

On Critical Exponents of Matroids and Linear Codes

Keisuke Shiromoto（keisuke＠kumamoto－u．ac．jp）
Department of Mathematics and Engineering， Kumamoto University， 2－39－1，Kurokami，Kumamoto 860－8555，Japan

Abstract

The critical exponent of a matroid is one of the important parameters in matroid theory which is related to the critical problem（cf．［6］）．A representable matroid over $G F(q)$ is corresponding to a linear code over $G F(q)$ ．In this note，we give a bound on critical exponents of linear codes and give a construction of linear codes which attain the equality of the bound．

1 Preliminaries

Let E be a finite set and $\rho: 2^{E} \rightarrow \mathbb{Z}^{+} \cup\{0\}$ be a function．$M=(E, \rho)$ is called a matroid if M has the following properties：
（R1）If $X \subseteq E$ ，then $0 \leq \rho(X) \leq|X|$ ．
（R2）If $X \subseteq Y \subseteq E$ ，then $\rho(X) \leq \rho(Y)$ ．
（R3）If X and Y are subsets of E ，then

$$
\rho(X \cup Y)+\rho(X \cap Y) \leq \rho(X)+\rho(Y)
$$

We refer the reader to［9］and［11］for the basic definitions in matroid theory．
For a matroid $M=(\rho, E)$ ，the characteristic polynomial $p(M ; \lambda)$ of M is defined by

$$
p(M ; \lambda)=\sum_{X \subseteq E}(-1)^{|X|} \lambda^{\rho(E)-\rho(X)}
$$

Let M be a matroid representable over $G F(q)=\mathbb{F}_{q}$ ．It is well known that $p\left(M ; q^{k}\right) \geq 0$ ， for all $k \in \mathbb{Z}^{+}$．Then the critical exponent $c(M ; q)$ of M is defined by

$$
c(M ; q)= \begin{cases}\infty, & \text { if } M \text { has a loop } \\ \min \left\{j \in \mathbb{Z}^{+}: p\left(M ; q^{j}\right)>0\right\}, & \text { otherwise }\end{cases}
$$

Thus if M has no loops, then $p\left(M ; q^{k}\right)>0$ for all $k \geq c(M ; q)$. For a matroid M which is representable over \mathbb{F}_{q}, one of the critical problems is the problem of determining the critical exponent $c(M ; q)$ (cf. $[6,1])$. However, this is difficult in general.

The support and weight of each vector $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}$ is given by

$$
\begin{aligned}
\operatorname{supp}(\boldsymbol{x}) & :=\left\{i: x_{i} \neq 0\right\} ; \\
\operatorname{wt}(\boldsymbol{x}) & :=|\operatorname{supp}(\boldsymbol{x})| .
\end{aligned}
$$

Similarly, the support and weight of each subset $B \subseteq \mathbb{F}_{q}^{n}$ are defined as follows:

$$
\begin{aligned}
\operatorname{Supp}(B) & :=\bigcup_{\boldsymbol{x} \in B} \operatorname{supp}(x) \\
\operatorname{wt}(B) & :=|\operatorname{Supp}(B)|
\end{aligned}
$$

Let C be an $[n, k]$ code over \mathbb{F}_{q}, that is, a k-dimensional subspace of the vector space \mathbb{F}_{q}^{n}. Let G be a generator matrix of C, that is, a $k \times n$ matrix over \mathbb{F}_{q} whose rows form a basis for C. Set $E:=\{1,2, \ldots, n\}$. For each subset $X \subseteq E$, the punctured code, denoted by $C \backslash X$, is the linear code obtained by deleting the coordinate X from each codeword in C. It is easy to check that if we define a function ρ by $\rho(X)=\operatorname{dim} C \backslash(E-X)$, for any $X \subseteq E$, then $M_{C}=(E, \rho)$ is a matroid, conversely, if M is a representable matroid over \mathbb{F}_{q}, then there exists a linear code C such that $M=M_{C}$ (cf. [11, 9]). Thus, for an $[n, k]$ code over \mathbb{F}_{q}, the characteristic polynomial $p(C ; \lambda)$ of C is defined by

$$
p(C ; \lambda)=\sum_{X \subseteq E}(-1)^{|X|} \lambda^{k-\operatorname{dim} C \backslash X}
$$

and the critical exponent $c(C ; q)$ of C is defined by

$$
c(C ; q)= \begin{cases}\infty, & \text { if } \operatorname{Supp}(C) \neq E \\ \min \left\{j \in \mathbb{Z}^{+}: p\left(C ; q^{j}\right)>0\right\}, & \text { otherwise }\end{cases}
$$

For any subset $X \subseteq E$, the shortened code, denoted by C / X, is the linear code obtained by deleting the (zero) coordinates X from each codewords $\boldsymbol{x} \in C$ with $\operatorname{supp}(\boldsymbol{x}) \cap X=\emptyset$. Crapo and Rota ([4]) prove the following theorem widely known as the Critical Theorem (cf. Theorem 2 in [1]).

Lemma 1 (The Critical Theorem) Let C be an $[n, k]$ code over \mathbb{F}_{q}. For any $X \subseteq E$ and any $m \in \mathbb{Z}^{+}$, the number of ordered m-tuples ($\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}$) of codewords $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}$ in C with $\operatorname{supp}\left(\boldsymbol{v}_{1}\right) \cup \cdots \cup \operatorname{supp}\left(\boldsymbol{v}_{m}\right)=X$ is $p\left(C / X ; q^{m}\right)$.

From Lemma 1, if there exists at least one set of m codewords $V=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}\right\}$ in C with $\operatorname{Supp}(V)=E$, then $p\left(C ; q^{m}\right)>0$ and so $c(C ; q) \leq m$. For $0 \leq r \leq k$ and any $X \subseteq E$, let $A_{X}^{(r)}$ be the number of r-dimensional subcodes D of C with $\operatorname{Supp}(D)=X$. We note that the polynomial

$$
W_{C}^{(r)}(x, y)=\sum_{i=0}^{n} A_{i}^{(r)} x^{n-i} y^{i}
$$

is the r-th support weight enumerator of C, where $A_{i}^{(r)} \sum_{X \in\binom{E}{i}} A_{X}^{(r)}$ (cf. [5]).
Then we have the following result:

Proposition 2 Let C be an $[n, k]$ code over \mathbb{F}_{q} having generator matrix G and set $E=$ $\{1,2, \ldots, n\}$. The following are equivalent:
(1) $c(C ; q)=m$.
(2) $\min \left\{r: 0 \leq r \leq k, A_{E}^{(r)} \neq 0\right\}=m$.
(3) m is the smallest positive integer such that there exists $a(k-m)$-dimensional subspace U of \mathbb{F}_{q}^{k} which does not contain any of the n column vectors of G.

2 Bounds on Critical Exponents

Let G be a $k \times n$ matrix over \mathbb{F}_{q} which contains as columns exactly one multiple of each nonzero vector in \mathbb{F}_{q}^{k}. Then the $\left[n=\left(q^{k}-1\right) /(q-1), k\right]$ code C having generator matrix G is a dual Hamming code and C^{\perp} is a $[n, n-k, 3]$ Hamming code. It is also known that, for any $r, 1 \leq r \leq k$,

$$
\sum_{X \in\binom{E}{i}} A_{X}^{(r)}= \begin{cases}{\left[\begin{array}{l}
k \\
r_{2}
\end{array}\right]_{q}} & i=\left(q^{k}-q^{k-r}\right) /(q-1) \\
0 & \text { otherwise }\end{cases}
$$

where $\left[\begin{array}{l}k \\ { }_{r}\end{array}\right]_{q}$ denotes the Gaussian binomial coefficient (cf. [5]). So we have that $i=n$ if and only if $r=k$.

Proposition 3 If C is a dual Hamming $[n, k]$ code over \mathbb{F}_{q}, then

$$
\min \left\{r: 0 \leq r \leq k, A_{E}^{(r)} \neq 0\right\}=k
$$

A maximum distance separable (MDS) code over \mathbb{F}_{q} is an $[n, k]$ code over \mathbb{F}_{q} whose minimum Hamming weight is $n-k+1$. According to Theorem 6, p. 321, in [7], the number A_{w} of codewords of weight w in an MDS $[n, k]$ code over \mathbb{F}_{q} is given by

$$
\begin{equation*}
A_{w}=\binom{n}{w}(q-1) \sum_{j=0}^{w-d}(-1)^{j}\binom{w-1}{j} q^{w-d-j} \tag{1}
\end{equation*}
$$

for $d \leq w \leq n$, where $d=n-k+1$.
Theorem 4 Let C be an MDS $[n, k]$ code over \mathbb{F}_{q}. Then

$$
c(C ; q) \leq 2
$$

Remark 5 From Proposition 3, for a $[q+1,2]$ MDS code C over \mathbb{F}_{q}, we have that $c(C ; q)=2$. So the bound is sharp.

It is known that a uniform matroid $U_{n, m}$ representable over \mathbb{F}_{q} is corresponding to a matroid obtained by an MDS $[n, m]$ code over \mathbb{F}_{q} (cf. [9]). As a corollary of the above theorem, we have the following.

Corollary 6

$$
c\left(U_{n, m} ; q\right) \leq 2 .
$$

In general, we have the following bound on critical exponents for linear codes over finite fields.

Theorem 7 Let C be an $[n, k]$ code over \mathbb{F}_{q} having generator matrix G. If $d^{\perp}>q$, then

$$
c(C ; q) \leq k-d^{\perp}+2
$$

except when C is a binary codes such that $d^{\perp}=n$ is odd or such that $n=2^{k}-1$ and $d^{\perp}=3$ in which case $c(C ; q)=k-d^{\perp}+3$, where C^{\perp} denotes the minimum Hamming weight of the dual code C^{\perp}.

As a corollary of the above theorem, we have the following bound on critical exponents for representable matroids over finite fields.

Corollary 8 Let M be a rank k representable simple matroid over \mathbb{F}_{q} with girth g. If $g>q$, then

$$
c(M ; q) \leq k-g+2,
$$

except when M is a binary matroid isomorphic to $U_{2 l+1,2 l}$ or $P G(k-1,2)$ in which case $c(M ; q)=k-g+3$.

Example 9 Let C be the ternary [11,5] code having generator matrix

$$
G=\left(\begin{array}{lllllllllll}
1 & 0 & 0 & 0 & 0 & 1 & 2 & 2 & 2 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 2 & 2 & 2 & 1 \\
0 & 0 & 1 & 0 & 0 & 2 & 1 & 2 & 0 & 1 & 2 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 2 & 2 & 2 & 1 & 0 & 1
\end{array}\right) .
$$

Then the dual code C^{\perp} is an $[11,6,5]$ quadratic residue code. By a Magma calculation, we have that

$$
A_{E}^{(1)}=0, A_{E}^{(2)}=330, A_{E}^{(3)}=825, A_{E}^{(4)}=110, A_{E}^{(5)}=1,
$$

where $E=\{1,2, \ldots, 11\}$. If M_{C} is the vector matroid obtained from G, then $c\left(M_{C} ; 3\right)=$ $2(=5-5+2)$ and so M_{C} holds the equality in Theorem 7 .

3 A construction of tangential blocks

As defined in [3, 6], for $1 \leq r \leq k-1$, a set M of points of the projective geometry $P G(k-1, q)$ is an r-block over \mathbb{F}_{q} if every $(k-r)$-dimensional subspace in $P G(k-1, q)$ contains at least one point in M. If X is a flat in M, a tangent of X is a $(k-r)$-dimensional subspace U in $P G(k-1, q)$ such that

$$
M \cap U=X
$$

An r-block M is called to be minimal if every point in M has a tangent, and to be tangential if every proper nonempty flat in M of rank not exceeding $k-r$ has a tangent.

Alternatively, a matroid M is a tangential r-block over \mathbb{F}_{q} if the following conditions hold:
(i) M is simple and representable over \mathbb{F}_{q}.
(ii) $p\left(M ; q^{r}\right)=0$.
(iii) $p\left(M / F ; q^{r}\right)>0$ whenever F is a proper nonempty flat of M.

Proposition 10 For any positive integer k, set $K:=\{1,2, \ldots, k\}$. For an $m(1 \leq m \leq$ k), we take an m elements subset $T \in\binom{K}{m}$ and a family \mathcal{V} of $(m-1)$ distinct points $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{m-1} \in P G(k-1, q)$ with $\operatorname{supp}\left(\boldsymbol{v}_{i}\right) \cap T=\emptyset, i=1,2, \ldots, m-1$. Define

$$
\begin{aligned}
& X^{T}:=\{\boldsymbol{x} \in P G(k-1, q): \operatorname{supp}(\boldsymbol{x}) \cap T=\emptyset\} \\
& Y_{\mathcal{V}}^{T}:=\{\boldsymbol{x} \in P G(k-1, q):|\operatorname{supp}(\boldsymbol{x}) \cap T|=1\} \backslash\left\{\boldsymbol{v}_{i}+\lambda \boldsymbol{e}_{j}: \boldsymbol{v}_{i} \in \mathcal{V}, \lambda \in \mathbb{F}_{q}-\{0\}, j \in T\right\}, \\
& Z^{T}:=\left\{\boldsymbol{x} \in P G(k-1, q): \operatorname{supp}(\boldsymbol{x}) \in\binom{T}{2}\right\}
\end{aligned}
$$

Then $M:=X^{T} \cup Y_{\mathcal{V}}^{T} \cup Z^{T}$ is a $(k-m)$-block over \mathbb{F}_{q}.
Then we can give a construction of tangential blocks as follows:
Theorem 11 Let M be the set of points in $P G(k-1, q)$ defined in Proposition 10. If $m-1 \leq q^{k-m-1}$, then M is a tangential $(k-m)$-block over $G F(q)$.

From the definition, M is a minimal r-block over \mathbb{F}_{q} if and only if $c(C ; q)=r+1$ for the linear code having generator matrix G whose column vectors are all points in M (cf. p. 168 in [3]).
Corollary 12 Let M be the set of points defined in Proposition 10. If $m=2$, then the linear code C over \mathbb{F}_{q} whose generator matrix obtained from M attains the bound in Theorem 7.
Proof. From the definition of M, it finds that $d^{\perp}=3$, since there exist three column vectors in G which are linearly dependent. Thus we have that

$$
k-2+1=k-1=c(C ; q) \leq k-3+2=k-1 .
$$

Example 13 Let C be the binary $[22,5]$ code over \mathbb{F}_{q} having generator matrix

$$
G=\left(\begin{array}{llllllllllllllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1
\end{array}\right) .
$$

From Theorem 11, G forms a binary tangential 3-block. Moreover, we have that

$$
\begin{aligned}
p\left(M_{C} ; \lambda\right) & =\lambda^{5}-22 \lambda^{4}+175 \lambda^{3}-610 \lambda^{2}+9-4 \lambda-448 \\
& =(\lambda-1)(\lambda-2)(\lambda-4)(\lambda-7)(\lambda-8) .
\end{aligned}
$$

If M_{C} is the vector matroid obtained from G, then $c\left(M_{C} ; 2\right)=4(=5-3+2)$ and so M_{C} holds the equality in Theorem 7.

References

[1] T. Britz, Extensions of the critical theorem, Discrete Mathematics 305 (2005), pp.5573.
[2] T. Britz, Higher support matroids, Discrete Mathematics 307 (2007), pp.2300-2308.
[3] T. Brylawski and J. Oxley, The Tutte polynomial and its applications; Matroid applications, pp. 123-225, Cambridge Univ. Press, Cambridge, 1992.
[4] H. Crapo and G.-C. Rota, On the Foundations of Combinatorial Theory: Combinatorial geometries, MIT Press, Cambridge, MA, London, 1970 (Preliminary Edition).
[5] T. Kløve, Support weight distribution of linear codes, Discrete Mathematics 106/107 (1992), pp. 311-316.
[6] J. P. S. Kung, Critical problems, in: Matroid Theory, Seattle, WA, 1995, Contemporary Mathematics, 197, American Mathematical Society, Providence, RI, 1996, pp. 1-127.
[7] F. J. MacWilliams and N. J. A. Sloane, TheTheory of Error-Correcting Codes, Amsterdam, The Netherlands: North-Holland, 1977.
[8] J. Oxley, Colouring, packing and the critical problem, Quart. J. Math. Oxford (2), 29 (1978), pp. 11-22.
[9] J. Oxley, Matroid Theory, Oxford University Press, New York, 1992.
[10] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003.
[11] D. J. A. Welsh, Matroid Theory, Academic Press, London, 1976.

