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Abstract

It is known that Yang–Baxter sigma models provide a systematic way to study integrable deformations of 
both principal chiral models and symmetric coset sigma models. In the original proposal and its subsequent 
development, the deformations have been characterized by classical r-matrices satisfying the modified clas-
sical Yang–Baxter equation (mCYBE). In this article, we propose the Yang–Baxter sigma models based 
on the classical Yang–Baxter equations (CYBE) rather than the mCYBE. This generalization enables us 
to utilize various kinds of solutions of the CYBE to classify integrable deformations. In particular, it is 
straightforward to realize partial deformations of the target space without loss of the integrability of the 
parent theory.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In the recent years, it has been an intriguing subject to consider integrable deformations of 
type IIB superstring on the AdS5 × S5 background (which is often abbreviated to the AdS5 × S5

superstring). Such directions would be important to reveal the underlying common dynamics of 
the AdS/CFT correspondence [1].
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In the duality between the AdS5 × S5 superstring and the N = 4 super Yang–Mills theory in 
four dimensions, the integrability is recognized to play important roles (for a comprehensive re-
view, see [2]). On the string-theory side, the classical integrability was argued by constructing the 
Lax connection on the world-sheet [3]. The existence of the Lax pair is based on the Z4-grading 
property of the supercoset of the AdS5 × S5 superstring action [4]. On the gauge-theory side, it 
was shown that the one-loop planar dilatation operator for composite operators of adjoint scalar 
fields is mapped to an SO(6) integrable spin-chain Hamiltonian [5]. This was only the tip of an 
iceberg of the whole integrable structure behind the AdS/CFT correspondence.

While, the underlying fundamental principle of the AdS/CFT duality has not been completely 
understood yet. In order to gain further insights for this issue, we expect that deformations of 
the integrable structures appearing in the AdS/CFT would be a clue to reveal it. For instance, 
introducing some deformation parameters enables us to take various limits of them. By doing 
so, we are able to discuss a family of dualities with keeping the integrable structure. One of 
such attempts is a q-deformation of the dynamical spin-chain model, which possesses a cen-
trally extended su(2|2) symmetry [6]. The whole symmetry algebra is naturally enhanced to an 
infinite-dimensional quantum affine algebra [7].

From the AdS/CFT point of view, it is desirable to figure out similar integrable deforma-
tions of the AdS5 × S5 string action. However, in comparison to deformations of a quantum 
integrable model with a manifest algebraic symmetry, it is not so obvious to realize those of 
an integrable classical filed theory. This difficulty has been quite alleviated by a notion of the 
Yang–Baxter sigma models introduced by Klimcik, which are integrable deformations of prin-
cipal chiral models [8–10]. In this description, integrable deformations are characterized by 
R-operators satisfying the modified classical Yang–Baxter equations (mCYBE). After these re-
markable works, Delduc, Magro and Vicedo generalized the formulation to purely bosonic coset 
sigma models [11] and finally succeeded to an integrable deformation of the AdS5 ×S5 string ac-
tion [12,13]. This deformation could be regarded as a classical analogue of q-deformation of Lie 
algebras [14–16] because it is based on the Drinfeld–Jimbo type classical r-matrix and, indeed, 
the Poisson symmetry algebra is a quantum group associated with the superconformal algebra, 
Uq(psu(2, 2|4)) [13]. The resulting deformed metric and NS–NS two-form are explicitly derived 
in [17].

On the other hand, an alternative integrable deformation of AdS5 × S5 has been proposed 
in [18], where deformations are characterized by classical r-matrices satisfying the classical 
Yang–Baxter equation (CYBE) rather than the mCYBE.1 Hence, this is a natural generalization 
of Yang–Baxter deformations of the AdS5 × S5 superstring [12,13]. There are two important 
aspects of the deformations based on the CYBE in comparison to the mCYBE. Firstly, the CYBE 
allows various kinds of the skew-symmetric constant solutions, which are convenient in studying 
the deformations. Secondary, it is possible to consider partial deformations of the target space. 
The two properties of the CYBE are significant in terms of applicability because the present 
formulation provides a systematic way to investigate a large class of integrable deformations by 
using solutions of the CYBE.

In fact, as remarkable examples of deformations of CYBE-type, the Lunin–Maldacena–Frolov 
backgrounds [21,22] and the gravity duals of non-commutative gauge theories [23,24] have been 
successfully recovered [25,26]. The classical integrability of these backgrounds automatically 
follows from the construction. Based on these observations, it seems likely that the space of 

1 Another type of deformation is also proposed in [19,20].
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solutions of the CYBE may be identified with the moduli space of a certain class of solutions of 
type IIB supergravity. It is referred as to the gravity/CYBE correspondence (for a short review, 
see [27]). In fact, the full supergravity solution [28] associated with a deformation argued in [18]
is also obtained by a chain of string dualities such as TsT-transformations and S-dualities [29]. 
The deformation technique is also applicable to a Sasaki–Einstein manifold T 1,1, because it 
is described as a coset [30]. The resulting deformed background agrees with the one obtained 
in [21,31].

In this article, inspired by these developments in the AdS5 ×S5 superstring, we will show that 
integrable deformations based on the CYBE work also for bosonic principal chiral models. More 
precisely, our main statement is the following. Let an R-operator R be a solution of the CYBE. 
Then the classical action of the deformed Yang–Baxter sigma model is given by

S = −1

2

∞∫
−∞

dτ

2π∫
0

dσ Tr

(
(g−1∂−g)

1

1 − ηR
(g−1∂+g)

)
.

Here g is a G-valued function on the string world-sheet with the coordinates τ and σ , where G
is a Lie group and ∂± = ∂τ ± ∂σ are derivatives with respect to the light-cone coordinates. The 
parameter η measures the associated deformation. Note that the model is reduced to a principal 
chiral model when η = 0. Then, this deformed model has the following Lax pair:

L±(λ) = 1

1 ± λ

(
1 − ληR

1 ± ηR

)
(g−1∂±g), (1.1)

where λ ∈ C is a spectral parameter. Thus, the resulting deformed model is also classically inte-
grable. A similar generalization is also possible for bosonic coset sigma models, as explained in 
the main part of this article.

This article is organized as follows. In Section 2, we generalize Yang–Baxter sigma models 
and define deformed principal chiral models based on the CYBE. The Lax pair is also presented. 
In Section 3, we argue a similar generalization for coset sigma models. In Section 4, we explain a 
multi-parameter generalization of CYBE-type. Section 5 is devoted to conclusion and discussion. 
Appendix A explains in detail a derivation of equation of motion of the deformed coset sigma 
models. We also present some examples of mCYBE-type deformations in Appendix B.

2. Integrable deformations of principal chiral models

In this section we shall discuss integrable deformations of principal chiral models. In Sec-
tion 2.1, after recalling the definition of the Yang–Baxter sigma models based on the modified 
classical Yang–Baxter equation (mCYBE) [8,9], we show that the formulation can naturally be 
generalized for the standard classical Yang–Baxter equation (CYBE). Then the Lax pair is ex-
plicitly presented. Finally we demonstrate an example in Section 2.2.

2.1. Yang–Baxter sigma models

Definition of the models Let G be a Lie group and g be the associated Lie algebra. The action 
of the Yang–Baxter sigma models introduced by [8–10] is given by

S = −1

2
(γ αβ − εαβ)

∞∫
−∞

dτ

2π∫
0

dσ Tr

(
Aα

1

1 − ηR
Aβ

)
. (2.1)
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Here ξα = (ξ τ , ξσ ) = (τ, σ) are coordinates of the two-dimensional world-sheet. We will work 
with the flat metric γ αβ = diag(−1, 1) in the conformal gauge. Then εαβ is the skew-symmetric 
tensor normalized as ετσ = −εστ = 1. The left-invariant one-form Aα = g−1∂αg is written in 
terms of g(τ, σ) ∈ G and Aα is a g-valued function. The trace is computed over the fundamental 
representation of g. A constant parameter η measures a deformation of the model. When η = 0, 
the action (2.1) is nothing but that of the G-principal chiral models.

An important ingredient is a classical r-matrix denoted by R, which is an R-linear operator 
R : g → g and satisfies the (modified) classical Yang–Baxter equations ((m)CYBE):

[R(X),R(Y )] − R([R(X),Y ] + [X,R(Y )]) = ω[X,Y ] with ω = ±1,0, (2.2)

where X, Y ∈ g. When ω = 1 (or −1), the R-operator satisfying (2.2) is called non-split (or split) 
type (respectively). In particular, when ω = 0, Eq. (2.2) is reduced to the classical Yang–Baxter 
equation (CYBE). We assume that the R-operator does not depend on the spectral parameter and 
it is skew-symmetric:

Tr(R(X)Y ) = −Tr(XR(Y )) for X,Y ∈ g. (2.3)

Note that a classical r-matrix in the tensorial notation is associated with an R-operator by 
tracing out the second entry,

R(X) = Tr2[r12(1 ⊗ X)] ≡
∑

i

(
ai Tr(biX) − bi Tr(aiX)

)
for X ∈ g, (2.4)

where the r-matrix is denoted symbolically as

r12 =
∑

i

ai ∧ bi ≡
∑

i

(
ai ⊗ bi − bi ⊗ ai

)
with ai, bi ∈ g. (2.5)

For later convenience, we introduce the light-cone expressions of Aα like

A± = Aτ ± Aσ . (2.6)

With these notations, the Lagrangian of the action (2.1) is recast into a simple form:

L = 1

2
Tr (A−J+) = 1

2
Tr (A+J−) where J± := 1

1 ∓ ηR
A±. (2.7)

Equation of motion To obtain the equation of motion, let us take a variation of the Lagrangian 
(2.7). Defining a variation of g ∈ G as δg = gε with an infinitesimal parameter ε, the following 
relation is derived:

δAα = ∂αε + [Aα, ε]. (2.8)

Then, the variation of (2.7) is evaluated as δL = − Tr(Eε) with E defined by

E := ∂+J− + ∂−J+ − η([R(J+), J−] + [J+,R(J−)]). (2.9)

Thus, the equation of motion turns out to be E = 0.
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Zero-curvature condition The next task is to rewrite the zero-curvature condition of A± =
g−1∂±g in terms of the deformed current J±. For this purpose, let us introduce the following 
quantity:

Z := ∂+A− − ∂−A+ + [A+,A−]. (2.10)

By definition of Aα , the zero-curvature condition is nothing but Z = 0. Plugging A± = (1 ∓
ηR)J± with the above definition (2.10), we obtain the following expression,

Z = ∂+J− − ∂−J+ − η([R(J+), J−] − [J+,R(J−)])
+ [J+, J−] − η2YBE(J+, J−) + ηR(E) (2.11)

where the left-hand-side of the CYBE (2.2) is denoted as

YBE(X,Y ) := [R(X),R(Y )] − R([R(X),Y ] + [X,R(Y )]). (2.12)

When the R-operator is a solution of the (m)CYBE (2.2), the quantity Z becomes

Z = ∂+J− − ∂−J+ − η([R(J+), J−] − [J+,R(J−)])
+ (1 − η2ω)[J+, J−] + ηR(E). (2.13)

Lax pair A novel feature of the Yang–Baxter sigma models (2.1) is that there exists the Lax 
pair,

L±(λ) =
(

1 ∓ η2ωλ

1 ± λ
∓ ηR

)
J± = 1

1 ± λ

(
1 ∓ ηλ(ηω ± R)

1 ± ηR

)
A± (2.14)

with a spectral parameter λ ∈ C. Indeed, the equation of motion E = 0 and the zero-curvature 
condition Z = 0 are equivalent to the flatness condition of the Lax pair L±(λ):

∂+L−(λ) − ∂−L+(λ) + [L+(λ),L−(λ)] = 0. (2.15)

Thus, the models defined in (2.1) are classically integrable in the sense of kinematical integrabil-
ity.

It should be emphasized that the Lax pair exists not only for ω = 1 [8,9] but also for ω =
−1 (split-type) and ω = 0 (CYBE). In particular, when the R-operator satisfies the CYBE with
ω = 0, the Lax pair in (2.14) turns out to be

L±(λ) =
(

1

1 ± λ
∓ ηR

)
J± = 1

1 ± λ

(
1 − ληR

1 ± ηR

)
A±. (2.16)

This is nothing but the Lax connection given in (1.1). Note that, when η = 0, it reduces to the 
well-known Lax pair [32] of principal chiral models,

L±(λ) = A±
1 ± λ

. (2.17)

Let us prove the relation (2.15) is equivalent with the equation of motion E = 0 and the 
zero-curvature condition Z = 0 by a constructive way. In order to do this, we adopt the following 
ansatz (see also [8,9]):

L±(λ) =
(

F ± Gλ

1 ± λ
∓ ηR

)
J±. (2.18)
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Here it is supposed that the unknown variables F and G do not depend on neither spectral 
parameter λ nor the world-sheet coordinates (τ, σ ). Under the ansatz (2.18), the flatness condition 
(2.15) can be rewritten as

0 = ∂+L−(λ) − ∂−L+(λ) + [L+(λ),L−(λ)]
= 1

1 − λ2

(
FZ + (F − 1)(1 + η2ω − ηR(E))[J+, J−]) + λ

1 − λ2
(F − G)E

− λ2

1 − λ2

(
GZ + (G − 1)(G + η2ω − ηR(E))[J+, J−]). (2.19)

Provided that the equation of motion E = 0 and the zero-curvature condition Z = 0 hold, the 
possible values of F and G are obtained as follows:

F = 1 and G = 1, −η2ω. (2.20)

Note that, when F = G = 1, the ansatz (2.18) is nothing but A± itself. Thus, the Lax pair with λ
corresponds to the case that F = 1 and G = −η2ω. In fact, it agrees with the Lax pair presented 
in (2.14).

Inversely, given that the Lax pair (2.14) is flat, one can readily see that E = Z = 0. Thus, this 
completes the proof.

2.2. Example: 3D Schrödinger sigma models

Let us see an example of the deformed principal chiral models in (2.1). This is a deforma-
tion of SL(2; R) 
 AdS3 based on an r-matrix satisfying the CYBE with ω = 0 rather than the 
mCYBE.2 This model is defined on a three-dimensional Schrödinger spacetime [33–35] and 
hence it is often called 3D Schrödinger sigma model. The classical integrable structure of this 
model has been discussed in [36,37].

Let E, F, H be the generators of sl(2; R) satisfying the relations,

[F,E] = H, [H,E] = E, [H,F ] = −F. (2.21)

With th generators, it is easy to see that the following classical r-matrix,

r12 = H ∧ F = H ⊗ F − F ⊗ H, (2.22)

satisfies the CYBE in (2.2) with ω = 0. We refer the r-matrix of this type as to Jordanian-type
because it has non-zero Cartan charges. Then, we will find that the r-matrix (2.22) yields sigma 
models defined on the 3D Schrödinger geometry:

ds2 = −2dx+dx− + dz2

z2
− η2(dx+)2

4z4
, (2.23)

where η is a deformation parameter. Note that the scalar curvature of this metric is equal to that 
of AdS3, namely,

R = −6. (2.24)

In order to derive the deformed metric (2.23) from the Jordanian r-matrix (2.22), we use the 
fundamental representation of sl(2; R),

2 For an example of the mCYBE-type deformation, see Appendix B.1.
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E = 1√
2

(0 1

0 0

)
, F = −1√

2

(
0 0

1 0

)
, H = 1

2

(
1 0

0 −1

)
. (2.25)

Using these matrices, we parametrize an SL(2; R) group element as

g = e2x+Ee2(log z)H e2x−F . (2.26)

Then, the left-invariant one-form A± = g−1∂±g is evaluated as

Aα = AE
α F + AF

α E + AH
α H (2.27)

with the coefficients

AE± = 2∂±x− + 4x−(x−∂±x+ − z∂±z)

z2
,

AF± = 2∂±x+

z2
,

AH± = 2(z∂±z − 2x−∂±x+)

z2
. (2.28)

Next, to compute the deformed current J±, it is necessary to figure out the action of the linear 
R-operator associated with the Jordanian r-matrix (2.22). Taking the trace over the second sites, 
the R-operator and its transformation law turn out to be

R(X) = Tr2[r12(1 ⊗ X)] for X ∈ sl(2;R),

�⇒ R(E) = −1

2
H, R(H) = −1

2
F, R(F) = 0. (2.29)

In particular, note that the R-operator is nilpotent; R3 = 0. This property enables us to compute 
the current explicitly as follows:

J± = 1

1 ∓ ηR
A± = (1 ± ηR + η2R2)A±

=
(

AE± ∓ η

2
AH± + η2

4
AF±

)
F +

(
AH± ∓ η

2
AF±

)
H + AF±E. (2.30)

Finally, one can rewrite the Lagrangian as

L = 1

2
Tr[A−J+]

= −γ αβ

(
−2∂αx+∂βx− + ∂αz∂βz

z2
− η2∂αx+∂βx+

4z4

)
− ηεαβ∂αx+∂β

(
1

2z2

)
. (2.31)

The last term coupled with the anti-symmetric tensor is total derivative, and hence it can be 
omitted. Indeed, this is nothing but a non-linear sigma model defined on the 3D Schrödinger 
spacetime (2.23). The classical integrability of this model follows automatically because the Lax 
pair is explicitly obtained by plugging (2.29) with the expression (2.16).

It would be interesting to try to reveal the relation between the above construction and the 
coset construction argued in [38]. The symmetric two-form discussed in [38] would possibly be 
related to the classical r-matrix (2.22).
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3. Integrable deformations of coset sigma models

In the next, we will extend the previous argument on deformed principal chiral models to 
purely bosonic sigma models defined on symmetric cosets. This is a natural generalization 
of [11].3

3.1. Yang–Baxter deformations of symmetric cosets

Symmetric cosets Recall first the definition of symmetric cosets. Let G be a Lie group and H be 
a subgroup of G. The associated Lie algebras of G and H are denoted by g and g(0), respectively. 
The Lie algebra g is a direct sum of g(0) and its complementary space g(1) as a vector space:

g = g(0) ⊕ g(1). (3.1)

Then, the homogeneous space G/H is called symmetric space if g(0) and g(1) satisfy the follow-
ing Z2-grading property,

[g(0),g(0)] ⊂ g(0), [g(0),g(1)] ⊂ g(1), [g(1),g(1)] ⊂ g(0). (3.2)

The pair (g(0), g(1)) satisfying the above property is often referred as to symmetric pair. It is 
convenient to introduce a projector to the subspace g(1) by

P : g −→ g(1). (3.3)

Definition of the coset models Yang–Baxter deformations of symmetric coset sigma models 
have been introduced in [11] and the action is given by

S = −1

2
(γ αβ − εαβ)

∞∫
−∞

dτ

2π∫
0

dσ Tr

(
AαP

1

1 − ηRg ◦ P
Aβ

)
. (3.4)

The coset projector P is given in (3.3) and the dressed R-operator Rg is defined by

Rg(X) ≡ g−1R(gXg−1)g with g ∈ G. (3.5)

Here η is a deformation parameter. The action is reduced to that of the undeformed coset sigma 
model when η = 0.

By using the light-cone notation (2.6), the Lagrangian can be rewritten as

L = 1

2
Tr

(
A−P(J̃+)

) = 1

2
Tr

(
A+P(J̃−)

)
, (3.6)

where we have introduced the deformed current,

J̃± := 1

1 ∓ ηP ◦ Rg

A±. (3.7)

Equation of motion The equation of motion of the model (3.6) is given by Ẽ = 0 where

Ẽ := ∂+P(J̃−) + ∂−P(J̃+) + [J̃+,P (J̃−)] + [J̃−,P (J̃+)]. (3.8)

For the detail of the derivation, see Appendix A.

3 For an example of the mCYBE-type deformation of symmetric cosets, see Appendix B.2.
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Zero-curvature condition By definition of the left-invariant one-form Aα = g−1∂αg, it satisfies 
the zero-curvature condition Z̃ = 0, where

Z̃ := ∂+A− − ∂−A+ + [A+,A−]. (3.9)

Plugging the relation A± = (1 ∓ ηP ◦ Rg)J̃± with the above expression, one can recast it into 
the following form,

Z̃ = ∂+J̃− − ∂−J̃+ + [J̃+, J̃−] + ηRg(Ẽ) + η2 YBEg(P (J̃+),P (J̃−)). (3.10)

Here we have used the bookkeeping notation:

YBEg(X,Y ) := [Rg(X),Rg(Y )] − R([Rg(X),Y ] + [X,Rg(Y )]). (3.11)

When the R-operator satisfies the (m)CYBE:

YBEg(X,Y ) = ω[X,Y ], (3.12)

the expression of Z̃ further reduces to

Z̃ = ∂+J̃− − ∂−J̃+ + [J̃+, J̃−] + ηRg(Ẽ) + η2ω[P(J̃+),P (J̃−)]. (3.13)

Lax pair We are ready to construct the Lax pair of the model (3.6). Indeed, both the equation 
of motion Ẽ = 0 and the zero-curvature condition Z̃ = 0 are equivalent to the flatness condition 
of the Lax pair,

∂+L̃−(λ) − ∂−L̃+(λ) + [L̃+(λ), L̃−(λ)] = 0, (3.14)

where L̃±(λ) is defined as

L̃±(λ) ≡ J̃
(0)
± + λ±1

√
1 + η2ωJ̃

(1)
± . (3.15)

It should be noted that the above Lax pair is flat not only for ω = 1 (split type) [11] but also 
ω = −1 (non-split type) and ω = 0 (CYBE-type). In particular, when the R-operator satisfies the 
CYBE with ω = 0, the Lax pair (3.15) becomes

L̃±(λ) = J̃
(0)
± + λ±1J̃

(1)
± . (3.16)

Interestingly, this is of the same form with the Lax pair of the undeformed coset sigma model, 
up to a formal replacement A± → J̃±.

To find out the Lax connection (3.15), we start with the following ansatz,

L̃±(λ) = J̃
(0)
± + λ±1G̃J̃

(1)
± . (3.17)

Here we suppose that the unknown factor G̃ does not depend on neither the spectral parameter 
λ nor the world-sheet coordinates (τ, σ ). Under this ansatz, the flatness condition (3.14) can be 
rewritten as

0 = ∂+L̃−(λ) − ∂−L̃+(λ) + [L̃+(λ), L̃−(λ)]
= −G̃(∂−J̃

(1)
+ − [J̃ (1)

+ , J̃
(0)
− ])λ

+ G̃(∂+J̃
(1)
− + [J̃ (0)

+ , J̃
(1)
− ])λ−1

+ ∂+J̃
(0)
− − ∂−J̃

(0)
+ + [J̃ (0)

+ , J̃
(0)
− ] + G̃2[J̃ (1)

+ , J̃
(1)
− ]. (3.18)
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On the other hand, due to the symmetric property (3.2), the equation of motion Ẽ = 0 and the 
zero-curvature condition Z̃ = 0 are equivalent with the following set of the three equations:

0 = ∂−J̃
(1)
+ − [J̃ (1)

+ , J̃
(0)
− ], (3.19)

0 = ∂+J̃
(1)
− + [J̃ (0)

+ , J̃
(1)
− ], (3.20)

0 = ∂+J̃
(0)
− − ∂−J̃

(0)
+ + [J̃ (0)

+ , J̃
(0)
− ] + (1 + η2ω)[J̃ (1)

+ , J̃
(1)
− ]. (3.21)

Comparing these relations with (3.18), one can find the following relation,

G̃ = ±
√

1 + η2ω. (3.22)

The overall sign does not matter because it can be absorbed by the redefinition of the spectral 
parameter λ. When the plus signature is adopted, the ansatz (3.17) agrees with the Lax pair (3.15).

3.2. Twist operator

From the expression (3.13), it should be noted that the deformed current J̃± is also flat if the 
equation of motion is satisfied Ẽ = 0 and the R-operator is a solution of the CYBE with ω = 0:

Z = ∂+J̃− − ∂−J̃+ + [J̃+, J̃−] = 0. (3.23)

In other words, the current J̃± is on-shell flat current regarding the CYBE-type deformation. 
Hence, one may expect that there exists a group element F ∈ G, which we call twist operator, 
such that the deformed current is expressed as

J̃± = g̃−1∂±g̃ with g̃ ≡F−1g. (3.24)

With this notation, the flatness of J± is obvious. In the following, we will concretely construct 
such a twist operator.

For this purpose, we suppose that the sigma model (3.4) is defined on an infinitely extended 
world-sheet parametrized by σ ∈ (−∞, +∞), instead of a cylinder:

S = −1

2
(γ αβ − εαβ)

∞∫
−∞

dτ

∞∫
−∞

dσ Tr

(
AαP

1

1 − ηRg ◦ P
Aβ

)
. (3.25)

Then the field g and the current Aα are also supposed to obey the following boundary conditions 
on the world-sheet,

g(σ = ±∞) = const. �⇒ Aα(σ = ±∞) = 0. (3.26)

Let us next consider the gauge transformation of J± defined by

J̃
g
± ≡ gJ̃±g−1 − ∂±gg−1 ⇐⇒ ∂± + J̃

g
± ≡ g(∂± + J̃±)g−1, (3.27)

which is explicitly calculated as

J̃
g
± = g(J̃± − A±)g−1 = g

( ±ηRg ◦ P

1 ∓ ηRg ◦ P
A±

)
g−1 = ±ηR(gP (J̃±)g−1). (3.28)

Because the current J̃± is on-shell flat current as we have seen in (3.23), the gauge transformed 
current J̃ g

± is also flat. By taking account of the boundary condition (3.26), this observation leads 
us to introduce the following twist operator by
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F(σ, τ ) ≡ Pexp
[
−

σ∫
−∞

dσ J̃ g
σ

]
K, (3.29)

where K ∈ G is a constant element and does not depend on the world-sheet variables (τ, σ).4

By the definition, it is easily shown that

J̃
g
± = −∂±FF−1. (3.30)

Plugging this expression with (3.27), one can obtain the following relation,

J̃± = −g−1(∂±FF−1)g + g−1∂±g = (F−1g)−1∂±(F−1g). (3.31)

This is indeed the desired form in (3.24).

4. Multi-parameter deformations based on the CYBE

One may expect a generalization of integrable deformations based on the CYBE to the multi-
parameter case. An easy way of doing this is to notice the following fact.

Let rA
12 and rB

12 be solutions of the CYBE with ω = 0. Suppose that they commute each other; 
[rA

ij , rB
kl ] = 0 for i, j, k, l ∈ {1, 2, 3}. Then, a linear combination of the r-matrices defined as

r
(α,β)

12 ≡ α rA
12 + β rB

12 (α,β ∈C), (4.1)

is also a solution of the CYBE. As a matter of course, the associated linear R-operator R(α,β)

(2.4) satisfies the CYBE with ω = 0 in (2.2).
Plugging the R-operator R(α,β) with the action (2.1) (or (3.4)), one can obtain a two-parameter 

integrable deformation of principal chiral models (or coset sigma models, respectively).5 Repeat-
ing this step, it is easy to realize further multi-parameter deformations.

5. Conclusion and discussion

In this article, we have shown that the Yang–Baxter sigma models introduced in [8,9] can 
naturally be extended to the CYBE case. The deformed model is defined by (2.1) and the Lax 
pair of the CYBE-type is obtained in (2.16). We have also argued a generalization to symmetric 
coset sigma models as in [11]. In this case, the action is given in (3.4) and the Lax pair is given 
in (3.16).

As mentioned in Introduction, these generalizations would be important from the viewpoint 
of applications because the CYBE has a wider class of the skew-symmetric constant solutions in 
general rather than the mCYBE. In particular, partial deformations of the target space manifestly 
preserve the classical integrability. Remarkably, multi-parameter generalizations are straightfor-
ward by following the technique explained in Section 4.

As a future direction, it would be interesting to consider a similar generalization for a two-
parameter deformation of the principal chiral model, which is called bi-Yang–Baxter sigma model

4 The choice of a constant element K would be crucial to find out the symmetry algebra of the deformed model. 
A suitable fixing of the matrix K for the 3D Schrödinger sigma model has been argued in [37].

5 Apparently, there are three deformation parameters, α, β and η, in (2.1) or (3.4). In the present case, however, η is 
regarded as the overall factor of the R-operator and can be absorbed by redefinition of α, β . Hence, two of them are the 
independent deformation parameters.
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[10]. In the recent progress, this formulation has been argued for a superstring theory on an 
AdS3 × S3 × M4 background [39,40].
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Appendix A. Derivation of the equation of motion (3.8)

In this appendix, we shall derive the equation of motion (3.8) for the deformed coset model.
The variation of the undeformed current is computed as

δA± = ∂±ε + [A±, ε] under δg = gε. (A.1)

To evaluate the variation of the deformed current δJ̃±, we need some preparation. Firstly, by the 
definition of the dressed R-operator Rg in (3.5), one can derive the relation,

δ(Rg ◦ P)(X) = (Rg ◦ P)(δX) + [(Rg ◦ P)(X), ε] − Rg([P(X), ε]), (A.2)

where X is an arbitrary field and P is the coset projector defined in (3.3). Secondary, using this 
relation repeatedly, one can show that

δ
(
(Rg ◦ P)n(X)

) = (Rg ◦ P)n(δX) +
n−1∑
k=0

(Rg ◦ P)k[(Rg ◦ P)n−k(X), ε]

−
n−1∑
k=0

(Rg ◦ P)kRg([P ◦ (Rg ◦ P)n−1−k(X), ε]) (A.3)

for a natural number n. Thirdly, multiplying (±η)n on both hand sides of the above relation and 
summing up n from 0 to ∞, the following expression is obtained,

δ

(
1

1 ∓ ηRg ◦ P
X

)
= 1

1 ∓ ηRg ◦ P

×
(

δX +
[ ±ηRg ◦ P

1 ∓ ηRg ◦ P
X,ε

]
∓ ηRg

[
P

1

1 ∓ ηRg ◦ P
X,ε

])
.

(A.4)

Finally, substituting A± for X, we have derived the variation of J̃±,

δJ̃± = 1

1 ∓ ηRg ◦ P

(
∂±ε + [J̃±, ε] ∓ ηRg[P(J̃±), ε]). (A.5)

Here we have used the definition of the deformed current in (3.7).
We are now ready to evaluate the variation of the action in (3.4). Using the above formula 

(A.5) and noting the skew-symmetric property of the R-operator (2.3), one can find the following 
relation:

δL = −1

2
Tr

[(
∂+P(J̃−) + ∂−P(J̃+) + [J̃+,P (J̃−)] + [J̃−,P (J̃+)])ε]. (A.6)
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This is nothing but the equation of motion Ẽ = 0 with Ẽ given in (3.8).

Appendix B. Examples

Here we present examples of deformations based on the mCYBE for both principal chiral 
models and symmetric coset sigma models.

B.1. A squashed sigma model

We consider a sigma model defined on a deformed S3, called squashed three-sphere. This 
model is referred as to a squashed sigma model or an anisotropic principal chiral model in 
[41–43]. The classical integrable structure has been studied in [44–47].

Let T ±, T 3 be the generators of su(2) satisfying the relations:

[T 3, T ±] = ±iT ±, [T +, T −] = iT 3. (B.1)

Now we consider the following classical r-matrix,

r12 = 2iT + ∧ T − = 2i(T + ⊗ T − − T − ⊗ T +). (B.2)

We refer this type of r-matrix as to Drinfeld–Jimbo type. The associated R-operator satisfies 
the mCYBE (2.2) with ω = 1 (split-type). The resulting deformed spacetime turns out to be a 
squashed three-sphere:

ds2 = 1

4

(
dθ2 + sin2 θdφ2 + (1 + η2)(dψ + cos θdφ)2

)
(B.3)

with a deformation parameter η. The scalar curvature is

R = 6 − 2η2. (B.4)

To derive the metric of the squashed S3 in (B.3) from the r-matrix of Drinfeld–Jimbo type 
(B.2), we introduce the fundamental representation of su(2) as follows:

T 1 = − i

2

(
0 1

1 0

)
, T 2 = − i

2

(
0 −i

i 0

)
, T 3 = − i

2

(
1 0

0 −1

)
. (B.5)

It is also convenient to introduce the light-cone notation,

T + = T 1 − iT 2

√
2

= −i√
2

(
0 1

0 0

)
, T − = T 1 + iT 2

√
2

= −i√
2

(
0 0

1 0

)
. (B.6)

By using these generators, an SU(2) group element g can be represented by

g = eφT 3
eθT 2

eψT 3
. (B.7)

Then, the left-invariant current reads

A± = g−1∂±g = A+±T − + A−±T + + A3±T 3 (B.8)

with the coefficients
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A−± = i√
2
e−iψ (∂αθ + i∂αφ sin θ),

A+± = −i√
2
eiψ(∂αθ − i sin θ∂αφ),

A3± = ∂αψ + cosφ∂αθ. (B.9)

Let us next evaluate the deformed current J±. Unlike the Jordanian r-matrix in Section 2.2, 
the R-operator of Drinfeld–Jimbo type is not nilpotent but diagonally acts on the Chevalley–Serre 
generators:

R(X) = Tr2[r12(1 ⊗ X)] for X ∈ su(2),

�⇒ R(T ±) = ∓iT ±, R(T 3) = 0. (B.10)

By taking this into account, the deformed current is evaluated as follows:

J± = 1

1 ∓ ηR
A± = 1

1 ± iη
A−±T + + 1

1 ∓ iη
A+±T − + A3±T 3. (B.11)

Finally, with the deformed current J±, the Lagrangian is rewritten as6

L = −1 + η2

2
Tr[A−J+] = −1 + η2

2
Tr[A+J−]

= −γ αβ

4

(
∂αθ∂βθ + sin2 θ∂αφ∂βφ + (1 + η2)(∂αψ + cos θ∂αφ)(∂αψ + cos θ∂αφ)

)

+ εαβ

2
η ∂αφ ∂β(cos θ). (B.12)

Note that the last anti-symmetric term is total derivative and hence it can be dropped off. As a 
result, this is nothing but a sigma model on a squashed three-sphere (B.3).

B.2. A deformed sigma model on SO(4)/SO(3)

The next is a typical example of deformed coset models based on the mCYBE. Here we 
consider a deformation of a symmetric coset representation of S3 
 SO(4)/SO(3). Interestingly, 
the resulting background is different from the deformation of S3 
 SU(2). That is, the resulting 
deformed background depends on the representation of S3.

To describe the Lie algebra so(4) 
 su(2) ⊕ su(2), we prepare two sets of su(2) algebras 
generated by Ai and Bi with i = 1, 2, 3 satisfying the relations:

[Ai,Aj ] = εij
kA

k, [Bi,Bj ] = εij
kB

k, [Ai,Bj ] = 0. (B.13)

Here the structure constants εij
k are totally anti-symmetric and normalized as ε12

3 = 1.
We are concerned here with a classical r-matrix of the Drinfeld–Jimbo type,

r12 = i(A+ ∧ A− + B+ ∧ B−). (B.14)

Here a ∧ b ≡ a ⊗ b − b ⊗ a and we have introduced the following notation,

A± = −iA1 ± A2, B± = −iB1 ± B2. (B.15)

6 Here we have normalized the overall factor in front of the action so that it agrees with (B.3).
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It is easy to see that the associated R-operator is a solution of the mCYBE (2.2) with ω = 1. Thus 
it is of non-split type. The resulting deformed metric turns out to be

ds2 = 1

4

(
dθ2 − η2 sin2 θ(dφ − dψ)2/4

1 + η2 cos2 θ
2

+ sin2 θdφ2 + (dψ + cos θφ)2

)
. (B.16)

This background is not identical with the squashed three spheres (B.3). In fact, the scalar curva-
ture of the above metric is given by

R = 6 + 2η2(1 + η2 cos θ cos2 θ
2 )

1 + η2 cos2 θ
2

. (B.17)

Hence the two backgrounds are not related to each other through a coordinate transformation.
To derive the metric (B.16) from the r-matrix (B.14), we need to recall the symmetric structure 

of so(4) = so(4)(0) ⊕ so(4)(1). These subspaces are spanned by the following generators:

so(4)(0) = span{ J i = Ai + Bi | i = 1,2,3 },
so(4)(1) = span{ Ki = Ai − Bi | i = 1,2,3 }, (B.18)

respectively. Indeed, they enjoy the Z2-grading property (3.2) as follows:

[J i, J j ] = εij
kJ

k, [Ki,J j ] = εij
kK

k , [Ki,Kj ] = εij
kJ

k. (B.19)

Then, the coset projector P : so(4) → so(4)(1) in (3.3) is defined as

P(X) = −K1 Tr[K1X] − K2 Tr[K2X] − K3 Tr[K3X] for X ∈ so(4). (B.20)

Here the trace can be computed on the 4 × 4 fundamental representation of su(2) ⊕ su(2),

A1 = i
2

(
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

)
, A2 = i

2

(
0 i 0 0
−i 0 0 0
0 0 0 0
0 0 0 0

)
, A3 = i

2

(
1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

)
,

B1 = i
2

(
0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

)
, B2 = i

2

( 0 0 0 0
0 0 0 0
0 0 0 i
0 0 −i 0

)
, B3 = i

2

( 0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

)
. (B.21)

In the next, a group element is parametrized as follows:

g = eφA3
eθA2

eψA3 ∈ SU(2) × SU(2). (B.22)

Then, the left-invariant current A± = g−1∂±g reads

A± = (sinψ∂±θ − sin θ cosψ∂±φ)A1 + (cosψ∂±θ + sin θ sinψ∂±φ)A2

+ (∂±ψ + cos θ∂±φ)A3. (B.23)

To evaluate the deformed coset action in (3.4), we need to find the projected deformed current 
P(J̃±) rather than the deformed current in (3.7) itself. The current P(J̃±) is determined by 
solving the following equations:

(1 ∓ ηP ◦ Rg)P (J̃±) = P(A±). (B.24)

Note that these equations are obtained from the definition of the deformed current (3.7) by in-
verting the operator (1 ∓ ηRg ◦ P) and multiplying the projector P from the left.
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Since the above equations (B.24) are valued in so(4)(1), there are three independent equations 
with respect to K1, K2 and K3. Solving the three equations, we obtain the following expression:

P(J̃±) = −1

4(1 + η2 cos2 θ
2 )

[(
((2 + η2 cos2 θ

2 ) cosψ ± η sinψ) sin θ∂±φ

+ 2(±η cos2 θ
2 cosψ − sinψ)∂±θ ± η(±η cos2 θ

2 cosψ − sinψ) sin θ∂±ψ
)
K1

−
(
((2 + η2 cos2 θ

2 ) sinψ ∓ η cosψ) sin θ∂±φ

+ 2(±η cos2 θ
2 sinψ + cosψ)∂±θ ± η(±η cos2 θ

2 sinψ + cosψ) sinψ∂±ψ
)
K2

−
(
((2 + η2) cos θ + η2

2 (1 + cos2 θ))∂±φ

∓ η sin θ∂±θ + 2(1 + η2 cos4 θ
2 )∂±ψ

)
K3

]
. (B.25)

Finally, with the above expression of P(J±), the Lagrangian can be rewritten as

L = −Tr[A+P(J̃−)] = −Tr[A−P(J̃+)]
= −1

4
γ αβ

[
∂αθ∂βθ − η2 sin2 θ(∂αφ − ∂αψ)(∂βφ − ∂βψ)/4

1 + η2 cos2 θ
2

+ sin2 θ∂αφ∂βφ + (∂αψ + cos θ∂αφ)(∂βψ + cos θ∂βφ)

]

− η sin θ

4
(
1 + η2 cos2 θ

2

)εαβ∂αθ(∂βφ − ∂βψ). (B.26)

Note that the anti-symmetric two-form in the last line is total derivative and hence it can be 
ignored. Thus, this metric agrees with (B.16).
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