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Asymptotic stability for viscous conservation law on the
half line and its application

Itsuko Hashimoto
Toyama national college of technology,

Toyama 939-8630, Japan
E-mail: itsuko@nc-toyama.ac.j p

Abstract
In this talk, we consider two different topics about viscous conser-

vation law. In the first half, we consider the way of analysis for viscous
conservation law on the self-similar line, and in the second half, we
present the topic of radial symmetric solution of Burgers equation.
The first part of this research is a joint work with Professor Heinrich
Freist\"uhler in Konstanz university.

1 Analysis of viscous conservation law on the
self-similar line

We consider the initial-boundary value problem for viscous conservation law:

$\{\begin{array}{l}u_{t}+f(u)_{x}=u_{xx}, x\in \mathbb{R}, t>0,u(x, 0)=u_{0}, \lim_{xarrow\pm\infty}u_{0}(x)=u\pm\cdot\end{array}$ (1.1)

We would like to consider the asymptotic behavior of the solution to (1.1)
with non-convex flux. For viscous conservation laws with non-convex flux
on the half line, Liu-Nishihara [13] showed the asymptotic stability of shock
wave. Matsumura-Nishihara [8] and Freist\"uher-Serre [1] considered the asymp-
totic stability of viscous shock wave on $\mathbb{R}$ . On the other hand, Weinberger
[9] analyzed the solution of (1.1) on self-similar lines $(\xi=x/t)$ . Hereinafter,
$V(\xi)$ stands for Riemann solution of (1.1).

Theorem 1.1 (Weinberger [9]). Let $u_{0}$ is bounded and $f”$ be continuously
differentiable. Suppose that

The points $a$ such that $f”(a)=0$ are isolated. (1.2)
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If the closed interval $[r, s]$ contains no point of discontinuity of $V$ , then

$\lim_{tarrow\infty}\max_{r\leq\xi\leq s}|u(t, \xi t)-V(\xi)|=0.$

Theorem 1.2 (Serre-Freist\"uhler [1]). For every $c\in R$ and any function
$u_{0}(x)\in c+L^{1}(R)$ with

$\int_{-\infty}^{\infty}u_{0}(x)-cdx=0,$

the solution of viscous conservation law $u_{t}+f(u)_{x}=u_{xx}$ with initial data
$u_{0}(x)$ satisfies

$\lim_{tarrow\infty}\Vert u(t, \cdot)-c\Vert_{L^{1}}=0.$

As an application of [1] and [9], the following results are obtained.

Theorem 1.3. Let $u_{0}$ is bounded, $f\in C^{1}$ and $(V-u_{0})(x)\in L^{1}$ Then, the
solution $u$ of (1.1) satisfies:

$\lim_{tarrow\infty}u(\xi t, t)=V(\xi)$ , in $L^{1}$

In this article, we also consider viscous conservation law on the half line:

$\{\begin{array}{ll}u_{t}+f(u)_{x}=u_{xx}, x>0, t>0,u(t, O)=u_{-}, t>0,\lim_{xarrow\infty}u(t, x)=u+, t>0,u(O, x)=u_{0}(x) , x>0.\end{array}$ (1.3)

For the problem (1.3), we obtain the following result.

Theorem 1.4. Let $u_{0}$ is bounded, $u_{-}<0<u+andu_{0}-V(\xi)\in L^{\infty}$ . Then,
independently of what $u_{+}$ is, the $\mathcal{S}$olution of (1.3) $\mathcal{S}atisfies$ :

$\lim_{tarrow\infty}u(t, \xi t)=V(\xi)$ , for a.e. $\xi>0.$

This Section proceeds as follows: The outline of the proof of Theorem 1.3
is carried out in Section 1.1. We describe the outline of the proof of Theorem
1.4 in Section 1.2.

1.1 Conservation law on $R$

In this section, we introduce the outline of the proof of Theorem 1.3. The
following properties are associated with conservation law $u_{t}+f(u)_{x}=u_{xx}.$
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Corollary 1.5. Let $\{S(t) : L^{\infty}(R)arrow L^{\infty}(R);t\geq 0\}$ be semigroup $a\mathcal{S}sociated$

with (1.1). Then, the following properties are satisfied:
1. (Comparison) If $a\leq b$ , then $S(t)a\leq S(t)ba.e$ . for all $t>0.$

2. (Conservation) If $a-b\in L^{1}(R)$ , then for all $t>0,$ $S(t)a-S(t)b\in$
$L^{1}(R)$ and $\int_{-\infty}^{\infty}S(t)a-S(t)bdx=\int_{-\infty}^{\infty}a-bdx.$

3. (Contraction) If $a-b\in L^{1}(R)$ , then $\int_{-\infty}^{\infty}|S(t)a-S(t)b|dx$ is a non-
increasing function of $t\geq 0.$

We note that the conservation property 2 does not satisfied on the half
space.

Outline of proof of Theorem 1.3
Let $u$ and $\tilde{u}$ be the solution of (1.1) and $u_{0}-\tilde{u}_{0}\in L^{1}$ , where $u_{0}$ and $\tilde{u}_{0}$ are
the initial value of $u$ and $\tilde{u}$ , respectively. Then according to the property 3
of Corollary 1.5, the following contraction property is satisfied:

$\frac{d}{dt}\Vert u(t, \cdot)-\tilde{u}(t, \cdot)\Vert_{L^{l}}\leq 0$. (1.4)

Next we define a new variable $\xi$ by $x=\xi t$ and let $w(t, \xi)$ $:=u(t, \xi t),\tilde{w}(t, \xi)$ $:=$

$\tilde{u}(t, \xi t)$ . Then using the estimate (2), we have

$\Vert w(t, \cdot)-\tilde{w}(t, \cdot)\Vert_{L^{1}}\leq\frac{1}{t}\Vert w(1, \cdot)-\tilde{w}(1, \cdot)\Vert_{L^{1}}$ , (1.5)

where we derive (1.5) by

$\Vert w(t, \cdot)-\tilde{w}(t, \cdot)\Vert_{L^{1}}=\int_{-\infty}^{\infty}|(w-\tilde{w})(t, \xi)|d\xi=\int_{-\infty}^{\infty}|(u-\tilde{u})(t, \xi t)|d\xi$

$= \frac{1}{t}\int_{-\infty}^{\infty}|(u-\tilde{u})(t, x)|dx\leq\frac{1}{t}\int_{-\infty}^{\infty}|(u-\tilde{u})(1, x)|dx$

$= \frac{1}{t}\int_{-\infty}^{\infty}|(w-\tilde{w})(1, \xi)|d\xi=\frac{1}{t}\Vert w(1, \cdot)-\tilde{w}(1, \cdot)\Vert_{L^{1}}.$

From (1.5), we can see that $w(t, \xi)$ makes a Cauchy sequence. This shows
that there exists a solution $\overline{w}$ which fills the following formula.

$\lim_{tarrow\infty}\Vert w(t, \cdot)-\overline{w}(t, \cdot)\Vert_{L^{1}}=0$. (1.6)

At the last, we consider what $\overline{w}$ is. In our case of $L^{1}$ space, the statement
by Serre-Freist\"uhler [1] cover the condition (1.2) in the result of Weinberger
[9], then we see that

$\lim_{tarrow\infty}w(t, \xi)=\lim_{tarrow\infty}u(t, \xi t)=V(\xi)$ . (1.7)

Then, $\overline{w}(\xi)=V(\xi)$ and $\lim_{tarrow\infty}u(t, \xi t)=V(\xi)$ , for a.e. $\xi\in R.$ $\square$
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1.2 Conservation law on the half space

In this section, we show the outline of the proof of Theoreml.4. For this
purpose, we prepare some proposition.

Proposition 1.6. Under the condition of Theoreml.4, the following inequal-
ities are satisfied.

$\lim_{tarrow+\infty}\sup_{x\in \mathbb{R}+}u(t, x)\leq u_{+}$
, (1.8)

$\lim_{tarrow+\infty}\inf_{x\in \mathbb{R}+}u(t, x)\geq u_{-}$ . (1.9)

$\frac{OutlineofproofofProposition1.6}{LetM:=\sup_{x>0}u_{0}(x)andchoos}e\overline{M}>M$

close to $M$ . Then there exists
$m_{1}’\in[u_{+},\overline{M}]$ such that $f’(m_{1}’)=s_{1}$ , where $s_{1}$ is the gradient of line segment
from $(u_{+}, f(u_{+}))$ and $(\overline{M}, f(\overline{M}))$ . Choose $m_{1}>m_{1}’$ and close to $m_{1}’$ . Then
we can choose $d_{0}$ sufficient large such that a travelling wave $\phi(x-d_{0})$ of the
half line is over $u_{0}(x)$ . On the other hand, we consider a function $\psi_{0}(x)$ which
satisfies $m_{1}$ at $x=0$ and $\overline{M}$ on $x>0$ . By using the theory of Liu-Nishihara
[13], the solution with initial data $\phi_{0}(x)$ $:=\phi(x-d_{0})$ tends to travelling wave

$\phi$ and

$u(t, x)\leq S(t)\phi_{0}, t>0.$

On the other hand, by using the theory of Liu-Matsumura-Nishihara [3],
$\psi_{0}(x)$ tends to a rarefaction wave and

$u(t, x)\leq S(t)\psi_{0}, t>0.$

Noting that $f’(m_{1})>s_{1}$ and using maximum principle, we can see that
$\lim_{tarrow\infty}\sup_{x>}u(t, x)\leq m_{1}$ . We repeat this argument, then we have the inequality

(1.8).
On the other hand, setting $\overline{u}_{0}(x)$ $:= \min\{u_{0}(x), u_{-}\}$ and using the theory

of Freist\"uhler and Serre [2] for the half space, we get (1.9). $\square$

We note that together with Propositionl.6 and the following proposition
show Theorem 1.4.

Proposition 1.7. Under the condition of Theoreml.4, the following inequal-

. ities are $\mathcal{S}$atisfied.
$\lim\sup\max_{xtarrow+\infty\leq\xi t}u(t, x)\leq V(\xi)$

, (1.10)

$\lim_{tarrow+}\inf_{\infty}\min_{x\geq\xi t}u(t, x)\geq V(\xi)$ . (1.11)
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Outline of proof of Proposition 1. 7
First we prove the inequality (1.10). Let $u$ be the solution of (1.4) with an
initial data $0$ at $x=0$ , and $u+$ for $x>0$ . Using Proposition 1.6, comparison
principle and the theory of rarefaction wave by Liu-Matsumura-Nishihara
[3], we have

$\lim_{tarrow+}\sup_{\infty}u(t, x)\leq\psi^{R}(\xi)$ , where $\xi=\frac{x}{t}$ . (1.12)

As $\psi^{R}(\xi)$ is Riemann solution and monotone increasing, we can rewrite (1.12)
as

$\lim\sup\max u(t, x)\leq V(\xi)$ . (1.13)
$tarrow+\infty x\leq\xi t$

Next we proceed to prove inequality (1.11). For $\xi\in[0, (f’)^{-1}(u_{+})]$ , there
exists $\tilde{v}>0$ such that $f’(\tilde{v})=\xi$ . Choose $v_{0}$ close to $\tilde{v}$ and make line segment
$l$ connect from $(M_{-}, f(M_{-}))$ and $(v_{0}, f(v_{0}))$ with a gradient $f’(\tilde{v})$ , where $M_{-}$

is intersect point of $l$ and $f$ under $u_{-}$ . Then there exists $d_{0}>0$ such that
$u_{0}(x)\geq\phi(x-d_{0})$ , where $\phi$ is travelling wave connect from $M_{-}$ and $v_{0}$ . By
comparison principle, we see that

$u(t, x)\geq\phi(x-ct-d_{0}(t)) , t>0.$

From the monotonicity of $\phi$ , we see that

$\min_{x\geq\xi t}u(t, x)\geq\min_{x\geq\xi t}\phi(x-ct-d_{t})\geq\phi(\xi t-ct-d_{t})$

(1.14)
$=\phi((\xi-c)t-d_{t})$ .

Noting that $f’(\tilde{v})=\xi>c$ , the right most term of (1.14) tends to $\phi(+\infty)=v_{0}$

as $tarrow\infty$ . Since $v_{0}$ can taken suitably close to $\tilde{v}$ , we have

$\lim_{tarrow+}\inf_{\infty}\min_{x\geq\xi t}u(t, x)\geq\tilde{v}=(f’)^{-1}(\xi)=V(\xi)$ . (1.15)

For $\xi\geq(f’)^{-1}(u_{+})$ , choose $v_{0}’$ close to $u+$ and make line segment $l’$ connect
$(M_{-}’, f(M_{-}’))$ and $(v_{0}’, f(v\’{o})$ ) with a gradient $f’(u_{+})$ , where $M_{-}’$ is intersect
point of $l’$ and $f$ under $u_{-}$ . Then there exists $d_{0}>0$ such that $u_{0}(x)\geq$

$\phi(x-d_{0})$ , where $\phi$ is travelling wave connect from $M_{-}’$ and $v_{0}’$ . By the same
strategy of (1.14), we see that

$\lim_{tarrow+}\inf_{\infty}\min_{x\geq\xi t}u(t, x)\geq v+\cdot$ (1.16)

By (1. 15) and (1.16), we get (1.11). $\square$

$\frac{ProofofTheorem1.4}{Bytheequa1ity(1}.10)$

and (1.11) of proposition 1.7, we see that

$\lim_{tarrow\infty}u(t, \xi t)=V(\xi)$ . $\square$
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2 Radially symmetric solutions for Burgers
equation

We consider Burgers equation on multi-dimensional space,

$\frac{\partial u}{\partial t}+(u\cdot\nabla)u=\mu\triangle u, (t>0, x\in \mathbb{R}^{n})$ , (2.1)

where $\mu$ is positive constant. In this paper, we study radially symmetric
solution for (2.1) on the exterior domain $|x|>r_{0}$ for some positive constant
$r_{0}$ . For this purpose, we transform the unknown function $u(t, x)$ in (2.1) to
$v(t, r)$ by means of $u\equiv(x/r)v(t, r)$ , where $r$ is defined by $r:=|x|$ . Then we
have the initial boundary value problem for Burgers equation:

$\{\begin{array}{ll}v_{t}+vv_{r}=\mu(v_{rr}+(n-1)(\frac{v}{r})_{r}) , r>r_{0}, t>0,v(t, r_{0})=v_{-}, \lim_{rarrow+\infty}v(t, r)=v+, t>0,v(O, r)=v_{0}(r) , r>r_{0},\end{array}$ (2.2)

where the initial data $v_{0}$ is assumed to satisfy $v_{0}(r_{0})=v_{-}$ and $\lim_{rarrow+\infty}v_{0}(r)=v+$

as the compatibility conditions.
For viscous conservation laws on the half line, T.-P. Liu, A. Matsumura

and K. Nishihara [12] investigated the case where the flux is convex and the
corresponding Riemann problem for the hyperbolic part admits a transonic
rarefaction wave. It was shown in [12] that depending on the signs of the
characteristic speeds, asymptotic states of the solutions are classified into
three cases, that is, stationary wave, rarefaction wave and composite wave.
In this article, we show that even for the solution of (2.2), the asymptotic
behavior is similar to that of [12]. We consider the following three cases:
(a) $v_{-}<v_{+}\leq 0,$ $(b)0=v_{-}<v_{+}$ and (c) $v_{-}<0<v_{+}$ . In case (a), as
all characteristic speeds of corresponding Riemann problem are negative, we
can expect that the solution tend to a stationary wave $\phi$ which is defined
through the stationary problem corresponding to (2.2),

$\{\begin{array}{ll}(\frac{1}{2}\phi^{2})_{r}=\mu(\phi_{rr}+(n-1)(_{r}^{4})_{r}) , r>r_{0},\phi(r_{0})=v_{-},\lim_{rarrow+\infty}\phi(r)=v+, \end{array}$ (2.3)

and we have the following theorem.

Theorem 2.1 ([4]). Suppose (a) $hold_{\mathcal{S}}$ . Assume that $v_{0}\in H^{1}$ Let $\phi(r)$ be
the $\mathcal{S}$tationary solution $sati\mathcal{S}$fying the problem (2.3). Then the initial-boundary
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value problem (2.2) has a unique solution $v$ globally in time satisfying

$v-\phi\in C^{0}([r_{0}, \infty);H^{1}) , (v-\phi)_{r}\in L^{2}(r_{0}, T;H^{1}) , T>0,$

and the asymptotic behavior

$\lim_{tarrow\infty}\sup_{r>r_{0}}|v(r, t)-\phi(r)|=0.$

In addition to the above, $a\mathcal{S}sumev_{+}=0$ and $v_{0}\in L^{1}$ Then the $\mathcal{S}olution$

satisfies the following quantitative estimate;

$\Vert(v-\phi)(t)\Vert_{H^{1}}\leq C(1+t)^{-\frac{1}{4}}.$

In case (b), as all characteristic speeds of corresponding Riemann problem
are positive, then we can expect that the solution tend to a rarefaction wave
$\psi^{R}$ which is defined by $\psi^{R}((r-r_{0})/t)=\psi^{R}(s)$ for $t>0$ , where $\psi^{R}(s)$ is
defined by

$\psi^{R}(s)$ $=$ $\{\begin{array}{ll}0, s\leq 0(=v_{-}) ,\mathcal{S}, 0\leq \mathcal{S}\leq v+,v+, v_{+}\leq \mathcal{S}.\end{array}$ (2.4)

We have the following theorem.

Theorem 2.2 ([4]). Suppose (b) holds. Assume that $v_{0}-v+\in H^{1}$ Let
$\psi^{R}$ be the rarefaction wave satisfying (2.4). Then the initial-boundary value
problem (2.2) has a unique solution $v$ globally in time satisfying

$v-v+\in C^{0}([r_{0}, \infty);H^{1})$ , $(v-v_{+})_{r}\in L^{2}(r_{0}, T;H^{1})$ , $T>0,$

and the asymptotic behavior

$\lim_{tarrow\infty}\sup_{r>r_{0}}|v(r, t)-\psi^{R}(\frac{r-r_{0}}{t})|=0.$

In addition to the above, assume $v_{0}-v+\in L^{1}$ Then the solution satisfies
the following quantitative estimate:

$\Vert v-\psi^{R}(_{\overline{t}})\Vert_{H^{1}}\leq C(1+t)^{-\frac{1}{4}}\log^{2}(2+t)$ .

We consider case (c). As the characteristic speed of the corresponding
Riemann problem changes from negative to positive, we can expect that the
solution tends to a superposition of a stationary wave and a rarefaction wave.
The statement of the theorem for the case (c) is as follows.
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Theorem 2.3 ([4]). Suppose (c) holds. Assume that $v_{0}-v_{+}\in H^{1}$ Let
$\phi(r)$ be the stationary wave satisfying problem (2.3) and $\psi^{R}((r-r_{0})/t)$ be
rarefaction wave defined by (2.4). Then the initial-boundary value problem
(2.2) has a unique solution $v$ globally in time $\mathcal{S}atisfying$

$v-v+\in C^{0}([r_{0}, \infty);H^{1})$ , $(v-v_{+})_{r}\in L^{2}(r_{0}, T;H^{1})$ , $T>0,$

and the asymptotic behavior

$\lim_{tarrow\infty}\sup_{r>r_{0}}|v(r, t)-\phi(r)-\psi^{R}(\frac{r-r_{0}}{t})|=0.$

In addition to the above, assume $v_{0}-v+\in L^{1}$ Then the solution satisfies
the following quantitative estimate:

$\Vert(v-\phi-\psi^{R})(t)\Vert_{H^{1}}\leq C(1+t)^{-\frac{1}{4}}\log^{2}(2+t)$ .

Case (a), (b) and (c) are investigated in Section 2.1, 2.2 and 2.3, respec-
tively. We also give the outline of the proof of Theorem 2.1, 2.2 and 2.3.

2.1 Asymptotic stability of Stationary wave
Reformulation of the problem As the properties of the stationary solution
$\phi$ which is given by (2.3), we have the following lemma.

Lemma 2.4. The stationary problem (2.3) has a unique smooth solution
$\phi(r)$ satisfying $v_{-}\leq\phi(r)<v+\leq 0$ and $\phi_{r}(r)>0$ for $r>r_{0}$ . Moreover, $\phi$

satisfies the following properties as $rarrow\infty$ :
(i) If $v+=0$ , then we have

$|\phi(r)|\sim\{\begin{array}{ll}(r\log r)^{-1}, n=2,r^{-n+1}, n\geq 3.\end{array}$ (2.5)

(ii) If $v+<0$ , then we have

$|\phi(r)-v_{+}|\sim e^{\frac{|v_{+}|}{\mu}(r-r_{0})}$ . (2.6)

Let $\phi$ be the stationary solution satisfying (2.3). We introduce perturba-
tion $w(r, t)$ by

$v(t, r)=\phi(r)+w(t, r)$ .
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Then we rewrite our original problem (2.2) in terms of $w(t, r)$ as

$\{\begin{array}{ll}w_{t}+\frac{1}{2}(w^{2}+2\phi w)_{r}=\mu(w_{rr}+(n-1)(\frac{w}{r})_{r}) , r>r_{0}, t>0,w(r_{0}, t)=0, t>0,w(r, 0)=w_{0}(r) . r>r_{0}.\end{array}$ (2.7)

The theorem for the reformulated problem (2.7) we shall prove is

Theorem 2.5. Assume $v_{-}<v+\leq 0$ and $v_{0}\in H^{1}$ Then, initial boundary
value problem (2.7) has a unique solution $w$ globally in time

$w\in C([r_{0}, \infty);H^{1}) , w_{x}\in L^{2}(r_{0}, \infty;H^{1}) , T>0,$

and the asymptotic behavior

$\lim_{tarrow\infty}\sup_{r>r_{0}}|w(r, t)|=0.$

Main Theorem 2.1 is a direct consequence of Theorem 2.5. Theorem 2.5 itself
is proved by combining the local existence theorem together with an a priori
estimate.

To state the local existence theorem precisely, we define the solution set
for any interval $I\subset R$ and constant $M>0$ by

$X_{M}(I)= \{w\in C(I;H_{0}^{1});w_{r}\in L^{2}(0, T;H^{1}), \sup_{t\in I}||w(t)||_{H^{1}}\leq M\}$ , (2.8)

then we state the local existence theorem.

Proposition 2.6 (local existence). For any positive constant $M_{f}$ there exists
a positive constant $t_{0}=t_{0}(M)$ such that if $||w_{0}||_{H^{1}}\leq M$ , the initial boundary
value problem (2.7) has a unique solution $w\in X_{2M}([0, t_{0}])$ .

Since we can prove Proposition 2.6 by a standard iterative method, we
omit the proof. Next, let us state the a priori estimate.

Proposition 2.7 (a priori estimate).
Suppose that the same $a\mathcal{S}$sumptions as in Theorem 2.1 hold true. Then if

$w\in X_{\infty}([O, T])$ is the solution of the problem (2.7) for some $T>0$ , it holds

$\Vert w(t)\Vert_{H^{1}}^{2}+\int_{0}^{t}\Vert\sqrt{\phi_{r}}w(\tau)\Vert_{L^{2}}^{2}+\mu\Vert w_{r}(\tau)\Vert_{H^{1}}^{2}+\mu\Vert\frac{w(\tau)}{r}\Vert_{L^{2}}^{2}d\tau\leq C(\Vert w_{0}\Vert_{H^{1}}^{2}+1)$ .

(2.9)
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Outline of proof of Proposition 2.7
$\overline{Multiplying(2.7)}$by waywndand integrate the resultant equality over $[r_{0}, \infty],$

we get

$( \int_{r0}^{\infty}\frac{1}{2}w^{2}dr)_{t}+\frac{1}{2}\int_{r_{0}}^{\infty}\phi_{r}w^{2}dr+\mu\int_{r_{0}}^{\infty}w_{r}^{2}dr+\mu(n-1)\int_{r0}^{\infty}\frac{w^{2}}{2r^{2}}dr=0,$

(2.10)

where we use the relation

$\int_{r_{0}}^{\infty}(\frac{w}{r})_{r}wdr=-\int_{r_{0}}^{\infty}(\frac{w}{r})w_{r}dr=-\int_{r_{0}}^{\infty}(\int_{r_{0}}^{w}\frac{\eta}{r}d\eta)_{r}+\frac{w^{2}}{2r^{2}}$ dr.

Integrating (2.10) in terms of $[0, t]$ , we obtain

$\Vert w(t)\Vert_{L^{2}}^{2}+\int_{0}^{t}\Vert\sqrt{\phi_{r}}w(\tau)\Vert_{L^{2}}^{2}+\mu\Vert w_{r}(\tau)\Vert_{L^{2}}^{2}+\mu(n-1)\Vert\frac{w(\tau)}{r}\Vert_{L^{2}}^{2}d\tau=\Vert w_{0}\Vert_{L^{2}}^{2}.$

(2.11)

The higher order estimate is proved in the similar fashion. We omit the proof
here. $\square$

Next we present the decay rate of the solution of the reformulated problem
(2.7).

Proposition 2.8 (Decay rate). Suppose that $v_{+}=0$ and the $\mathcal{S}ame$ conditions
as in Proposition 2.7 hold true. Then, if $w_{0}\in L^{1}$ , we have

$\Vert w(t)\Vert_{H^{1}}\leq C(1+t)^{-\frac{1}{4}}$ , (2.12)

for $t>0.$

The stability of degenerate stationary wave for viscous conservation laws
was investigated by Ueda-Nakamura-Kawashima in [16]. We use the time
weighted energy method developed in [10] and omit the proof here.

2.2 Asymptotic stability of the Rarefaction wave
Reformulation of the problem. We reformulate our problem (2.2) by
introducing the perturbation $w(t, r)$ by

$v(t, r)=\psi(t, r)+w(t, r)$ ,
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where $\psi(t, r)$ is the smooth approximation of the rarefaction wave defined by
the problem

$\{\begin{array}{l}\psi_{t}+\psi\psi_{r}=\psi_{rr}, r\in \mathbb{R}, t>-1,\psi(r, -1)=[Case]\end{array}$ (2.13)

The idea of approximation of rarefaction wave is introduced by Kawashima
and Tanaka (2004) [11]. For its proof, we refer the reader to [11].

Using (2.2) and (2.13), we rewrite our original problem (2.2) as

$\{\begin{array}{ll}w_{t}+\frac{1}{2}(w^{2}+2\psi w)_{r}=\mu(w_{rr}+(n-1)(\frac{w+\psi}{r})_{r}) , r>r_{0}, t>0,w(t, r_{0})=0, t>0, (2.14)w(0, r)=w_{0}(r) . r>r_{0}.\end{array}$

The theorem for the reformulated problem (2.14) we shall prove is

Theorem 2.9. $As\mathcal{S}ume0=v_{-}<v+andv_{0}-v+\in H^{1}$ Then initial
boundary value problem (2.14) has a unique solution $w$ globally in time

$w\in C([r_{0}, \infty);H^{1}) , w_{x}\in L^{2}(r_{0}, \infty;H^{1}) , T>0,$

and the asymptotic behavior

$\lim_{tarrow\infty}\sup_{r>r0}|w(r, t)|=0.$

Main Theorem 2.2 is a direct consequence of Theorem 2.9. Theorem
2.9 itself is proved by combining the local existence theorem together with
the a priori estimate. We define the solution set $X_{M}(I)$ as in (2.8), and
the statement of the local existence theorem is the same as that of previous
section. The statement for an a priori estimate is as follows.

Proposition 2.10 (a priori estimate).
Suppose that the same assumptions as in Theorem 2.2 hold true. Then, if

$w\in X_{\infty}([O, T])$ is the solution of the problem (2.14) for some $T>0$ , it holds

$\Vert w\Vert_{H^{1}}^{2}+\int_{0}^{t}\Vert\sqrt{\psi_{r}}w(\tau)\Vert_{L^{2}}^{2}+\mu\Vert w_{r}(\tau)\Vert_{H^{1}}^{2}+\mu\Vert\frac{w(\tau)}{r}\Vert_{L^{2}}^{2}d\tau\leq C(\Vert w_{0}\Vert_{H^{1}}^{2}+1)$.

(2.15)

for $t\in[O, T]$ , where $C$ is a positive constant independent of $T.$
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$\frac{OutlineofproofofProposition2.10}{Mu1tip1ying(2.14)byw,wehav}e$

$\frac{\partial}{\partial t}(\frac{1}{2}w^{2})+\overline{F}_{r}+\frac{1}{2}\psi_{r}w^{2}+\mu w_{r}^{2}+\mu(n-1)\frac{w^{2}}{2r^{2}}=\mu(n-1)(\frac{\psi_{r}w}{r}-\frac{\psi w}{r^{2}})$ ,

(2.16)

where $\overline{F}$ is defined by

$\overline{F}:=\frac{1}{2}\psi w^{2}+\frac{1}{3}w^{3}-\mu w_{r}w-\frac{w^{2}}{2r}.$

Integrating (2.16) in terms of $r$ over $[r_{0}, \infty]$ , we obtain

$( \int_{r_{0}}^{\infty}\frac{1}{2}w^{2}dr)_{t}+\frac{1}{2}\int_{r_{0}}^{\infty}\psi_{r}w^{2}dr+\mu\int_{r_{0}}^{\infty}w_{r}^{2}dr+\mu(n-1)\int_{r0}^{\infty}\frac{w^{2}}{2r^{2}}dr$

$= \mu(n-1)\int_{r_{0}}^{\infty}\frac{\psi_{r}w}{r}-\frac{\psi w}{r^{2}}$dr.

(2.17)

Now, we estimate the right hand side of (2.17). By using the Young’s in-
equality, the first term of the right hand side of (2.17) is estimated as

$\int_{r_{0}}^{\infty}\frac{\psi_{r}w}{r}dr\leq\Vert w\Vert_{L^{\infty}}\int_{r0}^{\infty}\frac{\psi_{r}}{r}dr$

$\leq\epsilon\Vert w_{r}\Vert_{L^{2}}^{2}+C\Vert w\Vert_{L^{2}}^{2/3}(\int_{r_{0}}^{t}dr+l^{\infty}dr)^{4/3}$
(2.18)

$=:\epsilon\Vert w_{r}\Vert_{L^{2}}^{2}+C\Vert w\Vert_{L^{2}}^{2/3}(I_{1}+I_{2})^{4/3}$

Using the estimate of the rarefaction wave which is derived by Kawashima
and Tanaka [11], we can estimate $I_{1}$ as

$I_{1} := \int_{r_{0}}^{t}\frac{\psi_{r}}{r}dr\leq C(1+t)^{-1}\log(2+t)$ . (2.19)

On the other hand $I_{2}$ is estimated as

$I_{2} := \int^{\infty}\frac{\psi_{r}}{r}dr\leq[\frac{\psi}{r}]_{t}^{\infty}+\int^{\infty}\frac{\psi}{r^{2}}dr\leq(1+t)^{-1}$ (2.20)

By virtue of these two estimates, we rewrite the inequality (2.18) as

$\int_{r_{0}}^{\infty}\frac{\psi_{r}w}{r}dr\leq\epsilon\Vert w_{r}\Vert_{L^{2}}^{2}+C\Vert w\Vert_{L^{2}}^{2/3}(1+t)^{-4/3}\log^{4/3}(2+t)$ . (2.21)
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Applying the inequality (2.21), the second term on the right hand side of
(2.17) is estimated as

$\int_{r_{0}}^{\infty}\frac{\psi w}{r^{2}}dr\leq\Vert w\Vert_{L^{\infty}}\int_{r0}^{\infty}\frac{\psi}{r^{2}}dr$

(2.22)
$\leq\epsilon\Vert w_{r}\Vert_{L^{2}}^{2}+C\Vert w\Vert_{L^{2}}^{2/3}(1+t)^{-4/3}\log^{4/3}(2+t)$ .

Put (2.21) and (2.22) into (2.17), and integrate the resultant inequality in
terms of $t$ over $[0, t]$ to get

$\Vert w\Vert_{L^{2}}^{2}+\int_{0}^{t}\Vert\sqrt{\psi_{r}}w(\tau)\Vert_{L^{2}}^{2}+\mu\Vert w_{r}(\tau)\Vert_{L^{2}}^{2}+\mu(n-1)\Vert\frac{w(\tau)}{r^{2}}\Vert_{L^{2}}^{2}d\tau$

(2.23)
$\leq C(\Vert w_{0}\Vert_{L^{2}}^{2}+1)$ ,

here we have also used Gronwall’s inequality. The higher order estimate is
proved in the similar fashion, we omit here. $\square$

We also derive the decay rate of the solution of the reformulated problem
(2.14). The statement is the following.

Proposition 2.11 (Decay rate). $Suppo\mathcal{S}e$ that the $\mathcal{S}ame$ conditions as in
Proposition 2.10 hold true. Moreover, if $w_{0}\in L^{1}$ , we have

$\Vert w(t)\Vert_{H^{1}}\leq C(1+t)^{-\frac{1}{4}}\log^{2}(2+t) , t>0$ . (2.24)

2.3 Asymptotic stability of Superpositions of Station-
ary wave and Rarefaction wave

Reformulation of the problem. Let $\phi$ and $\psi$ are the stationary wave
satisfying (2.3) and smoothed rarefaction wave defined by (2.13), respectively.
Now, we define $\Phi(t, r)$ as the superposition of stationary wave and rarefaction
wave as

$\Phi(t, r):=\phi(r)+\psi(t, r)$ ,

which is an approximation of our solution. By using (2.3) and (2.13), we
derive that

$\{\begin{array}{ll}\Phi_{t}+(\frac{1}{2}\Phi^{2})_{r}=\mu\Phi_{rr}+\overline{R}, r>r_{0}, t>0,\Phi(t, r_{0})=v_{-}. t>0,\end{array}$

where $\overline{R}$ is defined by

$\overline{R}:=(\phi\psi)_{r}+\mu(n-1)(\frac{\phi}{r})_{r}$
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Then as in the former section, we reformulate our problem (2.2) by introduc-
ing the perturbation $w(t, r)$ by

$v(t, r)=\Phi(t, r)+w(t, r)$ .

Then, we rewrite our original problem (2.2) as

$\{\begin{array}{ll}w_{t}+\frac{1}{2}(w^{2}+2\Phi w)_{r}=\mu(w_{rr}+(n-1)(\frac{w+\psi}{r})_{r})-(\psi\phi)_{r}, w(t, r_{0})=0, t>0, (2.25)w(0, r)=w_{0}(r) , r>r_{0}.\end{array}$

The theorem for the reformulated problem (2.25) we shall prove is

Theorem 2.12. Assume $v_{-}<0<v+andv_{0}-v+\in H^{1}$ Then the initial
boundary value problem (2.25) $ha\mathcal{S}$ a unique solution $w$ globally in time

$w\in C([r_{0}, \infty);H^{1}) , w_{x}\in L^{2}(r_{0}, \infty;H^{1}) , T>0,$

and the asymptotic behavior

$\lim_{tarrow\infty}\sup_{r>r_{0}}|w(t, r)|=0.$

Main Theorem 2.3 is a direct consequence of Theorem 2.12. Theorem 2.12
itself is proved by combining the local existence theorem together with the
a priori estimate. Local existence theorem and the solution set $X_{M}(I)$ is
stated as the same as previous section. The statemant of a priori estimate
and decay rate are as following.

Proposition 2.13 (a priori estimate).
Suppose that the same assumptions as in Theorem 2.3 hold true. Then,

if $w\in X_{\infty}([O, T])$ is the solution of the problem (2.25) for some $T>0$ , it
holds

$\Vert w\Vert_{H^{1}}^{2}+\int_{0}^{t}\Vert\sqrt{\Phi_{r}}w(\tau)\Vert_{L^{2}}^{2}+\mu\Vert w_{r}(\tau)\Vert_{H^{1}}^{2}+\mu\Vert\frac{w(\tau)}{r}\Vert_{L^{2}}^{2}d\tau\leq C(\Vert w_{0}\Vert_{H^{1}}^{2}+1)$ .

(2.26)

for $t\in[O, T]$ , where $C$ is a positive constant independent of $T.$

Proposition 2.14 (Decay rate). Suppose that the same conditions as in
Proposition 2.13 hold true. Then if $w_{0}\in L^{1}$ , we have

$\Vert w(t)\Vert_{H^{1}}\leq C(1+t)^{-\frac{1}{4}}\log^{2}(2+t) , t>0$ . (2.27)
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$\frac{OutlineofproofofProp_{0\mathcal{S}}ition2.13}{Mu1tip1ying(2.25)byw,weget}$

$( \frac{1}{2}w^{2})_{t}+F_{r}+\frac{1}{2}\Phi_{r}w^{2}+\mu w_{r}^{2}+\mu(n-1)\frac{w^{2}}{2r^{2}}$

(2.28)
$= \mu(n-1)(\frac{\psi_{r}w}{r}-\frac{\psi w}{r^{2}})-(\phi\psi)_{r}w,$

where

$F:= \frac{1}{3}w^{3}+\frac{1}{2}\Phi w^{2}-\mu ww_{r}-\mu(n-1)(\frac{2\psi w}{r}+\frac{w^{2}}{2r})$

Integrate (2.28) over $[r_{0}, \infty]$ in terms of $r$ , we have

$( \int_{r_{0}}^{\infty}\frac{1}{2}w^{2})_{t}+\frac{1}{2}\int_{r_{0}}^{\infty}\Phi_{r}w^{2}dr+\mu\int_{r_{0}}^{\infty}w_{r}^{2}dr+\mu(n-1)\int_{r_{0}}^{\infty}\frac{w^{2}}{2r^{2}}dr$

(2.29)
$= \mu(n-1)\int_{r_{0}}^{\infty}\frac{\psi_{r}w}{r}-\frac{\psi w}{r^{2}}-(\phi\psi)_{r}w$ dr.

Similar to $(2.18)-(2.22)$ in the previous section, we estimate the first and
second term of the right hand side of (2.29) as

$| \int_{r_{0}}^{\infty}\frac{\psi_{r}w}{r}-\frac{\psi w}{r^{2}}dr|\leq\epsilon\Vert w_{r}\Vert_{L^{2}}^{2}+C\Vert w\Vert_{L^{2}}^{2/3}(1+t)^{-4/3}\log^{4/3}(2+t)$.

Now we estimate the rightmost term of (2.29).

$\int_{r_{0}}^{\infty}-\phi\psi_{r}wdr\leq\Vert w\Vert_{L^{\infty}}\int_{r_{0}}^{\infty}-\phi\psi_{r}dr=\Vert w\Vert_{L^{\infty}}(\int_{r_{0}}^{t}+\int^{\infty})=I_{1}+I_{2}.$

(2.30)

By using the estimate of the stationary wave $\phi$ derived in Lemma 2.4 and
the property of rarefaction wave $\psi$ , we estimate $I_{1}$ and $I_{2}$ as

$I_{1}\leq\epsilon\Vert w_{r}\Vert_{L^{2}}^{2}+C\Vert w\Vert_{L^{2}}^{2/3}(1+t)^{-4/3}\log^{4/3}(2+t)$,
(2.31)

$I_{2}\leq\epsilon\Vert w_{r}\Vert_{L^{2}}^{2}+C\Vert w\Vert_{L^{2}}^{2/3}(1+t)^{-4/3}$

On the other hand, by using the integration by parts, we estimate

$\int_{r_{0}}^{\infty}-\phi_{r}\psi wdr\leq\Vert w\Vert_{L}\infty\int_{r_{0}}^{\infty}\phi_{r}\psi dr=\Vert w\Vert_{\infty}\int_{r_{0}}^{\infty}-\phi\psi_{r}dr$, (2.32)

145



and the rightmost term is the same as (2.30). Then the right hand side of
(2.29) is estimated as

$| \int_{r_{0}}^{\infty}\frac{\psi_{r}w}{r}-\frac{\psi w}{r^{2}}-(\phi\psi)_{r}wdr|\leq\epsilon\Vert w_{r}\Vert_{L^{2}}^{2}+C\Vert w\Vert_{L^{2}}^{2/3}(1+t)^{-4/3}\log^{4/3}(2+t)$ .

(2.33)

Putting (2.33) int$o(2.29)$ and integrating it in terms of $t$ over $[0, t]$ and using
Gronwall’s inequality, we have

$\Vert w\Vert_{L^{2}}^{2}+\int_{0}^{t}\Vert\sqrt{\Phi_{r}}w(\tau)\Vert_{L^{2}}^{2}+\mu\Vert w_{r}(\tau)\Vert_{L^{2}}^{2}+\mu\Vert\frac{w(\tau)}{r}\Vert_{L^{2}}^{2}d\tau\leq C(\Vert w_{0}\Vert_{L^{2}}^{2}+1)$ .

(2.34)

The higher order estimate is derived in the similar fashion, we omit the proof
here. $\square$
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