
Title Numerical and theoretical study of particle saltation on an
obliquely oscillating plate

Author(s) Kobayakawa, Murino; Fujimoto, Ayumi; Sakata, Mitsuhiro;
Yasuda, Masatoshi; Matsusaka, Shuji

Citation Advanced Powder Technology (2014), 25(6): 1854-1859

Issue Date 2014-11

URL http://hdl.handle.net/2433/196048

Right

© 2014 The Society of Powder Technology Japan. NOTICE:
this is the author's version of a work that was accepted for
publication in Advanced Powder Technology. Changes
resulting from the publishing process, such as peer review,
editing, corrections, structural formatting, and other quality
control mechanisms may not be reflected in this document.
Changes may have been made to this work since it was
submitted for publication. A definitive version was
subsequently published in Advanced Powder
Technology,25(6),2014 doi:10.1016/j.apt.2014.07.017

Type Journal Article

Textversion author

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39319823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Numerical and theoretical study of particle saltation on an obliquely oscillating plate 
Murino Kobayakawa, Ayumi Fujimoto, Mitsuhiro Sakata, Masatoshi Yasuda, Shuji Matsusaka* 

 
Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan 
* Corresponding author. E-mail address: matsu@cheme.kyoto-u.ac.jp (S. Matsusaka) 
 

ABSTRACT 

Particle saltation on an obliquely oscillating plate is simulated using a mass-point model that considers 

gravity, fluid resistance, restitution, and friction. The calculated results are in good agreement with results 

obtained experimentally for particles with different diameters and restitutions. A large particle with high 

restitution bounces forward and backward repeatedly, whereas a particle with low restitution only 

bounces forward and consequently has a high transport velocity. The mechanism for the difference in the 

motion of the particles can be explained by taking into account the phase angle of the oscillating plate and 

the impulse during particle collision. 
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1. Introduction 

 

Granular materials subjected to vibration exhibit various unusual behaviors, like convection [1-3], 

bubbling [4-6], segregation [7-9] and vibration-induced air inflow [10]. Particle fluidization under 

vibration has numerous applications, such as fluidized beds [11, 12], conveyors [13-17], micro-feeders 

[18, 19] and evaluation methods for powder flowability [20-22]. 

One-dimensional motion analysis of particles bouncing on an oscillating surface has been investigated 

extensively because they are among the simplest cases of particle fluidization under vibration [23-32]. 

Luck and Mehta studied the dynamic evolution of a bouncing particle as a function of the coefficient of 

restitution [25]. By solving Newton’s equations of motion for each particle, Luding et al. [26, 27] found 

that the transition of a particle column from a fluidized state to a condensed state depends on the vibration 

acceleration, number of particles, and the coefficient of restitution. However, the effects of particle size 

on the fluid state are not fully understood. In industry, a vibrating conveyor, i.e., an obliquely oscillating 

trough inducing two-dimensional motion of a particle bed, is used to transport solid materials. In most 

theoretical studies of this system, the conveying velocity is calculated by assuming that the particle bed is 

a perfectly inelastic mass-point, and fluid resistance is neglected. Gallas et al. [13] and Simsek et al. [17] 

simulated the transport of the particle bed on a vibrating conveyor using a discrete particle model. 

Although many studies on the dynamics of particles under vibration have been conducted, there have 

been few reports on the two-dimensional motion of individual particles. In particular, there have been few 

studies on fine particles, because fine particles exhibit complicated behaviors owing to their adhesive and 
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cohesive forces, and fluid resistance. 

We previously studied the saltation of different-sized particles, from 0.5 to 500 μm in diameter, on an 

obliquely oscillating plate by analyzing images captured by a high-speed microscope camera to examine 

the effect of the diameter of a particle on its motion [33]. The experimental results showed that the 

particles with Dp50 = 500 μm and 50 μm saltated individually on the plate, while particles with Dp50 = 0.5 

μm formed agglomerated particles with Dag50 = 150 μm and the agglomerated particles bounced only 

slightly. Furthermore, particles with Dp50 = 500 μm and 50 μm were transported by repeated bounces with 

motion both forward and backward. The ratio of bounces moving backward to the total bounces 

decreased with decreasing primary particle diameter. The agglomerated particles, on the other hand, 

always bounced forward and consequently had the highest transport velocity among these particles of 

different sizes. The differences in motion of the particles of different sizes can be mainly attributed to 

restitution and fluid resistance. 

In this paper, particle saltation on an obliquely oscillating plate is simulated using a mass-point model 

that considers gravity, fluid resistance, restitution, and friction. As the first step in understanding the 

mechanism for the difference in the motion of the particles, we apply the simple model that considers 

dominant factors. The simulated translational motion of three particles with different diameters and 

coefficients of restitution are compared with the experimental results for Dp50 = 500 μm, 50 μm, and 0.5 

μm. To clarify the mechanism for difference in the motion of these particles, we theoretically analyzed the 

collision probability as a function of the phase angle of the oscillating plate and the impulse exerted on 

the particle during collision. 

 

2. Numerical model 

 

A horizontal substrate is driven by an oblique linear oscillation. The x and y coordinates are defined by 

setting the x-axis and y-axis tangential and normal (upward) to the substrate, respectively. The horizontal 

displacement, xs, and vertical displacement, ys, of the oscillating substrate are given by 

 tAx xs ωsin=  (1) 

 tAy ys ωsin=  (2) 

where Ax and Ay are the horizontal and vertical amplitudes, respectively, ω is the angular velocity (= 2πf, f 

is the frequency), and t is the time. When the plate is moving upward and downward, it is also moving 

forward and backward, respectively, because vibration waves in the two directions are synchronized. The 

equations of motion for a particle during flight are 

 
dx

px
p F

dt
dv

m =  (3) 

 
dyg

py
p FF

dt
dv

m +=  (4) 
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where mp is the mass of the particle, vp is the particle velocity, Fg is the gravity, and Fd is the fluid 

resistance. For large particles, Fd is negligible compared to Fg. For smaller particles, Fd is given by 

 ppd DvF πη3−=  (5) 

where η is the fluid viscosity (1.8×10-5 Pa·s) and Dp is the particle diameter. The relative vertical 

velocities between the particle and the substrate before and after a collision are related by the coefficient 

of restitution, e, i.e., 

 )( 1122 sypysypy vvevv −−=−  (6) 

where vsy is the vertical velocity of the substrate. The subscripts “1” and “2” represent before and after the 

collision, respectively. We assumed that the mass of the substrate is much greater than that of the particle, 

and hence the velocity of the substrate after the collision is equal to that before, 

 12 sysy vv =  (7) 

The horizontal component, Jx, and vertical component, Jy, of the impulse exerted on the particle during 

the collision with the substrate are 

 )( 12 pxpxpx vvmJ −=  (8) 

 )( 12 pypypy vvmJ −=  (9) 

In collisions that involve sliding, we assume sliding is described by Coulomb’s law of friction, resulting 

in the horizontal and vertical components of the impulse being related by the coefficient of friction, μ, 

 yx JJ µ−=  )( 11 sxpx vv >  (10.1) 

 0=xJ  )( 11 sxpx vv =  (10.2) 

 yx JJ µ+=  )( 11 sxpx vv <  (10.3) 

The horizontal rebound velocity of the particle immediately after collision, vpx2, is obtained by 

substituting Eqs. (6)−(9) into Eqs. (10.1)−(10.3): 

 )1)(( 1112 +−−= evvvv pysypxpx µ  )( 11 sxpx vv >  (11.1) 

 12 pxpx vv =  )( 11 sxpx vv =  (11.2) 

 )1)(( 1112 +−+= evvvv pysypxpx µ  )( 11 sxpx vv <  (11.3) 

Here, it is important to note that the tangential component of the relative velocity cannot reverse its 

direction during the collision because sliding stops when this component decreases to zero. Therefore, it 

is physically impossible that vpx2 calculated from Eq. (11.1) is lower than vsx1, and that vpx2 calculated from 

Eq. (11.3) is higher than vsx1. In the critical state, the following equation is employed: 

 12 sxpx vv =  (12) 

The two-dimensional motion of the particle and the substrate can be calculated using Eqs. (1)−(6), (11) 

and (12). The simulation conditions match the experimental conditions in the previous study [33], i.e., Ax 

= Ay = 35 μm and f = 280 Hz for the oscillating substrate, and the parameters of particles are listed in 

Table 1. 
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3. Results and discussion 

3.1. Simulated particle trajectories 

 

Fig. 1 shows the simulated trajectories of particles A, B, and C bouncing on the oscillating plate. Zero 

vertical displacement indicates the center of the oscillating surface. The trajectories are drawn assuming 

zero-radius particles. Circles in this figure denote particle–plate collisions, where the displacements are 

not always zero. The height and direction of each bounce changed depending on the state of the collision. 

Fig. 1(a) shows that particle A had three larger bounces moving forward (solid line) and two smaller 

bounces moving backward (dashed line). The range of bounce height was up to approximately 6 mm and 

the horizontal distance of each bounce was in the range −0.8 – 1.6 mm. Fig. 1(b) shows that particle B 

had four larger forward bounces and one smaller backward bounce. The particle reached a height of 1.7 

mm, and the horizontal distances were in the range −0.1 – 1.0 mm. On comparing Fig. 1 (a) and (b), we 

find that the smaller particle had smaller bounces with asymmetric trajectories because of the effect of 

fluid resistance during flight. In Fig. 1(c), particle C always bounced forward, with a maximum height of 

0.3 mm and the horizontal distances were in the range 0.1 – 0.6 mm. The particle with a low restitution 

bounced only slightly because of larger energy dissipation during collisions.  

 

3.2. Comparison between the simulation and experimental results 

 

The bounce heights and distances distributions obtained from the simulation were compared with 

experimental results [33]. Fig. 2 shows the cumulative distributions of bounce heights obtained from 200 

simulated datasets. The plots indicate previous experimental data for Dp50 = 500 μm, 50 μm and 0.5 μm 

(Dag50 = 150 μm) [33], and lines indicate the simulation results for particle A, B, and C. The height 

distributions of particle A, B, and C had ranges of 0 – 8 mm, 0 – 2 mm, and 0 – 0.3 mm, respectively. The 

range of particle B was lower than that of particle A because of kinetic energy dissipation as a result of 

fluid resistance during flight. Particle C had the lowest heights because of nearly perfect inelastic 

collisions. 

Fig. 3 shows the cumulative distributions of the bounce distances. The distributions of particle A, B, 

and C had ranges of −2 – 5 mm, −0.3 – 1.2 mm, and 0 – 0.6 mm. The ratios of backward bounces to the 

total number of bounces for particle A, B and, C are 0.33, 0.21, and 0, respectively. Lower bouncing 

height decreases horizontal distance due to shorter time intervals between successive collisions. 

The simulation results were in reasonably good agreement with the experimental data, thus the 

numerical model will enable the analysis and better understanding of the particle saltation on the 

obliquely oscillating plate. To better understand the mechanism of forward and backward bounces, we 

need to consider the state of the collision, i.e., the direction of motion of the plate, and the impulse during 

collision. Details are discussed in Section 3.3 and 3.4. 
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3.3. Collision probability depending on the phase angle of the oscillating plate 

 

When the vertical velocity of the incident particle is high enough, the particle can collide with the 

oscillating plate at all phase angles. However, if the vertical incident velocity is less than the downward 

velocity of the moving plate, a collision cannot occur. Thus, a lower incident velocity increases the 

probability of particle collision when the plate is moving upward [23-25,28,33]. 

Fig. 4 shows the cumulative distributions of the vertical incident velocity vpy1, which are obtained from 

200 simulated datasets. The velocity distributions of particle A, B, and C had ranges of 0 – 500 mm/s, 0 – 

180 mm/s, and 0 – 80 mm/s, respectively, and median velocities of 180 mm/s, 100 mm/s, and 50 mm/s. 

Lower restitution at collision and larger effect of the fluid resistance during flight decreases the particle 

velocity. 

To quantitatively analyze the effect of the fluid resistance on the motion for each particle, the ratio of 

the fluid resistance to the gravity was calculated from the median velocity in Fig. 4. Table 2 shows the 

Particle Reynolds number, the fluid resistance, the gravity and the ratio of the fluid resistance to the 

gravity. For particle A, the fluid resistance has the negligible effect compared to the gravity. The effect of 

the resistance acting on particle B is larger due to the smaller particle diameter. The effect for particle C is 

smaller than that for particle B because of the larger particle size and the lower particle velocity. 

The collision probability as a function of the phase angle φ for a one-dimensional vertical oscillating 

plate can be theoretically analyzed for some typical cases [23,24,28,33]. When the vertical velocity of the 

incident particle vpy1 is greater than that of the plate moving downward, the probability density function 

P(φ) for the sinusoidally oscillating plate is expressed by the following equation [23, 33]: 

 





























−= ϕ

ω

π
ϕ cos1

2
1)(

1py

y

v
A

P  ( πϕ 20 << ) (13) 

For vpy1 < Ayω, P(φ) is expressed as [23, 33]: 

 





























−= ϕ

ω

π
ϕ cos1

2
1)(

1py

y

v
A

P  ( 10 ϕϕϕ << ) (14) 

 0=  ( 00 ϕϕ << , πϕϕ 21 << ) 

where φ0 and φ1 are the lower and upper limits of the phase angle range in which a collision can occur. φ0 

and φ1 are determined by 

 ω
ϕπ

y

py

A
v 1

1)2cos( =−  (15) 

 
{ }

ω
ϕπϕϕπϕ

y

py

A
v 1

1010 )2()2sin(sin −+=−+  (16) 

The cumulative distribution function F(φ) of the probability density function P(φ) is obtained from the 

integration of Eqs. (13) or (14) in the region in which collision can occur. For vpy1 > Ayω, F(φ) is 

5 
 



expressed as: 
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For vpy1 < Ayω, F(φ) is expressed as: 

 0)( =ϕF  ( 00 ϕϕ << ) (18) 
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Fig. 5 (a) shows the vertical displacement of the oscillating plate as a function of the phase angle, and 

Fig. 5 (b) shows the cumulative distribution functions. The dashed lines indicate results calculated from 

the theoretical probability model as a parameter of the ratio of vpy1 to Ayω, which were obtained using Eqs. 

(17) and (18). When vpy1 ≥ Ayω, the low vertical incident velocity increases the probability of particle 

collision when plate is moving upward (π/2 < φ < 3π/2). When vpy1 is infinity, F(φ) is proportional to φ 

because the particle can collide with the plate at a constant probability, irrespective of the velocity of the 

oscillating plate. When vpy1 < Ayω, the distribution curve is discontinuous because the particle cannot 

collide with the plate in a particular range of the phase angle.  

The solid lines indicate the distributions of the simulation. Particle A and B collided with the oscillating 

plate at all phase angles, whereas particle C did not collide in the range of 0–3π/4 and 7π/4–2π. The ratios 

of the particle collisions with the plate moving downward to the total collisions for particle A, B, and C 

were 0.33, 0.23, and 0.16, respectively. We observe that particle C with a lower incident velocity has a 

lower collision probability with the plate moving downward. The trend of the simulated results agrees 

with that of the theoretical ones. Therefore, the ratios of the collision are explained by the theoretical 

probability model. 

 

3.4. Impulse exerted on the particle during collision 

 

Fig. 6 shows the cumulative distributions of the rebound horizontal velocities vpx2 obtained from 200 

simulated datasets. The positive and negative values denote forward and backward bounces, respectively. 

The rebound velocity distributions of particles A, B, and C had the ranges of –45 – 62 mm/s, –18 – 62 

mm/s, and 0 – 62 mm/s. Particles A, B, and C had median rebound velocities of 15 mm/s, 19 mm/s, and 

37 mm/s. The ratios of the backward bounces to the total bounces for particle A, B, and C are 0.33, 0.21, 

and 0, respectively. The ranges of the distributions were within the range of the oscillating plate velocity, 

i.e. −62 to 62 mm/s, because the friction force exerted on the particle during collision resisted the relative 

motion between the particle and plate. The particle with higher incident vertical velocity had wider range 

of the rebound horizontal velocity because it collided with the oscillating plate at wider phase range, as 

shown in section 3.3. Details of the difference in the ratios of the backward bounces are discussed below. 
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Table 3 summarizes the ratios of the collisions with the plate moving downward Ndown to the total 

number of collisions Ntotal and the ratios of the backward bounces Nback to the total number of bounces 

Ntotal. For particle A and B, Ndown/Ntotal is equal to Nback/Ntotal, whereas the values for particle C were 

significantly different. This feature can be explained as follows: (i) a higher incident velocity increases 

the vertical component of the impulse, Jy, exerted on a particle during the collision; (ii) the vertical 

impulse directly affects the horizontal component of the impulse, Jx, as seen from Eqs. (10.1) and (10.3), 

and induces a change in the horizontal velocity of the particle after collision; (iii) for particle C, the 

impulse exerted on the particle is, however, too small to reverse its direction owing to its low restitution 

(see Table 1). 

Next, we consider the case of a particle collision that can reverse the horizontal direction of the particle. 

Fig. 7 shows the rebound horizontal velocity vpx2 as a function of the horizontal incident velocity vpx1. 

This calculation was carried out using Eq. (11.1) with vsx = vsy = −30 mm/s and the median values in Fig. 

4 were used for vpy1, showing that particle A, B and C bounce backward where the horizontal incident 

velocities are less than 29, 11, and 3 mm/s, respectively.  

From the analysis of the impulse in this Section and the analysis of the collision probability in Section 

3.3, it is concluded that particle C rarely bounces backward because the particle has a lower collision 

probability with the plate moving backward and even if it collide with the plate moving backward, the 

impulse exerted on the particle is too small to reverse its direction. 

 

3.5. Analysis of transport velocity 

 

Fig. 8 shows the cumulative distributions of the average horizontal velocities during each bounce. The 

plots indicate previous experimental data for Dp50 = 500 μm, 50 μm and 0.5 μm (Dag50 = 150 μm) [33], 

and lines indicate the simulation results for particle A, B, and C. The trend of the simulated results was in 

reasonable agreement with that of the experimental data although there is a slight difference for particle C. 

The horizontal velocity distributions of particle A, B and C had ranges of −45 – 62 mm/s, −13 – 35 mm/s, 

and 0 – 62 mm/s, and median velocities of 15 mm/s, 10 mm/s, and 33 mm/s. From these results, it was 

found that particle C with lower restitution had the highest transport velocity even though the bounces 

were small. 

 Lastly, we compare particle A with particle B. Particle B has a lower ratio of backward bounces and a 

higher median rebound horizontal velocity (Fig. 6). However, the transport velocity of particle B is lower 

than that of particle A in Fig. 8. This is because the effect of the fluid resistance exerted on particle B is 

more than that on particle A. Thus, the transport velocity of particle B is lower. 

  

4. Conclusions 
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The saltation of particles on an obliquely oscillating plate was simulated using a mass-point model that 

considered gravity, fluid resistance, restitution, and friction. The simulated translational motion for three 

particles with different diameters and coefficients of restitution was in good agreement with experimental 

results, proving that a large particle with high restitution was transported by repeated larger bounces and 

with both forward and backward motion, whereas a particle with a low restitution slightly saltated and 

only bounced forward. The differences in the motion can be explained as follows: low restitution during a 

collision and large fluid resistance during flight induce small bounces, and low vertical incident velocities 

cause a low probability of collision with the plate moving downward, hence low impulses exerted on the 

particle during collision. As a result, the horizontal direction of the particle with low restitution does not 

reverse, and consequently the transport velocity becomes higher than that of particles with high 

restitution. 
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Table 1 

Parameters of particles used in the simulation. 

Particle A B C 

Particle diameter Dp (μm) 500 50 150 

Particle density ρ
p (kg/m3) 3900 3900 930 

Coefficient of restitution e (-) 0.9 0.9 0.1 

Coefficient of friction μ (-) 0.1 0.1 0.2 

 

 

Table 2 

Particle Reynolds number, fluid resistance, gravity and ratio of fluid resistance to gravity. 

Particle A B C 

Particle Reynolds number Rep (-) 6.0  0.27  0.50  

Fluid resistance Fd (nN) 16 0.69 1.3 

Gravity Fg (nN) 2500 2.5 16 

Fd / Fg (-) 0.01 0.28 0.08  

 

 

Table 3 

Ratios of the plate moving downward to the total collisions and ratios of the backward bounces to the 

total bounces. 

Particle A B C 

Ndown/Ntotal 0.33 0.23 0.16 

Nback/Ntotal 0.33 0.21 0 
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Figure contents 

 

Fig. 1. Simulated trajectories for (a) particle A, (b) particle B, and (c) particle C. Zero vertical 

displacement indicates the center of the oscillation. Solid and dashed lines indicate bounces moving 

forward and backward, respectively, and circles denote the collision of the particles with the oscillating 

plate. 

 

Fig. 2. Cumulative distributions of bouncing heights. Each distribution curve consists of 200 simulated 

datasets. Plot points indicate experimental data for Dp50 = 500 μm, 50 μm and 0.5 μm (Dag50 = 150 μm) 

[33], and lines indicate simulation results for particle A, B, and C. 

 

Fig. 3. Cumulative distributions of bouncing distances. Each distribution curve consists of 200 simulated 

datasets. Plot points indicate experimental data from the previous study. 

 

Fig. 4. Cumulative distributions of vertical incident velocities obtained from the simulation. 

 

Fig. 5. (a) Vertical displacement of plate as a function of phase angle. (b) Cumulative distribution 

functions of particle collision with the oscillating plate. The dashed lines indicate results calculated from 

the theoretical probability model as a parameter of the ratio of vpy1 to Ayω, which were obtained using Eqs. 

(17) and (18). The solid lines indicate the distributions from the simulation for particles A, B, and C. 

 

Fig. 6. Cumulative distributions of horizontal rebound velocities obtained from the simulation. 

 

Fig. 7. Horizontal rebound velocity vpx2 as a function of the horizontal incident velocity vpx1 determined 

by Eq. (11.1) for vsx = vsy = −30 mm/s, where the vertical incident velocity vpy1 is the median velocity for 

each particle in Fig. 4. 

 

Fig. 8. Cumulative distributions of average horizontal velocities during each bounce obtained from 

simulation. Plot points indicate experimental data from the previous study. 
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