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Numerical analysis of Io’s atmosphere based on a model
Boltzmann equation: Unsteady behavior during eclipse

Shingo Kosuge
Department of Mechanical Engineering and Science, Kyoto University

1 Introduction
$Io$ is a satellite of Jupiter. The observations made by NASA’s spacecrafts in the $1970s$

(Pioneer and Voyager probes) revealed the existence of volcanic activities and a thin
atmosphere mainly composed of sulfur dioxide $(SO_{2})$ gas. The surface temperature of Io
is considered to vary according to the sunlight between about 90 $K$ and 130 $K$ (except
near volcanos). The phase transition of $SO_{2}$ occurs in this temperature range: the $SO_{2}$

gas condenses to form $a$ (very thin) layer of frost on the ground during the night and,
as a result, the atmosphere may almost vanish; conversely, the frost sublimates and the
atmosphere is restored during the daytime. The dynamics of $Io$ ’s atmosphere under
sublimation and condensation of $SO_{2}$ has been studied for a long time (see, e.g., Refs. [1,
2, 3, 4] and references therein).

The above-mentioned process of atmospheric collapse and reformation is expected to
take place also during and after eclipse, during which Io is in the shadow of Jupiter.
Moore et. al. [5] tackled such a problem for the first time: they carried out a numerical
analysis of the Boltzmann equation by the direct simulation Monte Carlo (DSMC) method
[6, 7] to investigate the unsteady one-dimensional behavior of the atmosphere in eclipse.
In Ref. [5], the atmosphere was treated as a binary mixture of $SO_{2}$ and another minor
component ( $SO$ or $O_{2}$ ), the latter of which is (partially) noncondensable. The results
in Ref. [5] reveal the effect of the noncondensable gas: a trace of noncondensable gas
carried by the condensing flow of $SO_{2}$ accumulates on the surface at the early stage of
eclipse and then acts as a barrier to further condensation to delay the atmospheric collapse
significantly. In the meantime, little information on the time evolution and structure of
the flow field is available from Ref. [5], mainly because of the stochastic noise inherent in
the DSMC results.

In this report, we introduce our recent results in Refs. [8, 9], where essentially the
same problem as in Ref. [5] was studied through a different approach after making some
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simplifications. First we adopted the model Boltzmann equation proposed in Ref. [10],
instead of the full Boltzmann equation, for computational convenience. Second we focused
on the effect of the noncondensable gas only, because it was expected to be dominant;
we omitted all other effects taken into account in the previous DSMC analysis [5], such
as the effect of plasma impingement from the outer space, that of molecular internal
structure, and so on. Then we could perform an accurate deterministic computation by
means of a finite-difference method at a reasonable computational cost. In spite of those
simplifications, however, the overall behavior (the column density of $SO_{2}$ ) during eclipse
obtained in our study is quite similar to the previous result [5]. Moreover, as will be seen
later in Sec. 5, our solutions with higher temporal and spatial resolution reveal some new
phenomena (waves in the profiles of macroscopic quantities and an oscillatory motion),
which were not explored in Ref. [5].

2 Problem and assumptions

Consider an atmospheric column over a fixed point on Io’s surface near the equator
belonging to the sub-Jovian hemisphere.1 The ground is located at $X_{1}=0$ and is covered
by the frost of $SO_{2}$ , where $X[=(X_{1}, X_{2}, X_{3})]$ be the space rectangular coordinates.2 The
atmosphere extends over the half-space $X_{1}>0$ and is composed of $SO_{2}$ vapor and another
noncondensable gas, $SO$ or $O_{2}^{3}$ The eclipse starts at time $t=0$ and lasts until $t=120$
$\min$ . The initial atmosphere is assumed to be in a saturated equilibrium state at rest
with uniform temperature $T_{0}$ . The surface temperature $T_{w}$ , which coincides with $T_{0}$ at
$t=0$ , varies with time according to the change of insolation [see Eq. (11) below] and then
condensation or sublimation of $SO_{2}$ may occur. We investigate unsteady behavior of the
atmospheric column during eclipse under the following assumptions: (i) the behavior of
the atmosphere is described by the model Boltzmann equation for mixtures proposed in
Ref. [10]; (ii) the vapor ( $SO_{2}$ gas) obeys the complete-condensation boundary condition
on the surface [see Eq. (7) below]; (iii) the noncondensable gas ($SO$ or $O_{2}$ ) obeys the
diffuse-reflection boundary condition on the surface; (iv) the surface and the atmosphere
are horizontally uniform [in the length scale of the pressure scale height $H$ $(\sim 7-9 km)$ of
the atmosphere], so that the problem can be treated as a spatially 1-$D$ problem depending
on $X_{1}$ only.

$\overline{1As}$aresult of tidal locking, Io always shows the same side (the sub-Jovian hemisphere) to Jupiter, so that the eclipse
does not much effect the anti-Jovian hemisphere.

2The curvature of the surface is ignorable in the present problem.
3In reality, $SO$ has not been established as a perfectly noncondensable gas in $Io$ ’s circumstances.
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3 Formulation

In the following, the vapor ( $SO_{2}$ gas) and noncondensable gas ( $SO$ or $O_{2}$ ) will be referred
to as species $A$ and $B$ , respectively. The Greek letters $\alpha$ and $\beta$ will be used to represent
the species, i.e., $\alpha,$ $\beta=\{A, B\}.$

Let us denote the velocity distribution function (VDF) of molecules of species $\alpha$ as
$F^{\alpha}=F^{\alpha}(t, X_{1}, \xi)$ , where $\xi[=(\xi_{1}, \xi_{2}, \xi_{3})]$ is the molecular velocity. The macroscopic
quantities, such as the number density $n^{\alpha}$ , flow velocity $v^{\alpha}[=(v_{1}^{\alpha}, v_{2}^{\alpha}, v_{3}^{\alpha})]$ , pressure $p^{\alpha},$

and temperature $T^{\alpha}$ of species $\alpha$ , are defined as the moments of $F^{\alpha}$ as follows:

$n^{\alpha}= \int F^{\alpha}d\xi, v^{\alpha}=\frac{1}{n^{\alpha}}\int\xi F^{\alpha}d\xi,$

(1)
$p^{\alpha}=kn^{\alpha}T^{\alpha}= \frac{1}{3}\int m^{\alpha}|\xi-v^{\alpha}|^{2}F^{\alpha}d\xi,$

where $m^{\alpha}$ is the molecular mass of species $\alpha,$
$k$ is the Boltzmann constant, and $d\xi=$

$d\xi_{1}d\xi_{2}d\xi_{3}$ . The domain of integration is the whole space of $\xi$ . The corresponding quanti-

ties of the total mixture, i.e., the number density $n$ , flow velocity $v[=(v_{1}, v_{2}, v_{3})]$ , pressure
$p$ , and temperature $T$ of the mixture, are given by

$n= \sum_{\alpha=A,B}n^{\alpha}, v=\sum_{\alpha=A,B}m^{\alpha}n^{\alpha}v^{\alpha}/\sum_{\alpha=A,B}m^{\alpha}n^{\alpha},$

(2)
$p=knT= \sum_{\alpha=A,B}(p^{\alpha}+\frac{1}{3}m^{\alpha}n^{\alpha}|v^{\alpha}-v|^{2})$ .

Note that the horizontal components of the flow velocity will be ignored (i.e., $v_{2}^{\alpha}=v_{3}^{\alpha}=$

$v_{2}=v_{3}=0)$ in the actual analysis, whereas they are left in the formulation.

3.1 Model Boltzmann equation

The model Boltzmann equation in Ref. [10] for the present problem may be written as
follows:

$\frac{\partial F^{\alpha}}{\partial t}+\xi_{1}\frac{\partial F^{\alpha}}{\partial X_{1}}-g\frac{\partial F^{\alpha}}{\partial\xi_{1}}=K^{\alpha}(M^{\alpha}-F^{\alpha}) , (\alpha=A, B)$. (3)

Here, $g(=1.8m/s^{2})$ is the gravitational acceleration on Io, which is treated as a constant
since the scale height $H$ is much smaller than Io’s radius $R$ $(=1820 km)$ . For the same
reason, the effect of planetary rotation (the Coriolis and centrifugal force) is omitted. The
$K^{\alpha}$ and $M^{\alpha}$ are defined by

$K^{\alpha}= \sum_{\beta=A,B}K^{\beta\alpha}n^{\beta},$

(4)
$M^{\alpha}=n^{\alpha}( \frac{m^{\alpha}}{2\pi kT^{(\alpha)}})^{3/2}\exp(-\frac{m^{\alpha}|\xi-v^{(\alpha)}|^{2}}{2kT(\alpha)})$.
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The $K^{\beta\alpha}(=K^{\alpha\beta})$ is a positive constant, that determines the collision frequency of an
$\alpha$-species molecule with $\beta$-species molecules via $K^{\beta\alpha}n^{\beta}$ . Thus, the above $K^{\alpha}$ corresponds
to the total collision frequency of an $\alpha$ molecule. The velocity $v^{(\alpha)}$ and temperature $T^{(\alpha)}$

of the Maxwellian $M^{\alpha}$ are defined by

$v^{(\alpha)}=v^{\alpha}+ \frac{2}{m^{\alpha}K^{\alpha}}\sum_{\beta=A,B}\mu^{\beta\alpha}\Omega^{\beta\alpha}n^{\beta}(v^{\beta}-v^{\alpha})$, (5a)

$T^{(\alpha)}=T^{\alpha}- \frac{m^{\alpha}}{3k}|v^{(\alpha)}-v^{\alpha}|^{2}$

$+ \frac{4}{K^{\alpha}}\sum_{\beta=A,B}\frac{\mu^{\beta\alpha}\Omega^{\beta\alpha}n^{\beta}}{m^{\beta}+m^{\alpha}}(T^{\beta}-T^{\alpha}+\frac{m^{\beta}}{3k}|v^{\beta}-v^{\alpha}|^{2})$ , (5b)

where $\mu^{\beta\alpha}[=m^{\beta}m^{\alpha}/(m^{\beta}+m^{\alpha})]$ is the reduced mass and $\Omega^{\beta\alpha}(=\Omega^{\alpha\beta})$ is an additional
positive constant; the positivity of $T^{(\alpha)}$ follows if $\Omega^{\beta\alpha}\leq K^{\beta\alpha}$ . Note that Eq. (1) is
necessary to complete the model equation because $n^{\alpha},$ $v^{\alpha}$ , and $T^{\alpha}$ appear in Eqs. (4) and
(5).

This model was designed in such a way that, by adjusting $\Omega^{\beta\alpha}$ , the momentum and
energy exchanges between different species can be the same as those for (pseudo-)Maxwell
molecules with an arbitrary value of the angular cutoff parameter (see, e.g., Ref. [11]). In
the present study, however, this property is not used for specifying the value of $\Omega^{\beta\alpha}$ . We
first specify $K^{AA}$ by the relation

$K^{AA}=4d^{2}(\pi kT_{0}/m^{A})^{1/2}$ , (6)

where $d(=7.16\cross 10^{-10}m)$ is the nominal diameter of an $SO_{2}$ molecule. This rela-
tion means that the molecular mean free path with respect to $SO_{2}-SO_{2}$ collisions in an
equilibrium state with temperature $T_{0}$ for the model equation is equal to that for the
hard-sphere gas with molecular diameter $d$ . Then, for simplicity, $K^{BB},$ $K^{BA}$ , and $\Omega^{BA}$

are all assumed to be identical with $K^{AA}$ [note that $\Omega^{AA}$ and $\Omega^{BB}$ are unnecessary; see
Eq. (5) $]$ . Therefore, pseudo-Maxwell behavior of the molecules is not enforced in the
present study.

3.2 Initial and boundary conditions

The boundary condition on the surface is written as follows. For $X_{1}=0$ and $\xi_{1}>0,$

$F^{\alpha}=n_{w}^{\alpha}( \frac{m^{\alpha}}{2\pi kT_{w}})^{3/2}\exp(-\frac{m^{\alpha}|\xi|^{2}}{2kT_{w}})$ , (7a)

$n_{w}^{A}=p_{w}^{A}/kT_{w}, n_{w}^{B}=-( \frac{2\pi m^{B}}{kT_{w}})^{1/2}\int_{\xi_{1}<0}\xi_{1}F^{B}d\xi$ . (7b)
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Here $p_{w}^{A}$ is the saturated vapor pressure of $SO_{2}$ at temperature $T_{w}$ and is given by the
Clausius-Clapeyron relation:

$p_{w}^{A}=\Pi\exp(-\Gamma/T_{w})$ ,
(8)

$(\Pi=1.516\cross 10^{13}$ Pa and $\Gamma=4510K)$ .

In the present problem, the variation of $T_{w}$ and corresponding $p_{w}^{A}$ with time would induce
the unsteady motion of the atmosphere through the boundary condition (7).

The initial condition is written as follows. At $t=0,$

$F^{\alpha}=n_{0}^{\alpha}( \frac{m^{\alpha}}{2\pi kT_{0}})^{3/2}\exp(-\frac{m^{\alpha}(|\xi|^{2}+2gX_{1})}{2kT_{0}})$ . (9)

Here $n_{0}^{\alpha}$ is the initial number density of species $\alpha$ on the surface $(X_{1}=0);n_{0}^{A}=p_{0}^{A}/kT_{0}$

with $p_{0}^{A}$ being the saturated vapor pressure at temperature $T_{0}$ [i.e., $p_{0}^{A}$ is given by Eq. (8)

with $T_{w}$ being replaced by $T_{0}$ ]. The initial temperature $T_{0}$ will be chosen in the next
section. The concentration $\chi^{B}$ of the noncondensable gas in the initial atmospheric column
is written as

$\chi^{B}=\int_{0}^{\infty}n^{B}(t=0)dX_{1}/\int_{0}^{\infty}n(t=0)dX_{1}$

(10)
$= \frac{(n_{0}^{B}/m^{B})}{(n_{0}^{A}/m^{A})+(n_{0}^{B}/m^{B})}.$

In the following, the amount of the noncondensable gas will be specified by $\chi^{B}$ , instead
of $n_{0}^{B}.$

3.3 Surface temperature

The surface temperature $T_{w}$ is determined by the same differential equation as that in
Ref. [5]:

$\frac{dT_{w}}{dt}=\{\begin{array}{ll}A\sigma(T_{{\rm Min}}^{4}-T_{w}^{4}) , for 0\leq t\leq 120\min,A\sigma(T_{E}^{4}-T_{w}^{4}) , for t>120\min,\end{array}$ (11)

where $\sigma$ is the Stefan-Boltzmann constant and $A=\epsilon/C$ with $\epsilon$ being the bolometric
emissivity and $C$ the heat capacity per unit area of the surface. The $T_{E}$ is an equilibrium
temperature defined as

$T_{E}=\{\begin{array}{ll}(T_{{\rm Max}}-T_{{\rm Min}})\cos^{1/4}\theta+T_{{\rm Min}}, for \theta\leq 90^{o},T_{{\rm Min}}, for \theta>90^{o},\end{array}$ (12)

where $\theta$ is the solar zenith angle (SZA), which varies with time according to the diurnal
motion of the sun. The maximum and minimum of $T_{E}$ are fixed as $T_{{\rm Max}}=120K$ and
$T_{{\rm Min}}=90K$ throughout the following analysis.
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$\frac{}{}\frac{TABLE1:Simulationcases}{CaseT_{0}(K)Longitude(^{\circ})GasB(\chi^{B})A^{-1}(J/m^{2}K),111069-(0)350}$

2 110 69 $SO$ (0.35) 350
3 110 69 $SO$ (0.35) 700
4 110 69 $SO$ (0.35) 175

$5 110 69 O_{2}(0.35) 350$
$6 110 69 O_{2}(0.07) 350$$7 115 52 -(0) 350$
8 115 52 $SO$ (0.22) 350

$9 120 351 -(0) 350$
10 120 351 $SO$ (0.03) 350

The initial temperature $T_{0}$ appearing in Eq. (9) is chosen as $T_{0}=T_{E}(t=0)$ using
Eq. (12), after we specify the location of the atmospheric column (i.e., the longitude and
latitude) and calculate the SZA $\theta$ as a function of time $t$ (note that $t=0$ is defined to
be the time when eclipse starts). It should be noted that the above $T_{w}$ is influenced only
by the insolation and not by the atmospheric behavior (i.e., not by the latent heat and
sensible heat from the gas), since the former is dominant. We solve Eq. (11) with the
initial condition $T_{w}(t=0)=T_{0}$ to obtain $T_{w}(t)$ beforehand.

4 Numerical analysis

We first eliminate the molecular-velocity variables $\xi_{2}$ and $\xi_{3}$ from the initial-boundary
value problem (3), (7), and (9) by introducing appropriate marginal VDF’s. Then, the
reduced problem with three independent variables $t,$ $X_{1}$ , and $\xi_{1}$ is solved by a finite-
difference method. We used (i) an implicit scheme in Ref. [12] where the derivatives with
respect to $X_{1}$ and $\xi_{1}$ are expressed by a $2nd$-order up-wind finite-difference (see, e.g.,
Ref. [13] $)$ and (ii) $2nd$-order Runge-Kutta (Heun’s) scheme along the characteristics of
Eq. (3) in combination with the interpolation method devised in Ref. [14]. In the latter
scheme, because of the properties of the method in Ref. [14], the transient waves tend to
be more accurately captured without overshoots in the profiles of the macroscopic quan-
tities (and in those of the VDF’s). However, as in the cubic interpolated pseudo-particle
(CIP) method [15], equations for the derivatives of $F^{\alpha}$ must be solved simultaneously.
Thus the latter requires larger amount of computations (and involves some difficulty in
the treatment of boundary conditions for the derivatives). To compensate the increased
amount of computations, we performed a parallel computing (the latter is an explicit
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$f_{\neg}^{*}$

$t$ (lllin) $t( \min)$

FIGURE 1: Surface Temperature $T_{w}$ and $SO_{2}$ column density vs. time in the case of $T_{0}=110$ $K.$

The initial $SO_{2}$ column density is $1.2386\cross 10^{20}\neq/m^{2}$ . The dotted line in the right panel indicates the

theoretical value for pure $SO_{2}$ atmosphere in an isothermal saturated equilibrium state at rest when
$A^{-1}=350J/m^{2}K.$

scheme).
The results shown in the next section were obtained by scheme (ii), while the details

of the method are omitted here [some test runs with scheme (i) were also performed and
gave roughly the same results]. In the computation, we limit the range of $X_{1}$ up to $X_{1}\sim$

$282-313$ km and impose the specular-reflection condition at the upper $boundary^{4}$ ; the
minimum grid intervals for $T_{0}=110,115$ , and 120 $K$ are, respectively, 15.9 $m,$ $8.3m$ , and
4.3 $m$ at $X_{1}=0$ ; the maximum intervals are about 0.3–1.1 km at the upper boundary.
The range of $\xi_{1}$ is limited as $|\xi_{1}|\leq 8c_{0}$ , where $c_{0}[=(2kT_{0}/m^{A})^{1/2}]$ is about 173 $m/s$ for
$T_{0}=115K$ ; the minimum and maximum grid intervals are 0.005$c_{0}$ at $\xi_{1}=0$ and $0.045c_{0}$

at $\xi_{1}=\pm 8c_{0}$ , respectively. The time steps are about 4.7 ms for $T_{0}=110$ and 115 $K$ and
2.3 ms for 120 $K.$

5 Results

We consider Cases $1-10$ listed in Table 1; for simplicity, the column located in the
equator (or latitude $0^{o}$ ) is considered in all the cases. The values of parameters in Table 1
were cited from Ref. [5].

Figure 1 shows the variations of the surface temperature and of the column density of
$SO_{2}$ in the case of $T_{0}=110$ K. The column density of pure $SO_{2}$ atmosphere (Case 1)
decreases significantly at the end of eclipse, whereas in the case of mixtures the decrease

4This condition was used to fix the total amount of the noncondensable gas in the column. $A$ vacuum condition for the
vapor, i.e., $F^{A}(\xi_{1}<0)=0$ at the upper boundary, was also used in some test runs and gave essentially the same results.

106



(a)

$X_{1}$ (km) $X_{1}$ (km) $X_{1}$ (km)

(b)

FIGURE 2: Profiles of the macroscopic quantities at every 2 minutes during the first 10 minutes after
ingress. (a) Cases 7 and 8, and (b) Cases 9 (solid hne) and 10 (dashed line). In (b), each of the dashed
lines approaches the corresponding solid line for the same $t$ as $X_{1}arrow\infty.$

is hindered by the noncondensable gas [see Fig. 3(b) below]. The effects of the gas species
$(i.e., the$ molecular $mass$ ratio $m^{B}/m^{A})$ , concentration $\chi^{B}$ , and heat capacity of the surface
$(\sim A^{-1})$ are also examined. Except for some minor differences, the overall behavior of
the column shown in Fig. 1 seems to be close to the corresponding result of the previous
DSMC analysis (i.e., Fig. 8 in Ref. [5]).

5.1 During eclipse

Figure 2 shows the profiles of macroscopic quantities at the beginning of eclipse. In Cases
7 and 9 (pure $SO_{2}$ ), a fast condensing flow is induced, and, as a result, an expansion wave
is sent upward. The expansion wave is then followed by a shock wave appearing near
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(a) Case 7 (b) Cabe 8

FIGURE 3: Number density profiles during eclipse. (a) Case 7 and (b) Case 8. The solid line indicates
profiles at every 10 minutes $(t=0,10, \ldots, 120\min)$ , and the dashed line those at $t=5,15,25$, and 35
$\min$ in (a) and those at $t=5$ and 15 $\min$ in (b).

the surface. While propagating upward, the shock wave stretches rapidly because the
background pressure decays exponentially with altitude (thus the local mean free path
grows exponentially). In Cases 8 and 10 (mixture), the condensing flow is relatively slow
because of the hindrance by the noncondensable gas [see Fig. 3(b) below]. The expansion
wave is sent as in the pure $SO_{2}$ case, but is immediately followed by a relatively weak
compression wave.

Figure 3 shows the profiles of the number density in Cases 7 and 8 during eclipse. In
Case 7 (pure $SO_{2}$ ), the number density decreases at all altitudes until the end of eclipse
except at $t \sim 10-30\min$ . During that time period, the number density at high altitudes
$(X_{1}>\sim 100 km)$ is increased temporarily by the passage of the shock wave seen in Fig. 2.
In Case 8 (mixture), the number density of $SO_{2}$ decreases only in the neighborhood of
the surface and hardly changes at high altitudes. This is because the noncondensable gas,
which is carried by the condensing flow of $SO_{2}$ to the surface and accumulates there, forms
the partial barrier to the atmospheric collapse. The number density of the noncondensable
gas near the surface increases rapidly until $t \sim 20\min$ and then starts to decrease because
of the upward self diffusion.

Figures 4 and 5 show, respectively, the profiles of the flow velocity and temperature in
Cases 7 and 8 during eclipse. The oscillatory behavior seen in the figures is produced by
waves which, as those in Fig. 2, appear in the lower atmosphere and propagate upward
successively. In Case 7, the amplitude of oscillation is large and thus a very fast flow
and high temperature may appear instantaneously, especially at high altitudes. The
oscillation decays rapidly with time and almost ceases until $t \sim 40\min$ . In Case 8, while
the amplitude is small compared to the pure $SO_{2}$ case and decays with time, the oscillation
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$t( \min)$
120

(a) Case 7

80 40 $0$

$t( \min)$

$t(r\iota\tau i\mathfrak{n})$

(b) Case 8

FIGURE 4: Profiles of the flow velocity $v_{1}^{A}$ at every minute (left panel) and the cross sections at $X_{1}\simeq 40$

and 80 km (right panel). (a) Case 7 and (b) Case 8. The thick line in the left panel indicates profiles at
every 5 minutes.

continues until the end of eclipse except near the surface. The oscillation period measured
from the right panels of Figs. 4(b) and 5(b) is about 10 $\min$ , whereas the Brunt-V\"ais\"al\"a

period for the initial isothermal atmosphere computed by a textbook formula is about
11.5 $\min$ . In Case 8, a fast condensing flow in the close vicinity of the surface remains
until the end of eclipse. This is because the $SO_{2}$ density on the surface is kept much
higher than the saturation density by the effect of the noncondensable gas [see Fig. $3(b)$ ].
The temperature in Case 8 oscillates around the initial temperature $(T_{0}=115K)$ in most
parts of the atmosphere. The atmosphere is cooled only near the surface via conduction.

5.2 After egress

Figure 6 shows the profiles of the number density in Cases 7 and 8 after egress. In Case
7, the number density starts to increase immediately after egress and the initial density
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(a) Case 7

$120 80 40 0$$t( \min)$
$\prime(\min)$

(b) Case 8

FIGURE 5: Profiles of the temperature $T$ at every minute (left panel) and the cross sections at $X_{1}\simeq 40$

and 80 km (right panel). (a) Case 7 and (b) Case 8. The thick line in the left panel indicates profiles at
every 5 minutes.

(a) Case 7 (b) Case 8

FIGURE 6: Number density profiles after egress. (a) Case 7 and (b) Case 8. The solid line indicates
profiles at every 10 minutes $(t=120,130, \ldots, 180\min)$ , and the dashed line those at $t=125,135,145,$
and 155 $\min.$
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on the surface is restored at $t \sim 160\min$ . In Case 8, the number density of $SO_{2}$ remains
almost unchanged during the first 10 minutes after egress until the surface temperature
and the corresponding saturation density increase sufficiently and the sublimation starts.
The noncondensable gas is swept upward by the sublimating flow of $SO_{2}$ and forms a
layer centered around $X_{1}=10$ km at $t=180 \min$ . Correspondingly, a hollow is seen in
the profile of $SO_{2}$ density.

6 Concluding remarks

The unsteady one-dimensional behavior of Io’s atmosphere during and after eclipse
caused by sublimation and condensation of $SO_{2}$ is studied via a numerical analysis of the
model Boltzmann equation by means of a finite-difference method. To concentrate on
the key physics in this problem, we took into account the effect of the noncondensable
gas ( $SO$ or $O_{2}$ ) only and ignored other effects included in the previous DSMC analysis
[5] (e.g., the plasma impingement, molecular internal structure, and so on). In spite of
the simplifications, the column density of $SO_{2}$ in eclipse is quite similar to the previous
DSMC result. Thus, we may say that the atmospheric collapse and the interruption by a
noncondensable gas are, as a whole, correctly reproduced in the present simulation.

The solutions obtained in the present approach may have some restrictions because of
the simplifications. However, they were able to clarify some detailed structures, such as
the waves in the macroscopic quantities traveling in the column and an oscillatory motion
in the atmosphere during eclipse, that had not been noticed in Ref. [5]. Indeed, it is a
formidable task to find such detailed structures of the atmospheric behavior by the DSMC
simulation, especially in the case of unsteady problems. Therefore, we may emphasize
that the present results provide a deeper understanding of the phenomena found in Ref. [5]
and thus complement this reference.
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