(Z, t) = MG,O(t) + ZM6’1 (t), Bﬁ(Z, t) = Bﬁ’o(t) + ZB671(t).

Then the first columns of Ng(z,t) and Bg(z,t) are both equivalent to the
zero vectors. Hence we can reduce the Lax form (4.2) to the one with 5 x 5
matrices

22\115(z,t) = Ms5(z,t)Us5(z,1), 2\Ifg,(z,t) = Bs(z,t)U5(z,1), (4.3)

0z ot
with
Ky G2 —1 1 0 0
0 K3 @pr+@pet+n 1 0
M5<Z,t) = 0 0 ! _qlt_t 1 )
mﬁz tz 0 ks  —tp
mgz mgz z 0 K6
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where

5
O = —tps, mg’f = (g2 — q1)p2 + as, mé‘f’% =q — L

)

m

and
U9 Vo 0 0 0

1 0 Us Vs 1 0

Bs(z,t) = p 0 0 wug vy O
—tpoz  tz 0 wus wvs

—povoz voz 0 0 wug

Remark 4.1. The Laz form (4.3) is equivalent to the one derived from the
Drinfeld-Sokolov hierarchy of type Ail) for a partition (2,2,1) given in [5].

Here we can take a function 75(z, ) satisfying

d d
i log 75(2,t) = ke + 1, 7 log 75(z,t) = ua.

By using it, we consider a gauge transformation
Us(z,t) — 75(2,0)Wi(2,1).

We also consider a Laplace transformation

0 0
%\I/;(Z,t) - C(I)5<Cvt>7 Z‘I’;(Z,t) - _8_C®5(C’t)a
1

and a Mobius transformation ( — z7'. Then, similarly as above, we can
reduce the Lax form (4.3) to the one with 4 x 4 matrices

z%\h(z,t) = My(z,t)Uy(z,1), 2\114(2,15) = By(z,t)Wy(z,1), (4.4)

0 ot
with
K3 qip1 + G2p2 + N 1 0
M ; 0 R4 —QIT_t 1
1(z1) = mﬁz mggz tz+ ks —tp |’
mggz mggz mggz Z + Kg
where

m(il) = —t{(q2 — 1)p2 — au}, mﬁl% = t{qp1 + (g2 — 1)p2 + 1},

1,1
mé{ = (g2 — D{(q2 — q1)p2 + s} + cau(n — 1),
(4)

myy = (@n — 1)(@apr +1) + @1(qe — D)p2 + a3 + ag +as,  my
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and
us V3 1 0
1 0 Uy () 0
Ba(z,t) = tb§4)z tbgl)z tz+us vs|’
v b(4) b(4)
001 "% Voby "2 Vo2 Ug
where

1)

554) = —(q2 — 1)pa + au, bé =qp1 + (g2 — D)p2 + 1.

Remark 4.2. The Laz form (4.4) is equivalent to the one derived from the
Drinfeld-Sokolov hierarchy of type Agl) for a partition (1,1,1,1).

Via a gauge transformation

d d
Uy(z,t) — 14(2, )W (2, 1), zd— log 74(2,t) = kg + 1, pr log 74(z,t) = us,
z

a Laplace transformation

0 0
@WZ(Zat) - Cq)4(<-7t)7 Z\DZ(Z7t) - _8_C<D4(C7t)a

and a replacement ¢ — z, we can reduce the Lax form (4.4) to the one with
3 X 3 matrices

O Wy(ot) = By(2.)Us(2,t).  (4.5)

0
2—W3(2,t) = M3(z,t)Us(z, 1), Py

0z
The matrix M3(z,t) is of the form

Ms; (%) . M3 4(t)

M3<Z,t> = _M3,oo(t) + .1 . ¢ R

with

0
M;1(t) = |0 [m?:l) mé?”l) m§3’1)],

1

: o n
My(t)= | ] [0 ml0 m$O] My =0 w —tn|,

q1 0 0 Rg
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where

mﬁ?”l) = —(q1p1 + @2p2 + M {(g2 — 1)(@2p2 + a5) — a3 — s}

— a3(qap2 + a3 + g + ),
@1 (@ —t)(@pr+n—ar —2a3 — oy — as)
ms = — ;
— (g2 — 1)(qop2 + a5) + a2 + a3 + au,

(351)_ 2
ms =1 — 0 — Qg — 2003 — Qg — O,

m§3’t) = (@11 + @2p2 + M) {(q2 — 1)p2 — a3 — au} + azpo,

—t —1
6o _ (@ )(glpl +n) | ale t )p2 o — g — .
:(»,3’0 =—(qn —t)p1 — (@2 — 1)p2 — .

mg
m

Note that the matrix M3(0,t) has eigenvalues ay, oy + a5 and 0. The matrix
Bs(z,t) is of the form

Bg(z,t) = Z 0 Us V5| — ———

Theorem 4.3. The system (4.5) is equivalent to the Fuchsian system with
the spectral type (21,21,111,111).

4.2 Coupled Painlevé V system

The system P(g) is derived from a Lax pair

0 0
zglllb‘(z,t) = Mg(z,t)Vg(2,1), &\Ilﬁ(z,t) = Bg(z,t)Vg(2,1), (4.6)

with 6 X 6 matrices

-1 % -1 0 0 0
0 Ko V(g2 —1) —1 0 0
0 0 K3 _ t+pi+p2 -1 0
Mg(z,t) = Vi
o(=1) 0 0 0 ke —Vig —1)7
—z 0 0 0 K5 %
_\/f(ql — @)z —2 0 0 0 K6
where

201
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and _
o -1 0 0 0 O

0 up —1 0 0 0

1 0O 0 wy —1 0 O

Bs)="710 0 0 w -1 0

O 0 0 0 w -1

—z 0 0 0 0 e

The components us, . .., ug are polynomial in ¢, ¢, p1, p2; we do not give its

explicit formulas here.
Via a Laplace transformation

Sl t) = COCD), #Walzt) — —-0alC.),

and a Mobius transformation ¢ — 2z~
the one with 5 x 5 matrices

1. we can reduce the Lax form (4.6) to

0 0
Z@‘I’5(Z,t) = M5(Z,t)‘lj5(2,t), &@5(z,t> = B5<Z,t)‘I’5(Z,t), (47)
with _ _
K9 \/%(QQ — 1) -1 0 0
0 K3 —HRAR 10
Ms(z,t) = 0 0 K4 —Vtg -1 ,
mﬂz 2 0 Ks G
_mglz mg—’%z z 0 K6 |
where
D
m{) = —72{ my) = (g1 — @)ps — aa,  myy = —Vt(q — 1).
and ) )
-1 0 0 0
Us -1 0 0
0 Uy -1 0

Remark 4.4. The Lax form (4.7) is equivalent to the one derived from the
Drinfeld-Sokolov hierarchy of type Afll) for a partition (4,1) given in [5].

Via a gauge transformation

d d
Us(z,t) — 75(2,6) Vi (2, 1), zd— log 75(2,t) = ko + 1, pr log 75(2,t) = ug,
z
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a Laplace transformation

0 0
aqu(z’t) - C@s(Cat)7 Z‘I’E(Z,t) - _8_C<I)5(C’t)’

and a Mobius transformation ¢ — 27!, we can reduce the Lax form (4.7) to
the one with 4 x 4 matrices

zg\h(z,t) = My(z,t)Uy(z,1), 2\114(2,15) = By(z,t)Wy(z,1), (4.8)

0z ot
with K _ t+pi+p2 -1 0
3 Vi \/_
0 R4 - tql —1
My(z,t)= | @ @ L m |
1,1 1,2 5 NG
mggz mg}%z mégz —Z + K¢
where
p1+t
mﬁ = —(q2 — 1)p2 + as, me% =-=

\/'E )
mg,l) = \/i(% — D{(¢1 — @2)p2 — o} — a5\/f(q1 - 1),
mé,Q = (Q1 - 1)(271 + t) + (‘12 - 1)172 —ap —ag —azg+1, mé‘f% = —\/E,

and
us —1 0 0
1 0 Uy —1 0
B4(Z,t) = % 0 0 us —1[°
b§4)z bgl)z —z Uug
where

p1t+t

T
Remark 4.5. The Lax form (4.8) is equivalent to the one derived from the
Drinfeld-Sokolov hierarchy of type Aél) for a partition (2,1,1).

b§4) = —(g2 — 1)p2 + a5, b§4) = —

Via a gauge transformation
. d d
Uy(z,t) = 14z, t)Wy(2, 1), zd— log 74(z,t) = k3 + 1, pm log 74(2,t) = ug,
z

a Laplace transformation

0 0
&\Ijszvt) - C(I)4<Cvt>7 Z\IJZ(Z,t) - _a_cq>4(§7t)a
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and a Mobius transformation ( — —z7!

, we can reduce the Lax form (4.8)
to the one with 3 x 3 matrices

0 0
Z@Wg(z t) MS(Z7t)\Ij3(Z7t)7 aqjl’:(z t)

The matrix M;(z,t) is of the form

Bs(z,t)W3(z,t). (4.9)

M3 1(t)Z M3 2<t>2
M;s(z,t) = M3 o(t ’ ’
3(27 ) 3,0( )+ -1 + (z_1>2’

with
i _ _ 0 0 0
ke —Viq p11 Y R
Mso(t)= |0 w5 Bl Ma(t)= |-"— "= Vi |,

2

[0
M) 0] [mgza,z) 7 (32) —t],
1

where
m*Y = —(g1 — g2 + D)1+ ) {(@2 — )pa + cu}
— (1 — @+ 1)pA(g2 — )p2 — a5}
— (a1 +as+as—D{qg(pr +t) + (g2 — 1)pa}
+ (1 +as+as—1)(ag+as+az+as+ a5 — 1),
m$Y = —Vigk(p + 1) — Va1 — @2 + 1)(g2 — Dp2
+ (1 + g + az + a5 — DVig + asvt(ge — 1),
m;(sg’l) =—qi(p1+1t) — (g2 — Dp2 + a1 + @z + 203 + ag + a5 — 2,
m§3’2) —(p1+t){(g2— V)p2 + a1 + g + az + oy — 1}
—{(g2 — 1)p2 — a5 }pa,
(32

—VH{q(pr+1) + (2 — V)pa + oz + az + oy — 1},
The matrix Bs(z,t) is of the form

1 M; (1)
Bs(z,t)=— | 0 — ’
a(2,1) Vit 0 %5 " t(z—1)
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4.3 Coupled Painlevé IV system

The system P(s) is derived from a Lax pair

zag\h(z,t) = Ms(z,t)Us5(z,1), %\Pg,(z,t) = Bs(z,t)Us5(2,t),  (4.10)
z

with 5 X 5 matrices

0 Ry prtpr—q—t 1 0
Ms(z,t)=1 0 0 K3 —P2 1 )
z 0 0 Ky —q1+q2
—p1z 2 0 0 K5
where
6—i
ko= —ldai, Ki=-» a1 (i=345),
j=1
and
0O -1 0 0 0
0 wuw -1 0 0
Bs(z,t) =10 0 wug -1 0
0O 0 0 wuy -1
—z 0 0 0 us
The components us, . .., us are polynomial in ¢, g2, p1, p2; we do not give its

explicit formulas here.
Via a Laplace transformation

%\Ij5(zat) - C(Df)(Cat)? Z\I/5(Z,t) - _%®5(<7t)7

!, we can reduce the Lax form (4.10)

and a Mobius transformation ¢ — 2z~
to the one with 4 x 4 matrices

zg\h(z,t) = My(z,t)Wy(z,1), 2\I/4(z,t) = By(z,t)Wy4(z,t), (4.11)

0z ot
with
Ko pr+pr—qg—t 1 0
My(z, 1) = / " 1
Q12 z Kae —q1+ Qo

—(gip1 — 1)z (P2 —q2 — )2 z K5
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and
uw —1 0 0

0 Uus —1 0

0 0 Uy -1
—qz —z 0  us
Remark 4.6. The Lax form (4.11) is equivalent to the one derived from the
Drinfeld-Sokolov hierarchy of type Aél) for a partition (3,1).

B4(Z, t) =

Via a gauge transformation

Uy(z,t) — 14z, 6)W5(2, 1), zdi log 74(z,t) = ko + 1, %logm(z,t) = Uy,
z

a Laplace transformation

0 0
%‘I}Z(th) - Cq)4(€7t)7 Z\I/Z(Z,t) - _6_C<D4(C7t)a

and a Mébius transformation ¢ — z7', we can reduce the Lax form (4.11)
to the one with 3 x 3 matrices

1

0 0
z&ﬁlg(z,t) = M3(z,t)U3(z, 1), &\Ifg(,z,t) = Bs(z,t)W3(z,t).  (4.12)

The matrix M3(z,t) is of the form
Mg(Z, t) = M370(t) + M371(t)2 + M372(t)22,

with
_/13 —Do 1 0 0 0
_ o2 62
Mso(t) = |0 Ky —q+q|, Ms(t)= |my my L1,

where
mg&l) ={a+p2—q@—1t)—a}pr — (e +az+as—1)(p2 — g2 — 1),
m;&l) =—qp1— (P2 — @2 —t)p2 — 2 —az + 1, mé&l) =p2—q 1
m{*? = apr+p—q@—t)—ar—ay—az3—as+1, m$? = —P2 + a1,
The matrix Bs(z,t) is of the form

us -1 0
Bg(Z,t) = 0 Uy -1 — M3’2(t)2.
0 0 Us



HIGHER ORDER PAINLEVE SYSTEMS OF TYPE A, DRINFELD-SOKOLOV HIERARCHIES AND FUCHSIAN SYSTEMS 207

References

[1] V. E. Adler, Nonlinear chains and Painlevé equations, Phys. D 73 (1994)
330-351.

[2] M. J. Ablowitz and H. Segur, Exact linearization of a Painlevé transcen-
dent, Phys. Rev. Lett. 38 (1977) 1103-1106.

[3] V. G. Drinfel’d and V. V. Sokolov, Lie algebras and equations of
Korteweg-de Vries type, J. Sov. Math. 30 (1985) 1975-2036.

[4] K. Fuji and T. Suzuki, Higher order Painlevé system of type DSZ) 4o arising

from integrable hierarchy, Int. Math. Res. Not. 1 (2008), 1-21.

[5] K. Fuji and T. Suzuki, Drinfeld-Sokolov hierarchies of type A and fourth
order Painlevé systems, Funkcial. Ekvac. 53 (2010) 143-167.

[6] M. F. de Groot, T. J. Hollowood and J. L. Miramontes, Generalized
Drinfeld-Sokolov hierarchies, Comm. Math. Phys. 145 (1992) 57-84.

[7] W. Hahn, Beitrage zur theorie der heineschen reihen Math. Nachr. 2
(1949) 340-379.

[8] Y. Haraoka and G. M. Filipuk, Middle convolution and deformation for
Fuchsian systems, J. Lond. Math. Soc. 76 (2007) 438-450.

9] K. Inoue, K. Shinomiya and T. Suzuki, Higher order Painlevé sys-

tem of type DSI)H and monodromy preserving deformation, Preprint

(arXiv:1011.0276).

[10] M. Jimbo and H. Sakai, A g-analog of the sixth Painlevé equation, Let.
Math. Phys. 38 (1996) 145-154.

[11] N. M. Katz, Rigid Local Systems, Annals of Mathematics Studies 139
(Princeton University Press, 1995).

[12] H. Kawakami, Private communication.

[13] T. Kikuchi, T. Tkeda and S. Kakei, Similarity reduction of the modified
Yajima-Oikawa equation, J. Phys. A: Math. Gen. 36 (2003) 11465-11480.

[14] S. Kakei and T. Kikuchi, Affine Lie group approach to a derivative
nonlinear Schrodinger equation and its similarity reduction, Int. Math.
Res. Not. 78 (2004) 4181-4209.



208

TAKAO SUZUKI AND KENTA FuJi

[15] S. Kakei and T. Kikuchi, The sixth Painlevé equation as similarity re-
duction of gl; hierarchy, Lett. Math. Phys. 79 (2007) 221-234.

[16] S. Kakei and T. Kikuchi, A g-analogue of gl; hierarchy and ¢-Painlevé
VI, J. Phys. A: Math. Gen. 39 (2006) 12179-12190.

[17] V. G. Kac and D. Peterson, 112 constructions of the basic representation
of the roop group of Eg, In Symposium on Anomalies, Geometry ans
Topology, ed. W. A. Baedeen and A. R. White (World Scientific, 1985)
276-298.

[18] M. Noumi and Y. Yamada, Higher order Painlevé equations of type Al(l),
Funkcial. Ekvac. 41 (1998), 483-503.

[19] T. Oshima, Classification of Fuchsian systems and their connection prob-
lem, Preprint (arXiv:0811.2916).

[20] T. Suzuki, A class of higher order Painlevé systems arising from inte-
grable hierarchies of type A, Preprint (arXiv:1002.2685).

[21] T. Suzuki, A particular solution of a Painlevé system in terms of the
hypergeometric function ,, 1 F,,, SIGMA 6 (2010) 078.

[22] T. Suzuki, A g-analogue of the Drinfeld-Sokolov hierarchy of type A and
g-Painlevé system, Preprint (arXiv:1105.4240).

[23] H. Sakai, Isomonodromic deformation and 4-dimensional Painlevé type
equations, UTMS 2010-17 (Univ. of Tokyo 2010) 1-21.

[24] Y. Sasano, Higher order Painlevé equations of type Dl(l), RIMS
Koukyuroku 1473 (2006) 143-163.

[25] T. Tsuda, From KP/UC hierarchies to Painlevé equations, Preprint
(arXiv:1004.1347).

[26] T. Tsuda, UC hierarchy and monodromy preserving deformation, MI
Preprint Series 7 (Kyushu Univ., 2010) 1-31.

[27] T. Tsuda, Hypergeometric solution of a certain polynomial Hamiltonian
system of isomonodromy type, Quart. J. Math., in press.



