
Title

The behavior of the interfaces in the fast reaction limits of
some reaction-diffusion systems with unbalanced interactions
(New Role of the Theory of Abstract Evolution Equations :
From a Point of View Overlooking the Individual Partial
Differential Equations)

Author(s) Iida, Masato; Monobe, Harunori; Murakawa, Hideki;
Ninomiya, Hirokazu

Citation 数理解析研究所講究録 (2014), 1892: 88-94

Issue Date 2014-04

URL http://hdl.handle.net/2433/195803

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39319579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The behavior of the interfaces in the fast reaction limits of
some reaction-diffusion systems with unbalanced interactions

Masato Iida* (University of Miyazaki)
Harunori Monobe (Meiji University)
Hideki Murakawa (Kyushu University)
Hirokazu Ninomiya (Meiji University)

1 Introduction
Let $\Omega$ be a bounded domain in $R^{N}$ with smooth boundary $\partial\Omega$ . Hilhorst-Hout-Peletier
[2, 3] investigated a simple reaction-diffusion system with a huge positive parameter $k$

$[Matrix]$ (1)

which describes a “fast reaction” between a diffusive reactant $u$ and a non-diffusive one
$w$ . Assuming that the initial values of $u$ and $w$ are non-negative and fixing a positive
number $T$ , they derived the singular limit as $karrow\infty$ of an initial-boundary value problem
in $\Omega\cross(0, T)$ for a class of reaction-diffusion systems with a parameter $k$ such as (1).
Their results are summarized as follows: the solution $(u_{k}, w_{k})$ of their initial-boundary
value problem posseses its singular limit $(u_{*}, w_{*})$ as $karrow\infty$ such that $u_{*}w_{*}\equiv 0$ ; therefore,
when we use the notation

$\Omega^{u}(t)=\{x\in\Omega|u_{*}(x, t)>0\}, \Omega^{w}(t)=Int\overline{\{x\in\Omega|w_{*}(x,t)>0\}},$

(2)
$\Gamma(t)=\Omega\backslash (\Omega^{u}(t)\cup\Omega^{w}(t))$ ,

the region $\Omega^{u}(t)$ and the region $\Omega^{w}(t)$ are divided by an “interface” $\Gamma(t)$ ; moreover $u_{*}$

satisfies the one-phase Stefan problem

$[Matrix]$ (3)

in a weak sense. Here $n$ is the unit normal vector to $\Gamma(t)$ oriented from $\Omega^{u}(t)$ to $\Omega^{w}(t)$ ,
and $V_{n}$ is the velocity of $\Gamma(t)$ in the direction of $n.$

In this article we consider generahzed “fast reactions” between $u$ and $w$ :

$[Matrix]$ (4)

where $m_{j}\geq 1(j=1,2,3,4)$ . We are particularly interested in the situations where
$(m_{1}, m_{3})\neq(m_{2}, m_{4})$ , while Hilhorst-Hout-Peletier [2, 3] investigated situations where
$(m_{1}, m_{3})=(m_{2}, m_{4})$ . Even in the situations where $(m_{1}, m_{3})\neq(m_{2}, m_{4})$ the corresponding
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singular limit $(u_{*}, w_{*})$ of $(u_{k}, w_{k})$ as $karrow\infty$ , if it exists, must formally satisfies $u_{*}w_{*}\equiv 0.$

However, the rapid dynamics of (4) in such situations are very different from that in the
situations where $(m_{1}, m_{3})=(m_{2}, m_{4})$ . The rapid dynamics of (4) is essentially determined
by the two-dimensional dynamical system

$\{\begin{array}{l}u_{t}=-u^{m_{1}}w^{m_{3}},w_{t}=-u^{m2}w^{m4}.\end{array}$ (5)

Note that all the trajectories of (5) are straight and that the trajectories toward the
axis $u=0$ intersect it slantwise if $(m_{1}, m_{3})=(m_{2}, m_{4})$ . If $(m_{1}, m_{3})\neq(m_{2}, m_{4})$ , then
the trajectories toward the axis $u=0$ intersect it vertically in some situations; those
trajectories touch the axis $u=0$ tangentially in other situations; in some situations
among the other ones no trajectories possess intersections with the axis $u=0$ . When
$(m_{1}, m_{3})\neq(m_{2}, m_{4})$ , these various structures of the trajectories in (5) may cause any
different behavior of the interface $\Gamma(t)$ in the singular limit of (4). Related problems were
investigated in [6] from the aspect of numerical simulation (see also [4]).

As the first attempt to solve the behavior of the interface $\Gamma(t)$ in the situations where
$(m_{1}, m_{3})\neq(m_{2}, m_{4})$ , we will investigate typical four cases of such “unbalanced inter-
actions” between $u$ and $w$ : $(m_{1}, m_{2}, m_{3}, m_{4})=(1,1,1, m),$ $(1,1, m, 1),$ $(1, m, 1,1)$ and
$(m, 1,1,1)$ , where $m$ is a constant larger than 1. In each case we would like to reveal
the interfacial dynamics in the fast reaction limit of (4) as $karrow\infty$ . Hereafter we denote
$\Omega\cross(0, T)$ by QT and consider (4) under the initial condition

$u|_{t=0}=u_{0},$ $w|_{t=0}=w_{0}$ in $\Omega$ (6)

and a boundary condition
$\frac{\partial u}{\partial v}=0$ on $\partial\Omega$ , (7)

where $v$ denotes the unit outer normal vector of $\partial\Omega.$

2 Singular limits in Case $(m_{1}, m_{2}, m_{3}, m_{4})=(1,1,1, m)$

or $(1, 1, m, 1)$ : moving interfaces
In these cases we can respectively reduce (4) into a reaction-diffusion system with a
“balanced interaction”; namely into a system with $(m_{1}, m_{3})=(m_{2}, m_{4})$ by some trans-
formations of variables. When $(m_{1}, m_{2}, m_{3}, m_{4})=(1,1,1, m)$ with $1\leq m<2$ , we put
$W_{k}=w_{k}^{2-m}$ for any solution $(u_{k}, w_{k})$ to (4). Then $(u_{k}, W_{k})$ becomes a solution to

$\{\begin{array}{ll}u_{t}=\triangle u-kuW^{1/(2-m)} in \Omega,W_{t}=-(2-m)kuW^{1/(2-m)} in \Omega.\end{array}$ (8)

The singular limits of (8) with appropriate initial-boundary conditions were studied by
Hilhorst, Hout and Peletier [2, 3]. They showed that $u_{*}$ of the singular limit $(u_{*}, W_{*})=$
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$\lim_{karrow\infty}(u_{k}, W_{k})$ satisfies a one-phase Stefan problem with a finite normal velocity of the
interface. In the same manner as the proofs in [2, 3], we can derive the singurar limit of
(8) with an initial condition

$u|_{t=0}=u_{0}, W|_{t=0}=w_{0^{2-m}} in\Omega$ (9)

and a boundary condition (7).
Throughout this section, we impose the following assumption on the initial datum

$(u_{0}, w_{0})$ :

(Hl) $(u_{0}, w_{0})\in C(\overline{\Omega})\cross L^{\infty}(\Omega),$
$w_{0}$ is continuous in $suppw_{0}$ and there exist positive

constants $M$ and $m_{w}$ such that

$u_{0}w_{0}=0,$ $0\leq u_{0},$ $w_{0}\leq M$ in $\Omega,$

$m_{w}\leq w_{0}$ in $suppw_{0}.$

Under the assumption (Hl), there exists a unique solution $(u_{k}, W_{k})$ of the initial-
boundary value problem (8),(9) and (7) satisfying

$u_{k}\in C([0, T];C(\overline{\Omega}))\cap C^{1}((0, T];C(\overline{\Omega}))\cap C((0, T];W^{2,p}(\Omega)) (\forall p>1)$,
$w_{k}\in C^{1}([0, T];L^{\infty}(\Omega))$

(10)

(see [1]). We obtain the following theorem in the same manner as the proofs in [2, 3].

Theorem 2.1 (Hilhorst, Hout and Peletier [2, 3]) Let $(u_{k}, W_{k})$ be the solution of
(8) under the initial and boundary conditions (9) and (7), where $1\leq m<2$ . Then there
exist subsequences $\{u_{k_{n}}\},$ $\{W_{k_{n}}\}$ and functions $(u_{*}, W_{*})\in L^{2}(0, T;H^{1}(\Omega))\cross L^{2}(Q_{T})$ such
that

$u_{k_{n}}arrow u_{*}$ strongly in $L^{2}(Q_{T})$ and weakly in $L^{2}(0, T;H^{1}(\Omega))$ ,
$W_{k_{n}}arrow W_{*}$ strongly in $L^{2}(Q_{T})$ ,

as $k_{n}$ tends to infinity, where

$u_{*}W_{*}=0,$ $u_{*}\geq 0,$ $W_{*}\geq 0$ $a.e$ . in $Q_{T}.$

Moreover, $u_{*}$ and $W_{*}$ satisfy

$\int\int_{Q_{T}}\{-(u_{*}-\lambda W_{*})\zeta_{t}+\nabla u_{*}\cdot\nabla\zeta\}dxdt=\int_{\Omega}(u_{0}-\lambda w_{0^{2-m}})\zeta(\cdot, 0)dx$ (11)

for all functions $\zeta\in C^{\infty}(\overline{Q_{T}})$ such that $\zeta(x, T)=0$ , where $\lambda=1/(2-m)$ .

Since $u_{*}W_{*}\equiv 0$ , we can rewrite (11) as a classical one-phase Stefan problem with a finite
propagation speed. Here we use $\Omega^{u}(t),$ $\Omega^{w}(t)$ and $\Gamma(t)$ defined by (2) where $w_{*}=W_{*}^{1/(2-m)}$

with $1\leq m<2$ . Also we use the following notation:

$Q_{T}^{u}= \bigcup_{0<t<T}\Omega^{u}(t)\cross\{t\},$ $Q_{T}^{w}= \bigcup_{0<t<T}\Omega^{w}(t)\cross\{t\},$ $\Gamma=\bigcup_{0<t<T}\Gamma(t)\cross\{t\}$
. (12)
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Theorem 2.2 Set $(m_{1}, m_{2}, m_{3}, m_{4})=(1,1,1,m)$ where $1\leq m<2$ . Let $(u_{k}, w_{k})$ be the
solution of (4) under the initial-boundary conditions (6) $-(7)$ and set $W_{k}=w_{k^{2-m}}$ . Namely
$(u_{k}, W_{k})$ is the solution of (8) satisfying (9) and (7). Let $(u_{*}, W_{*})$ be the limit given in
Theorem 2.1 and set $w_{*}=W_{*}^{1/(2-m)}$ . Suppose that $\Gamma(t)$ is a smooth, closed and orientable
hypersurface satisfying $\Gamma(t)\cap\partial\Omega=\emptyset$ for all $t\in[0, T]$ . Also assume that $\Gamma(t)$ smoothly
moves with a normal velocity $V_{n}$ from $\Omega^{u}(t)$ to $\Omega^{w}(t)$ , and $u_{*}$ is continuous in QT and
smooth on $\overline{Q_{T}^{u}}$ , and $w_{*}$ is smooth on $\overline{Q_{T}^{w}}$ . Then the following relations hold.

$w_{*}(t)=w_{0}$ , in $Q_{T}^{w}$ ;

$\{\begin{array}{ll}u_{*,t}=\Delta u_{*} in Q_{T}^{u},u_{*}=0, \frac{w_{0^{2-m}}}{2-m}V_{n}=-\frac{\partial u}{\partial n}* on \Gamma,\frac{\partial u}{\partial v}*=0 on\partial\Omega\cross(0, T) ,u_{*}=u_{0} on\Omega^{u}(0)\cross\{0\}.\end{array}$

When $(m_{1}, m_{2}, m_{3}, m_{4})=(1,1, m, 1)$ with $m\geq 1$ , we put $W_{k}=w_{k}^{m}$ for any solution
$(u_{k}, w_{k})$ to (4). Then $(u_{k}, W_{k})$ becomes a solution to

$\{\begin{array}{ll}u_{t}=\triangle u-kuW in \Omega,W_{t}=-mkuW in \Omega.\end{array}$ (13)

Taking the fast reaction limit of (13) under the boundary condition (7) and an initial
condition

$u|_{t=0}=u_{0},$ $W|_{t=0}=w_{0^{m}}$ in $\Omega$ , (14)

we can similarly derive the same conclusions as those of Theorem 2.1 where $\lambda=1/m.$

Thus we obtain the following theorem. Here we use the notation $\Omega^{u}(t),$ $\Omega^{w}(t),$ $\Gamma(t),$ $Q_{T}^{u},$

$Q_{T}^{w}$ and $\Gamma$ defined by (2) and (12) where $w_{*}=W_{*}^{1/m}$ with $m\geq 1.$

Theorem 2.3 Set $(m_{1}, m_{2}, m_{3}, m_{4})=(1,1, m, 1)$ where $m\geq 1$ . Let $(u_{k}, w_{k})$ be the
solution of (4) under the initial-boundary conditions (6) $-(7)$ and set $W_{k}=w_{k^{m}}$ . Namely
$(u_{k}, W_{k})$ is the solution of (13) satisfying (14) and (7). Set $w_{*}=W_{*}^{1/m}$ for the limit
$(u_{*}, W_{*})$ given in Theorem 2.1 where (8), (9) and (11) are replaced by (13), (14) and

$\int\int_{Q_{T}}\{-(u_{*}-\lambda W_{*})\zeta_{t}+\nabla u_{*}\cdot\nabla\zeta\}dxdt=\int_{\Omega}(u_{0}-\lambda w_{0^{m}})\zeta(\cdot, 0)dx$ (15)

with $\lambda=1/m$ , respectively. Suppose that $\Gamma(t)$ is a smooth, closed and orientable hyper-
surface satisfying $\Gamma(t)\cap\partial\Omega=\emptyset$ for all $t\in[0, T]$ . Also assume that $\Gamma(t)$ smoothly moves
with a normal velocity $V_{n}$ from $\Omega^{u}(t)$ to $\Omega^{w}(t)$ , and $u_{*}$ is continuous in QT and smooth
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on $\overline{Q_{T}^{u}}$, and $w_{*}$ is smooth on $\overline{Q_{T}^{w}}$ . Then the following relations hold.

$w_{*}(t)=w_{0}$ , in $Q_{T}^{w}$ ;

$\{\begin{array}{ll}u_{*,t}=\Delta u_{*} in Q_{T}^{u},u_{*}=0, \frac{w_{0^{m}}}{m}V_{n}=-\frac{\partial u}{\partial n}* on \Gamma,\frac{\partial u}{\partial\nu}*=0 on\partial\Omega\cross(0,T) ,u_{*}=u_{0} on \Omega^{u}(0)\cross\{0\}.\end{array}$

3 Singular limits in Case $(m_{1}, m_{2}, m_{3}, m_{4})=(1, m, 1,1)$ :
immovable interfaces

A free boundary appears in the fast reaction limit also in this case; however, this free
boundary does not move.

Throughout this section, we impose (Hl) on the initia datum $(u_{0}, w_{0})$ again, and
assume $m>1$ . Under the assumption (Hl), there exists a unique solution $(u_{k}, w_{k})$ of the
initial-boundary value problem (4),(6) and (7) satisfying (10).

We give a result on the convergence of $(u_{k}, w_{k})$ .

Theorem 3.1 Set $(m_{1}, m_{2}, m_{3}, m_{4})=(1, m, 1,1)$ where $m>1$ . Let $(u_{k}, w_{k})$ be the
solution of (4) under the initial and boundary conditions (6) and (7). Then there exist
subsequences $\{u_{k_{n}}\}$ and $\{w_{k_{n}}\}$ of $\{u_{k}\}$ and $\{w_{k}\}$ , respectively, and functions $u_{*},$ $w_{*}$ and a
distribution $U_{*}$ such that

$u_{*}, u_{*}^{\frac{m}{2}}\in L^{\infty}(Q_{T})\cap L^{2}(0, T;H^{1}(\Omega)), w_{*}\in L^{\infty}(Q_{T}), U_{*}\in H^{-1}(Q_{T})$ , (16)
$0\leq u_{*}, w_{*}\leq M, u_{*}w_{*}=0 a.e. inQ_{T}, U_{*}\geq 0 inH^{-1}(Q_{T})$ , (17)

$u_{k_{n}}arrow u_{*}$ strongly in $L^{p}(Q_{T})(\forall p\geq 1),$ $a.e$ . in $Q,$

weakly in $L^{2}(0, T;H^{1}(\Omega))$ and weakly $*inL^{\infty}(Q_{T})$ , (18)
$w_{k_{n}}arrow w_{*}$ weakly in $L^{p}(Q_{T})(\forall p\geq 1)$ and weakly $*inL^{\infty}(Q_{T})$ , (19)

$|\nabla u^{\frac{m}{k_{n}2}}|^{2}arrow U_{*}$ weakly in $H^{-1}(Q_{T})$ (20)

as $k_{n}$ tends to infinity. Moreover $u_{*},$ $w_{*}$ and $U_{*}$ satisfy

$\iint_{Q_{T}}\{-(\frac{1}{m}u_{*}^{m}-w_{*})\zeta_{t}+\frac{2}{m}u_{*}^{\frac{m}{2}}\nabla u_{*}^{\frac{m}{2}}\cdot\nabla\zeta\}dxdt$

(21)
$+ \frac{4(m-1)}{m^{2}}H^{-1}(Q_{T})\langle U_{*}, \zeta\rangle_{H_{0}^{1}(Q_{T})} = 0$

for all $\zeta\in H_{0}^{1}(Q_{T})$ .

We can prove $U_{*}=|\nabla u_{*}^{\frac{m}{2}}|^{2}\in L^{1}(Q_{T})$ under additional conditions. Here we use the
notation $\Omega^{u}(t),$ $\Omega^{w}(t),$ $\Gamma(t),$ $Q_{T}^{u},$ $Q_{T}^{w}$ and $\Gamma$ defined by (2) and (12). Then we can give an
explicit equation of motion for the free boundary.
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Theorem 3.2 Let $u_{*},$ $w_{*},$ $U_{*}$ be the functions satisfying (16)-(20). Suppose that $\Gamma(t)$ is a
smooth, closed and orientable hypersurface satisfying $\Gamma(t)\cap\partial\Omega=\emptyset$ for all $t\in[O, T]$ . Also
assume that $\Gamma(t)$ smoothly moves with a normal velocity $V_{n}$ from $\Omega^{u}(t)$ to $\Omega^{w}(t)$ , and $u_{*}$

is continuous in QT and smooth on $\overline{Q_{T}^{u}}$ , and $w_{*}$ is smooth on $\overline{Q_{T}^{w}}$ . Then the following
relations hold.

$V_{n}=0$ on $\Gamma$ , that is, $\Omega^{u}(t)\equiv\Omega^{u}(0),$ $\Omega^{w}(t)\equiv\Omega^{w}(0),$ $\Gamma(t)\equiv\Gamma(O)$ ;

$w_{*}(t)=w_{0},$ $U_{*}=|\nabla u^{\frac{m}{2}}|^{2}$ $in$ $Q_{T}$ ;

$\{\begin{array}{ll}u_{*,t}=\triangle u_{*} in Q_{T}^{u}=\Omega^{u}(0)\cross(0, T) ,u_{*}=0 on\Gamma=\Gamma(0)\cross(0, T) ,\frac{\partial u}{\partial\nu}*=0 on\partial\Omega\cross(0, T) ,u_{*}=u_{0} on\Omega^{u}(0)\cross\{0\}.\end{array}$

See [5] for the proofs of Theorems 3.1 and 3.2.

4 Singular limits in Case $(m_{1}, m_{2}, m_{3}, m_{4})=(m, 1,1,1)$ :
vanishing interfaces

In this case the non-diffusive reactant $w$ consumes much faster than diffusive one $u$ in
the limit as $karrow\infty$ . This fact makes the propagation speed of $\Gamma(t)$ too rapid. At least
if $m>2$ , then $\Omega^{u}(t)$ spread too rapidly for us to follow its boundary $\Gamma(t)$ : actually we
cannot observe any free boundary.

Throughout this section, we impose the following assumptions on the initial data:

(H2) $(u_{0}, w_{0})\in C^{2}(\overline{\Omega})\cross C^{\alpha}(\overline{\Omega})$ satisfy

$u_{0}(x)w_{0}(x)=0, 0\leq u_{0}(x)\leq M_{u}, 0\leq w_{0}(x)\leq M_{w}$

for any $x\in\Omega$ , where $\alpha\in(0,1)$ represents a H\"older exponent and

$M_{u}:= mq|u_{0}|x\overline{\Omega}, M_{w}:=\max_{x\in\overline{\Omega}}|w_{0}|.$

(H3) $u_{0}$ holds the homogeneous Neumann boundary condition:

$\frac{\partial u_{0}}{\partial\nu}=0$ on $\partial\Omega.$

We can derive the following result on the singular limit of (4) (see [5]).

Theorem 4.1 Set $(m_{1}, m_{2}, m_{3}, m_{4})=(m, 1,1,1)$ where $m>1$ . Let $(u_{k}, w_{k})$ be the
solution of (4) under the initial and boundary conditions (6) and (7). Then

$u_{k}arrow u_{*}$ in $C^{0}(\overline{Q}_{T})$ as $karrow\infty,$

$w_{k}arrow 0$ in $C^{0}(\overline{\Omega}\cross[\epsilon, T])$ as $karrow\infty$ forany $\epsilon\in(O, T)$ ,
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where $u_{*}(x, t)$ belongs to $C^{2,1}(\overline{Q_{T}})$ and satisfies the heat equation in the whole domain as
follows :

$\{\begin{array}{ll}u_{*,t}=\Delta u_{*} in Q_{T},\frac{\partial u}{\partial\nu}*=0 on\partial\Omega\cross(0, T) ,u_{*}=u_{0} on \Omega\cross\{0\}.\end{array}$
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