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1. INTRODUCTION

The purpose of our work is to give degree formulae for Grassmann bun-
dles. This article is a summary of a joint paper [4] with Tomohide Tera-
soma.

Let X be a projective variety of dimension n over a field of arbitrary
characteristic, let £ be a vector bundle of rank r on X, let Gx(d,£) be
the Grassmann bundle of corank d subbundles of £ on X with projec-
tion 7 : Gx(d,€) — X, and let 7*€ — Q be the universal quotient
bundle of rank d. Set 6 := ¢;(Q), the first Chern class of Q, whose de-
terminant bundle, det Q, is isomorphic to the pull-back of the tautological
line bundle of Px(A%E) by the (relative) Pliicker embedding over X. In
this article we call 0 the Plicker class of Gx(d,€). The theme discussed
here is how to calculate the self-intersection number of the Pliicker class,
fGX( 4.6) 0~ , which is the degree of Gx(d,£) embedded in the projective
space P(HO(X,AY€)) via the Pliicker embedding if A%€ is very ample,
where N :=dimGx(d, &) = d(r — d) +n.

The result is

Theorem 1.1. Let 6 be the Plicker class of Gx(d,E). Then
(1)

' H1<<<d —kj —i+37)
= N! E = / I I Sk, (€),
/Gx(d,é') H1<z<d(7‘ + k - Z) X kl( )

|k|=n

where k = (ki,...,ka) € 2, with |k| :== Y, ki, and s;(E) is the
i-th Segre class of £.

(2)
/ oy — N Z H1<z<y<d()" z+] / Ax(s
Gx(d,£) H1<z<d(r + )‘ — 1)

IA|l=n
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where Ay(s(€)) is the Schur polynomial of € for a partition A =
()\1, ceey /\d)

In fact, we give two formulae for 7, ch(det Q), the push-forward of the
Chern character of det @ by m, explicitly (Theorem 2.1), under the as-
sumption that X is a scheme of finite type over a field k: The above result
is a direct consequence of those formulae.

The Segre classes s;(£) here are the ones satisfying s(&,t)c(€, —t) = 1
as in [1], [5], where s(&€,t) and c(€,t) are respectively the Segre series and
the Chern polynomial of £ in t. Note that our Segre class s;(€) differs by
the sign (—1)* from the one in [2].

Theorem 1.1 with n = 0 yeilds the degree formula of Grassmann vari-
eties, as follows:

Corollary 1.2 ([2, Example 14.7.11 (iii)]). The degree of the Grassmann
variety G(d, r) of codimension d subspaces of an r-dimensional vector space
with respect to the Plicker embedding is given by

(d(r — d)! H15k5d—1 k!
ngkgd(r —k)! .

2. MAIN RESULTS

deg G(d,r) =

Theorem 1.1 follows from more general results, as follows: Setting m! :=
I'(m+1) for m € Z, one has 1/m! = 0 if m < 0. To simplify the notation,
for a finite set of integers {ai}o<i<d_1, set

{a;}! = Hal a;) = H(ai — a;).

1<j

Theorem 2.1. Assume that X is a scheme of finite type over a field k.
Let Gx(d, &) be the Grassmann bundle of corank d subbundles of a vector
bundle £ of rank r on X with projection 7 : Gx(d,€) = X, let 7€ — Q
be the universal quotient bundle of rank d, and let ch(det Q) be the Chern
character of det Q. Denote by 7, : A*(Gx(d,£)) ®Q — A* 4 I(X)®Q
is the push-forward by mw. Then

1)

m.ch(det Q) = Z {r + k — z}' H sk, (€

where k = (ky,...,ka) € Z%,, and s,-(ff) z's the i-th Segre class of
E.



7 ch(det Q) = Z {fik;;i——_ig}!@\(s(é')),

where Ax(s(€)) := det[sx,+j—i(E)]1<i j<d 15 the Schur polynomial of
E for a partition A = (A\1,..., ).

3. (SKETCH OF)? PROOF

Let X be a scheme of finite type over a field k, and let £ be a vector
bundle of rank » on X. Denote by F%(€) the partial flag bundle of £
on X, parametrising flags of subbundles of corank 1 up to d in £. Then
it is easily shown that the projection p : F%(£) — X decomposes as a
successive composition of projective space bundles, P(&;)/P(€;-1) (i > 1):

p:FY(E) =P(Es1) = P(Esz) — -+ = P(&1) = P(&) — X,
where & := &, and &;,; is the kernel of the canonical surjection from
the pull-back of &; to P(&;), to the tautological line bundle Opg;)(1) with
rk& = r—4 (1 > 0): In fact, P(&) ~ F&(E) (1 <4 < d—1). Set
& = c1(Op,)(1)). Then, the intersection ring of A*(F%(£)) is given as
follows:

A*(X)[foa 517 <. 7£d—1]

* (d —
A*(F%(€)) = (Py(&), Pi(62), . . 3 Pd.—-l(gd—l)).
(3.1) = P 4G L
0(%2%1_—!;)1

where F;(&) ==& = ci(&)E T+ -+ (1) el &) € AT (P(E:)) (€],
and the symbol of pull-back to F% (£) is omitted. Denote by p. : A*(F%(E))
— A*¢(X) the push-forward by p, where ¢ := > ;<41 (r—3—1), the rel-
ative dimension of F% (£)/X. Then, for o = 3 avigiy i, &0 &1 - Ea
in A*(F%(€)) (qtigiyiy, € A*(X)) with respect to the decomposition in
(3.1), one has

(32) D« = Olp_1 7—-2,...7—d-

Indeed, >, 4 > cif and only if ¢ =r — [ — 1 for each [.

Let G := Gx(d, &) be the Grassmann bundle of corank d subbundles
of £ on X, and let 7*€ — Q be the universal quotient bundle of rank
d. Consider the flag bundle F%*(Q) of Q on G, parametrising flags of
subbundles of corank 1 up to d — 1 in Q. Then, as in the case of F%(£),
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the projection Fé‘l(Q) — G decomposes as a successive composition of
projective space bundles P(Q;1;)/P(Q;) (i > 1):

q: ]ng_l(Q) =P(Qa—2) 2> P(Qy2) = -+ 2> P(Q1) > P(Qo) — G,

where Qg := Q, and Q,,; is the kernel of the canonical surjection from
the pull-back of Q; to P(Q;), to the tautological line bundle Op(g,)(1) with
rkQ; =d—1i (: > 0): In fact, P(Q;) ~F4'(Q) (1<i<d-2).

It follows from the construction of vector bundles &; that £, is a corank d
subbundle of p*€ on F%(€), which induces a morphism, 7 : F%(€) = G by
the universal property of the Grassmann bundle G. Then it turns out that
F%1(Q) is naturally isomorphic to F% (£) over G via r, as is easily verified
by using the universal property of flag bundles (see [5, §6], [7, §§0-1]): We
identify them via the natural isomorphism F& }(Q) ~ F4(€). Under this
identification, it follows that

& = c1(Opey (1)) = c1(Opy(1))

in A*(F%(&)) = A*(F%(Q)), where the symbol of pull-back to F&(E) =
F%1(Q) is omitted, as before.
For the Pliicker class 8 = ¢;(Q), one has

Lemma 3.1. (1) 0V = q.(§51€52 - £4_5g*0") in A*(G).
(2) 0 =& + -+ &1 in A (FL(E)) = A*(FELYH(Q)).

F&'(Q) =————F%(€)

FIGURE 1



It follows from Lemma 3.1, the commutativity p = 7 o ¢ and (3.2) that
d

d—1 -1

‘ N
n (") = ma (6 taag0™) = ma ([[67(26) )
=0 i=0
d-1 del
(33) -n.([T&(X8))
i=0 i=0
d—1 d-l
i=0 i=0
where coeffg =—(---;r—1,...,7 — d) denotes the coefficient of - - - in
—r—1=—r-2 —7r—d
o & --r8am

Now one can show that
Lemma 3.2.
coeffz (& r—i—1) = consty, (£ s(E, 1)),

where consty,(---) the constant term in the Laurent expansion of --- in
£

Applying Lemma 3.2 repeatedly, one obtains

Lemma 3.3.

coeffg (& &ir—1,...,r —d)

§d—1
d—1

= consty (A(to, ooy tgo1) Ht;pi+r_d8(80, tg)),
=0

where t := (to, ..., tg-1), and Alto,. .., ta-1) := [locicj<q_1(ti — t;) the
Vandermonde polynomial of (to, . .., ta—1)-

By virtue of (3.3) and Lemma 3.3, one can show

Proposition 3.4. For a non-negative integer N,
7.8~ = consty(Pn(t)),

where 7, : A*(Gx(d,E)) = A*~=9(X) is the push-forward by 7, s(E,t)
is the Segre series of £ int, and

d-1 \ Vd-1
Pn(t) == A(Y) (Z ;51") [T 7 s(Eo, ).

i=0 * i=0
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Now, to prove Theorem 2.1 (1), just expand the Laurent series Py(t) by
the multinomial theorem with the following

Lemma 3.5 ([2, Example A.9.3]).
A(z;)
(z; er‘)!JOSMSd_1 T {mitd-1}
For Theorem 2.1 (2), we have two proofs, where we use a consequence of

Cauchy identity [6, Chapter I, (4.3)] and Jacobi-Trudi identity [2, Lemma
A.9.3], as follows:

det [

Lemma 3.6.
d—1
IIs€.t) =) Ar(s(€)sat)
=0 A>0

One of our proofs is obtained just by expanding Py(t), similarly to the
proof of Theorem 2.1 (1). For the other, we establish a formula of Kadell
type for confluent Selberg integral, due to Terasoma, as follows (Cf. [3]):

Proposition 3.7. Set

d-1
Wexp(z, 1) == [ [ £ IHexp ) [ - )%
1=0 1<J

Iconf(/\ax) :Z/ s)\(i)Wexp(xai)dt-
[0,+00)4

Then

Lont( M\, ) = dAN — O)T{z +d — i + A},
for a real number x > 0, where t := (tg,...,tq-1) and dt := dty- - - dtq_1.
Remark 3.8. Symmetrising the Laurent series Py(¢) with respect to the

variables t, one sees that const,(Py(t)) is equal to the constant term of
the Laurent series,

d(d—1

ro= S T G3) (G2 Tesew

0<i<j<d-1 —0

Roughly speaking, to obtain the constant term of Py(t), we calculate
the residue of P§(t5?,...,t7%)(to- - -ta_1)~! by using Proposition 3.7 (see
Remark 3.8): Indeed, we have const,(Py(t)) = consty(Py(ty', ..., t:5)).



4. EXAMPLE

Example 4.1. deg Gps(2, Tps) = 5040. This number is exactly equal to
the factorial of 7 (pointed out by Agaoka): 5040 = 7!. I guess this would
be nothing but a coincidence without rationale (what do you think?).

Acknowlegements. The author would like to thank Professor Daisuke Mat-
sushita, the organizer of the symposium, for the invitation. The author
thanks also Professor Yoshio Agaoka for pointing out the coincidence. The
author is supported by JSPS KAKENHI Grant Number 25400053.

REFERENCES

[1] T. Fujita: Classification theories of polarized varieties. London Mathematical So-
ciety Lecture Note Series, 155. Cambridge University Press, Cambridge, 1990.

[2] W. Fulton: Intersection theory. Ergebnisse der Mathematik und ihrer Grenzgebiete
(3), 2. Springer-Verlag, Berlin, 1984.

[3] K. W. J. Kadell: A proof of some g-analogues of Selberg’s integral for k=1. SIAM
J. Math. Anal. 19 (1988), no. 4, 944-968.

[4] H. Kaji, T. Terasoma: Degree formulae for Grassmann bundles, in preparation.

[5] D. Laksov, A. Thorup: Schubert calculus on Grassmannians and exterior powers.
Indiana Univ. Math. J. 58 (2009), no. 1, 283-300.

[6] I. G. MacDonald: Symmetric Functions and Hall Polynomials. Oxford Mathemat-
ical Monographs (2nd ed.). The Clarendon Press Oxford University Press, 1995

[7) D. B. Scott: Grassmann bundles. Ann. Mat. Pura Appl. (4) 127 (1981), 101-140.

DEPARTMENT OF MATHEMATICS,

FACULTY OF SCIENCE AND ENGINEERING,

WASEDA UNIVERSITY

3-4-1 OHKUBO, SHINJUKU, TOoKYO 169-8555, JAPAN
E-mail address: kaji@waseda. jp

97



