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The behavior of the interfaces in the fast reaction limits of
some reaction-diffusion systems with unbalanced interactions

Masato lida* (University of Miyazaki)
Harunori Monobe  (Meiji University)
Hideki Murakawa  (Kyushu University)
Hirokazu Ninomiya (Meiji University)

1 Introduction

Let Q be a bounded domain in RY with smooth boundary 0. Hilhorst-Hout-Peletier
[2, 3] investigated a simple reaction-diffusion system with a huge positive parameter k

{ut=Au—kuw in Q,

wy = —k uw in

(1)

which describes a “fast reaction” between a diffusive reactant u and a non-diffusive one
w. Assuming that the initial values of u and w are non-negative and fixing a positive
number T', they derived the singular limit as k — oo of an initial-boundary value problem
in Q x (0,T) for a class of reaction-diffusion systems with a parameter k such as (1).
Their results are summarized as follows: the solution (ux,ws) of their initial-boundary
value problem posseses its singular limit (u.,w.) as k — oo such that u,w, = 0; therefore,
when we use the notation

Q4(t) = {z € Y ui(z,t) > 0}, Q¥(t) = Int{z € Qw.(z,t) > 0}, @)
L(t) =\ (@) (),
the region Q*(t) and the region Q¥(t) are divided by an “interface” I'(t); moreover u,
satisfies the one-phase Stefan problem
Usp = Au, in Q%(¢),

Ou,
Vo=—
I(t)+0n "M on I()—on

0 3)

We ’ ”*|r(t) =
in a weak sense. Here n is the unit normal vector to I'(t) oriented from Q*(¢) to Q¥(¢),

and V,, is the velocity of I'(¢) in the direction of n.

In this article we consider generalized “fast reactions” between u and w:
u = Au — ku™w™ in Q,
wy = —ku™w™ in €,

(4)

where m; > 1 (j = 1,2,3,4). We are particularly interested in the situations where
(m1,m3) # (mg, my), while Hilhorst-Hout-Peletier [2, 3] investigated situations where
(m1, mg) = (Mg, my). Even in the situations where (m;, m3) # (mg, m4) the corresponding



singular limit (u., ws) of (ug, wi) as k — oo, if it exists, must formally satisfies u,w, = 0.
However, the rapid dynamics of (4) in such situations are very different from that in the
situations where (m;, mg) = (mg, m4). The rapid dynamics of (4) is essentially determined
by the two-dimensional dynamical system

{ ug = —u™w™,

wy = ~u"w™.

(5)

Note that all the trajectories of (5) are straight and that the trajectories toward the
axis v = 0 intersect it slantwise if (mq,ms) = (mg,myq). If (my,m3) # (Mg, my), then
the trajectories toward the axis u = 0 intersect it vertically in some situations; those
trajectories touch the axis u = 0 tangentially in other situations; in some situations
among the other ones no trajectories possess intersections with the axis v.= 0. When
(m1,m3) # (Mg, my), these various structures of the trajectories in (5) may cause any
different behavior of the interface I'(¢) in the singular limit of (4). Related problems were
investigated in [6] from the aspect of numerical simulation (see also [4]).

As the first attempt to solve the behavior of the interface I'(t) in the situations where
(m1,mg) # (ma,m4), we will investigate typical four cases of such “unbalanced inter-
actions” between u and w: (my,me,m3,ms) = (1,1,1,m), (1,1,m,1), (1,m,1,1) and

(m,1,1,1), where m is a constant larger than 1. In each case we would like to reveal

the interfacial dynamics in the fast reaction limit of (4) as k — co. Hereafter we denote
Q2 x (0,T) by Qr and consider (4) under the initial condition

Ule=o = U, W)t—o = wp in (6)
and a boundary condition
gg =0 on 01, (7)

where v denotes the unit outer normal vector of 9.

2 Singular limits in Case (mi,mg, m3,mq) = (1,1,1,m)
or (1,1, m,1): moving interfaces

In these cases we can respectively reduce (4) into a reaction-diffusion system with a
“balanced interaction”; namely into a system with (m;, m3) = (mg, m4) by some trans-
formations of variables. When (ml,mé,mg,m4) = (1,1,1,m) with 1 < m < 2, we put
Wi = w;™™ for any solution (ux,wx) to (4). Then (ux, W) becomes a solution to

(8)

upy = Ay — kuW/@-m in Q,
W = —(2 — m)kuW/@-m) in Q.

The singular limits of (8) with appropriate initial-boundary conditions were studied by
Hilhorst, Hout and Peletier [2, 3]. They showed that u. of the singular limit (u,, W,) =
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klim (uk, Wi) satisfies a one-phase Stefan problem with a finite normal velocity of the
—00

interface. In the same manner as the proofs in 2, 3], we can derive the singurar limit of
(8) with an initial condition

Ule=o = 0, Wlemo = wo®™ inQ (9)

and a boundary condition (7).
Throughout this section, we impose the following assumption on the initial datum

(Uo,’lﬂo):
(H1) (uo,wo) € C(Q) x L*®(R), wp is continuous in suppwy and there exist positive
constants M and m,, such that

UpWpy = 0, 0 < Ug, Wy < M in Q,
my < wp in supp wo.

Under the assumption (H1), there exists a unique solution (ux, W) of the initial-
boundary value problem (8),(9) and (7) satisfying

u € C(0, T; C(@) N C1((0, T} C(@) N C((0, T Wa»(Q))  (vp > 1),
wi € CX([0, T1; L=(%))

(see [1]). We obtain the following theorem in the same manner as the proofs in [2, 3].

Theorem 2.1 (Hilhorst, Hout and Peletier [2, 3]) Let (ux, W) be the solution of
(8) under the initial and boundary conditions (9) and (7), where 1 < m < 2. Then there
exist subsequences {ux,}, {Wk,} and functions (u., W,) € L*(0,T; H()) x L*(Qr) such
that

(10)

Uk, — Us  Strongly in L*(Qr) and weakly in L?(0,T; H*(R)),
Wk, — W, strongly in L*(Qr),

as k,, tends to infinity, where
uW,=0, u,>0 W,>0 a.e. in Qr.
Moreover, u, and W, satisfy
/ {— (ux = MWL) G + Vu, - V(} dzdt = / (uo — Awe®™™) (-, 0) dz (11)
Qr Q
for all functions ¢ € C=(Qr) such that {(z,T) = 0, where A = 1/(2 — m).

Since u,W, = 0, we can rewrite (11) as a classical one-phase Stefan problem with a finite
propagation speed. Here we use Q%(t), 2*(t) and I'(t) defined by (2) where w, = W, /@~
with 1 < m < 2. Also we use the following notation:

Qr=UJ 0 x{t}, @@= 0 x{}, I'= | re)=<{t}. @2

0<t<T 0<t<T 0<t<T



Theorem 2.2 Set (my,ma, m3, mg) = (1,1,1,m) where 1 < m < 2. Let (ux, wi) be the
solution of (4) under the initial-boundary conditions (6)-(7) and set Wy, = wy>™. Namely
(uk, Wi) is the solution of (8) satisfying (9) and (7). Let (u., W,) be the limit given in
Theorem 2.1 and set w, = W,1/@ ™), Suppose that I'(t) is a smooth, closed and orientable
hypersurface satisfying I'(t) NOQ = @ for all t € [0,T]. Also assume that T'(t) smoothly
moves with a normal velocity V,, from Q¥(t) to Q¥(t), and u, is continuous in Qr and
smooth on Q%, and w, is smooth on Q2. Then the following relations hold.

wy(t) = wy, in QF;
( Uyt = Au* ' mn Q‘»},
2-m
_ Wy _ _Bu*
) 1;;—0, 2—mV"_ 5 onT,
81;/* =0 on 09 x (0,T),
[ U = Ug on *(0) x {0}.

When (my, my, ms,my) = (1,1, m,1) with m > 1, we put Wy, = w* for any solution
(uk, wy) to (4). Then (ux, W) becomes a solution to

{ up = Au — kulW in , (13)

Wi = —mkuW in .

Taking the fast reaction limit of (13) under the boundary condition (7) and an initial
condition
uli=o = uo, Wli=o = wo™ in Q, (14)

we can similarly derive the same conclusions as those of Theorem 2.1 where A = 1/m.
Thus we obtain the following theorem. Here we use the notation Q¥(¢), Q¥(t), I'(t), Q%,
Q% and I defined by (2) and (12) where w, = W,'/™ with m > 1.

Theorem 2.3 Set (mq,mg,m3,my) = (1,1,m,1) where m > 1. Let (ug,wy) be the
solution of (4) under the initial-boundary conditions (6)-(7) and set Wy, = wi™. Namely
(ur, W) is the solution of (13) satisfying (14) and (7). Set w, = W™ for the limit
(us, W,) given in Theorem 2.1 where (8), (9) and (11) are replaced by (13), (14) and

/ (= (us = \W.) G, + Vi, - VC} dadt = / (o = Muwo™) C(0)dz  (15)
Qr Q

with X = 1/m, respectively. Suppose that T'(t) is a smooth, closed and orientable hyper-
surface satisfying I'(t) N O = 0 for all t € [0,T]. Also assume that T'(t) smoothly moves
with a normal velocity V,, from Q%(t) to Q¥(t), and u, is continuous in Qr and smooth
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- on Q%, and w, is smooth on Q%. Then the following relations hold.

w*(t) = Wo, in Q%a
( Uit = A, in QF,
uy, =0, w—O—Vn = _c'?u* onT,
 bu m on
81;=0 on 0 x (0,T),
[ U =g on *(0) x {0}.

3 Singular limits in Case (m;,mg, m3, my) = (1,m,1,1):
immovable interfaces

A free boundary appears in the fast reaction limit also in this case; however, this free
boundary does not move.

Throughout this section, we impose (H1) on the initia datum (ug,wp) again, and
assume m > 1. Under the assumption (H1), there exists a unique solution (u, wg) of the
initial-boundary value problem (4),(6) and (7) satisfying (10).

We give a result on the convergence of (ug, w).

Theorem 3.1 Set (m;,mq,m3,myq) = (1,m,1,1) where m > 1. Let (ux, wi) be the
solution of (4) under the initial and boundary conditions (6) and (7). Then there erist
subsequences {u, } and {wy,} of {ux} and {wi}, respectively, and functions u,, w. and a
distribution U, such that

us,us 7 € L®(Qr) NL*(0,T; H'(Q)), wy € L*(Qr), U, € H™Y(Qr), (16)
0<u,w, <M, uww,=0 ae inQr, U, >0 in HYQr), (17)
Uk, — Us strongly in LP(Qr)(Vp > 1), a.e. in Q,

weakly in L*(0,T; H*(Q)) and weakly * in L®(Qr), (18)
Wk, — W, weakly in LP(Qr)(Vp > 1) and weakly * in L*(Qr), (19)

m 12
‘Vuk_zn — U, weakly in H '(Qr) (20)

as k, tends to infinity. Moreover u., w. and U, satisfy

// {_ (iu*m - w*) G+ Eu*%‘—vm% : V(} dzdt
- m m (21)

4(m —1)
* m?2 H_I(QT)<U*’C>H3(QT) =0

for all ¢ € HY(QT).
We can prove U, = |Vu, s |2 € L}(Qr) under additional conditions. Here we use the

notation Q¥(t), Q¥ (¢), ['(t), @%, Q% and I" defined by (2) and (12). Then we can give an
explicit equation of motion for the free boundary.



Theorem 3.2 Let u,,w., U, be the functions satisfying (16)-(20). Suppose that T'(t) is a
smooth, closed and orientable hypersurface satisfying T'(t) N0 = O for allt € [0,T]. Also
assume that I'(t) smoothly moves with a normal velocity V, from Q¥(t) to Q¥(t), and u.
is continuous in Qr and smooth on Q%, and w, is smooth on Q%. Then the following
relations hold.

Vao=0onl, thatis, Q“(t)=Q%(0), Q“(t) = Q¥(0), I'(t) = I'(0);
w,(t) =wo, U.=|VuZ]>  inQp

Usy = Au,  in Q% = Q¥(0) x (0,7),

Uy =0 onI' =T(0) x (0,7),

R 0,7),

ov
Us = Ug on 2*(0) x {0}.

See [5] for the proofs of Theorems 3.1 and 3.2.

4 Singular limits in Case (m;, my, m3,my) = (m,1,1,1):
vanishing interfaces

In this case the non-diffusive reactant w consumes much faster than diffusive one u in
the limit as & — oo. This fact makes the propagation speed of I'(t) too rapid. At least
if m > 2, then Q"(t) spread too rapidly for us to follow its boundary I'(¢): actually we
cannot observe any free boundary.

Throughout this section, we impose the following assumptions on the initial data:

(H2) (uo,wo) € C*(Q) x C*(Q) satisfy
up(z)wo(z) =0, 0<wup(z) < M,, 0<wy(z)< M,
for any x € 2, where a € (0, 1) represents a Holder exponent and

M, := max |ug|, M, := max |wp|.
€N z€eQ

(H3) uo holds the homogeneous Neumann boundary condition:

8’11,0
5;—0 on dN.

We can derive the following result on the singular limit of (4) (see [5]).

Theorem 4.1 Set (my,ma,ms,ms) = (m,1,1,1) where m > 1. Let (uy,wy) be the
solution of (4) under the initial and boundary conditions (6) and (7). Then

up — us  in CO(Qy) as k — oo,
wy =0 inC'(Qx[e,T]) ask— o0 foranyee (0,T),
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where u.(z,t) belongs to C**(Qr) and satisfies the heat equation in the whole domain as
follows :

Ust = Au, in Qr,
%’i‘ =0 on 89 x (0,T),
Ui = Up on 2 x {0}.
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