

Title	Univalence and starlikeness of a function defined by convolution of analytic function and hypergeometric function \$_3F_2\$ (Some inequalities concerned with the geometric function theory)
Author(s)	Shimoda, Yutaka; Nakamura, Yayoi; Owa, Shigeyoshi
Citation	数理解析研究所講究録 (2014), 1878: 85-93
Issue Date	2014-04
URL	http://hdl.handle.net/2433/195599
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

Univalence and starlikeness of a function defined by convolution of analytic function and hypergeometric function $_3F_2$

Yutaka Shimoda, Yayoi Nakamura, and Shigeyoshi Owa

Abstract

We consider functions defined by a condition of functions in the subclass $\mathcal{U}(\lambda)$ of analytic functions with generalized Gauss hypergeometric functions. In this paper, we give a condition of the parameter λ for which the function to be univalent and starlike.

1 Introduction

Let \mathcal{A} denote the class of functions f(z) of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

that are analytic in the open unit disk $\mathbb{U}=\{z\in\mathbb{C}:|z|<1\}$, and let \mathcal{S} be the subclass of \mathcal{A} consisting of f(z) that are univalent in \mathbb{U} .

Obradović and Ponnusamy define in [4] the class $\mathcal{U}(\lambda)$ of $f(z) \in \mathcal{A}$ satisfing the condition

(1.2)
$$\left| \left(\frac{z}{f(z)} \right)^2 f'(z) - 1 \right| \le \lambda \qquad (z \in \mathbb{U})$$

for some real $\lambda > 0$, where f' denotes the derivative of f with respect to the variable z. We set $\mathcal{U}(1) = \mathcal{U}$. It is easy to see that the condition (1.2) is equivalent to

$$\left|z^2\left(\frac{1}{f(z)}-\frac{1}{z}\right)'\right| \leq \lambda \quad (z \in \mathbb{U}).$$

If $f(z) \in \mathcal{S}$ maps \mathbb{U} onto a starlike domain (with respect to the origin), i.e. if $tw \in f(\mathbb{U})$ whenever $t \in [0,1]$ and $w \in f(\mathbb{U})$, then we say that f is a starlike function. The class of all starlike functions is denoted by \mathcal{S}^* . A necessary and sufficient condition for $f(z) \in \mathcal{A}$ to be starlike is that the inequality

2010 Mathematics Subject Classification: Primary 30C45.

Key Words and Phrases: Analytic, starlike, Convolution(Hadamard Product)

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > 0 \qquad (z \in \mathbf{U})$$

holds.

For these facts, the following lemmas hold.

Lemma 1 ([3]) If $f(z) \in \mathcal{U}(\lambda)$, $a := \frac{|f''(0)|}{2} \le 1$ and $0 \le \lambda \le \frac{\sqrt{2-a^2}-a}{2}$, then $f(z) \in \mathcal{S}^*$.

Lemma 2 ([7]) If $f(z) = z + a_{n+1}z^{n+1} + \cdots$ $(n \ge 2)$ belongs to $\mathcal{U}(\lambda)$ and

$$0 \leq \lambda \leq \frac{n-1}{\sqrt{(n-1)^2+1}},$$

then $f(z) \in \mathcal{S}^*$.

For analytic functions f(z) and g(z) on U with $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$, the power series $\sum_{n=0}^{\infty} a_n b_n z^n$ is said the convolution of f(z) and g(z), denoted by f * g (cf ([5])]).

For $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ in \mathcal{A} , we have a natural convolution operator defined by

$$zF(a,b;c;z)*f(z):=\sum_{n=1}^{\infty}\frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}}a_nz^n, \qquad c\in\{-1,\ -2,\ -3,\ \cdots\},z\in\mathbb{U},$$

where $(a)_n$ denotes the Pochhammer symbol $(a)_0 = 1$, $(a)_n = a(a+1)\cdots(a+n-1)$ for $n \in \mathbb{N}$. Here F(a,b;c;z) denotes the Gauss hypergeometric function which is analytic in U. As a special case of the Euler integral representation for the hypergeometric function, one has

$$F(1,b;c;z) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_0^1 \frac{1}{1-tz} t^{b-1} (1-t)^{c-b-1} dt, \quad z \in \mathbb{U}, \text{ Re } c > \text{Re } b > 0.$$

Using this representation, we have, for $f(z) \in A$,

$$zF(1,c;c+1;z)*f(z) = z\left(F(1,c;c+1;z)*\frac{f(z)}{z}\right) = zc\int_0^1 \frac{f(tz)}{tz}t^{c-1}dt, z \in \mathbb{U}, \text{ Re } c > 0.$$

Obradović and Ponnusamy have shown the following result.

Theorem A ([5])

Let $f \in \mathcal{U}(\lambda)$ and $c \in \mathbb{C}$ with Re c > 0 such that

$$\left(\frac{z}{f(z)}\right) * F(1,c;c+1;z) \neq 0$$
 in $z \in \mathbb{U}$,

and $G(z) = G_f^c(z)$ be the transformed function defined by

$$G(z) = \frac{z}{\left(\frac{z}{f(z)}\right) * F(1,c;c+1;z)} \qquad (z \in \mathbf{U}).$$

Then we have the following;

(1)
$$G \in \mathcal{U}\left(\frac{\lambda|c|}{|c+2|}\right)$$
. The result is sharp especially when $\left|\frac{f''(0)}{2}\right| \leq 1 - \lambda$. In particular, $G \in \mathcal{U}$ whenever $0 < \lambda \leq \left|\frac{c+2}{c}\right|$.

(2)
$$G \in S^*$$
 whenever $0 < \lambda \le \frac{|c+2|}{2|c|} (\sqrt{2-A^2} - A)$ with $A = \left| \frac{c}{c+1} \frac{f''(0)}{2} \right| \le 1$.

2 Main Result

For the generalized hypergeometric function ${}_3F_2(1,\alpha,\beta;\alpha+1,\beta+1;z)$, we obtain

Theorem1

Let $f(z) \in \mathcal{U}(\lambda)$. Let $\alpha, \beta \in \mathbb{C}$ satisfying

$$\text{Re }\alpha\geq0,\text{ Re }\beta\geq0,\frac{1}{|\alpha+\beta|}\left(\frac{|\alpha||\beta|}{|\beta+2|}+\frac{|\beta||\alpha|}{|\alpha+2|}\right)<1\text{ and }|\alpha+\beta|>|\alpha\beta|$$

and

$$\frac{z}{f(z)} *_3F_2(1,\alpha,\beta;\alpha+1,\beta+1;z) \neq 0, \quad z \in \mathbb{U}.$$

Denote by $G(z) = G_f^{\alpha,\beta}(z)$ the function defined by

(2.1)
$$G(z) = \frac{z}{\frac{z}{f(z)} * {}_3F_2(1,\alpha,\beta;\alpha+1,\beta+1;z)}, \quad z \in \mathbb{U},$$

where $_3F_2(1,\alpha,\beta;\alpha+1,\beta+1;z)$ is the generalized hypergeometric function. Then we have the following:

(1)
$$G(z) \in \mathcal{U}\left(\frac{\lambda|\alpha+\beta|}{|\alpha+\beta+4|}\right)$$
. The result is sharp especially when $\left|\frac{f''(0)}{2}\right| \leq 1-\lambda$.

In particular, $G(z) \in \mathcal{U}$ whenever $0 < \lambda \leq \frac{|\alpha + \beta + 4|}{|\alpha + \beta|}$.

whenever
$$0 < \lambda \le \frac{|\alpha + \beta + 4|}{2|\alpha + \beta|} (\sqrt{2 - A^2} - A)$$
 with $A = \left| \frac{\alpha \beta}{(\alpha + 1)(\beta + 1)} \frac{f''(0)}{2} \right| \le 1$.

Proof.

Since

$$(2.2) \quad {}_{3}F_{2}(1,\alpha,\beta;\alpha+1,\beta+1;z) = \sum_{n=0}^{\infty} \frac{\alpha\beta}{(\alpha+n)(\beta+n)} z^{n} = 1 + \sum_{n=1}^{\infty} \frac{\alpha\beta}{(\alpha+n)(\beta+n)} z^{n},$$

we have

$$\frac{z}{f(z)} *_{3}F_{2}(1,\alpha,\beta;\alpha+1,\beta+1;z) = 1 - \frac{\alpha\beta a_{2}}{(\alpha+1)(\beta+1)}z + \frac{\alpha\beta(a_{2}^{2}-a_{3})}{(\alpha+2)(\beta+2)}z^{2} + \cdots
= \left\{1 - \frac{\alpha a_{2}}{\alpha+1}z + \frac{\alpha(a_{2}^{2}-a_{3})}{\alpha+2}z^{2} + \cdots\right\} * \left\{1 - \frac{\beta a_{2}}{\beta+1}z + \frac{\beta(a_{2}^{2}-a_{3})}{\beta+2}z^{2} + \cdots\right\}
= \left\{\frac{z}{f(z)} * F(1,\alpha;\alpha+1;z)\right\} * F(1,\beta;\beta+1;z).$$

Thus G(z) can be written as

$$G(z) = \frac{z}{\left\{\frac{z}{f(z)} * F(1,\alpha;\alpha+1;z)\right\} * F(1,\beta;\beta+1;z)}.$$

In the same manner, G(z) can be also written as

$$G(z) = \frac{z}{\left\{\frac{z}{f(z)} * F(1, \beta; \beta + 1; z)\right\} * F(1, \alpha; \alpha + 1; z)}.$$

Put

$$h_1(z)=rac{z}{rac{z}{f(z)}*F(1,lpha;lpha+1;z)}, \quad h_2(z)=rac{z}{rac{z}{f(z)}*F(1,eta;eta+1;z)}.$$

then

$$\frac{z}{f(z)} * F(1, \alpha; \alpha + 1; z) = \frac{z}{h_1(z)}, \quad \frac{z}{f(z)} * F(1, \beta; \beta + 1; z) = \frac{z}{h_2(z)}$$

By the Theorem A in the introduction, we have

$$h_1(z) \in \mathcal{U}\left(rac{\lambda |lpha|}{|lpha+2|}
ight) \quad i.e. \ \left|\left(rac{z}{h_1(z)}
ight)^2 h_1'(z) - 1
ight| < rac{\lambda |lpha|}{|lpha+2|}$$

and

$$h_2(z) \in \mathcal{U}\left(\frac{\lambda|\beta|}{|\beta+2|}\right) \quad i.e. \ \left|\left(\frac{z}{h_2(z)}\right)^2 h_2'(z) - 1\right| < \frac{\lambda|\beta|}{|\beta+2|}.$$

Since

$$\frac{z}{G(z)} = \frac{z}{h_1(z)} * F(1, \beta; \beta + 1; z) \quad (z \in \mathbb{U}),$$

we have

(2.3)
$$(\beta+1)\frac{z}{G(z)} - \left(\frac{z}{G(z)}\right)^2 G'(z) = \beta \frac{z}{G(z)} + z \left(\frac{z}{G(z)}\right)'.$$

On the other hand, $\frac{z}{G(z)}$ can be also written as

$$\frac{z}{G(z)} = \frac{z}{h_2(z)} * F(1, \alpha; \alpha + 1; z) \quad (z \in \mathbf{U}),$$

we have

$$(2.4) (\beta+1)\frac{z}{G(z)} - \left(\frac{z}{G(z)}\right)^2 G'(z) = \beta \frac{z}{G(z)} + z \left(\frac{z}{G(z)}\right)'.$$

Then we have

(2.5)
$$(\alpha+1)\frac{z}{G(z)} - \left(\frac{z}{G(z)}\right)^2 G'(z) = \alpha \frac{z}{h_2(z)} \quad (z \in \mathbb{U})$$

and

$$(2.6) (\beta+1)\frac{z}{G(z)} - \left(\frac{z}{G(z)}\right)^2 G'(z) = \beta \frac{z}{h_1(z)} (z \in \mathbb{U}).$$

Set

$$p(z) = \left(\frac{z}{G(z)}\right)^2 G'(z).$$

Then p(z) is analytic on \mathbb{U} with p(0) = 1 and p'(0) = 0, and

$$(2.7) p(z) = (\alpha + 1)\frac{z}{G(z)} - \alpha \frac{z}{h_2(z)}$$

and

(2.8)
$$p(z) = (\beta + 1)\frac{z}{G(z)} - \beta \frac{z}{h_1(z)}.$$

From (2.3), (2.4), (2.5), (2.6), (2.7) and (2.8) one then obtain that

$$\alpha p(z) + z p'(z) = (\alpha + 1)\alpha \frac{z}{G(z)} + (\alpha + 1)z \left(\frac{z}{G(z)}\right)' - \alpha^2 \frac{z}{h_2(z)} - \alpha z \left(\frac{z}{h_2(z)}\right)'$$

$$= \alpha \left[(\alpha + 1) \frac{z}{h_2(z)} - \alpha \frac{z}{h_2(z)} - z \left(\frac{z}{h_2(z)}\right)' \right]$$

$$= \alpha \left[\frac{z}{h_2(z)} - z \left(\frac{z}{h_2(z)}\right)' \right]$$

$$= \alpha \left(\frac{z}{h_2(z)}\right)^2 h_2'(z)$$

and

$$\beta p(z) + z p'(z) = (\beta + 1)\beta \frac{z}{G(z)} + (\beta + 1)z \left(\frac{z}{G(z)}\right)' - \beta^2 \frac{z}{h_1(z)} - \beta z \left(\frac{z}{h_1(z)}\right)'$$

$$= \beta \left[(\beta + 1) \frac{z}{h_1(z)} - \beta \frac{z}{h_1(z)} - z \left(\frac{z}{h_1(z)}\right)' \right]$$

$$= \beta \left[\frac{z}{h_1(z)} - z \left(\frac{z}{h_1(z)}\right)' \right]$$

$$= \beta \left(\frac{z}{h_1(z)}\right)^2 h'_1(z).$$

Since

$$(\alpha+\beta)p(z)+2zp'(z)=\alpha\left(\frac{z}{h_2(z)}\right)^2h_2'(z)+\beta\left(\frac{z}{h_1(z)}\right)^2h_1'(z),$$

we have

$$p(z) + \frac{2}{\alpha + \beta} z p'(z) = \frac{\alpha}{\alpha + \beta} \left(\frac{z}{h_2(z)}\right)^2 h'_2(z) + \frac{\beta}{\alpha + \beta} \left(\frac{z}{h_1(z)}\right)^2 h'_1(z).$$

Now, as $h_1(z) \in \mathcal{U}\left(\frac{\lambda|\alpha|}{|\alpha+2|}\right)$ and $h_2(z) \in \mathcal{U}\left(\frac{\lambda|\beta|}{|\beta+2|}\right)$, it follows that

$$\begin{vmatrix} p(z) + \frac{2}{\alpha + \beta} z p'(z) - 1 \end{vmatrix} = \begin{vmatrix} \frac{\alpha}{\alpha + \beta} \left\{ \left(\frac{z}{h_2(z)} \right)^2 h'_2(z) - 1 \right\} + \frac{\beta}{\alpha + \beta} \left\{ \left(\frac{z}{h_1(z)} \right)^2 h'_1(z) - 1 \right\} \end{vmatrix}$$

$$\leq \left| \frac{\alpha}{\alpha + \beta} \right| \left| \left(\frac{z}{h_2(z)} \right)^2 h'_2(z) - 1 \right| + \left| \frac{\beta}{\alpha + \beta} \right| \left| \left(\frac{z}{h_1(z)} \right)^2 h'_1(z) - 1 \right|$$

$$< \frac{|\alpha|}{|\alpha + \beta|} \frac{\lambda |\beta|}{|\beta + 2|} + \frac{|\beta|}{|\alpha + \beta|} \frac{\lambda |\alpha|}{|\alpha + 2|}$$

$$= \lambda \left\{ \frac{1}{|\alpha + \beta|} \left(\frac{|\alpha||\beta|}{|\beta + 2|} + \frac{|\beta||\alpha|}{|\alpha + 2|} \right) \right\}.$$

By the assumption, we have

(2.9)
$$\left| p(z) + \frac{2}{\alpha + \beta} z p'(z) - 1 \right| < \lambda.$$

From the work of Hallenbeck and Rusheweyh ([2],[6]), we deduce that

$$|p(z) - 1| \le \frac{\lambda |\alpha + \beta|}{|\alpha + \beta + 4|} \quad (z \in \mathbf{U}).$$

Thus we have $G(z) \in \mathcal{U}\left(\frac{\lambda|\alpha+\beta|}{|\alpha+\beta+4|}\right)$.

To prove the sharpness, we consider functions f(z) in $\mathcal{U}(\lambda)$ of the form

$$f(z) = \frac{z}{1 - a_2 z + \lambda z^2},$$

where $a_2 = \frac{f''(0)}{2}$ and $|a_2| \le 1 - \lambda$, so that $1 - a_2 z + \lambda z^2 \ne 0$ for all $z \in \mathbb{U}$. Since Re $\alpha \ge 0$ and Re $\beta \ge 0$, it follows that $|\alpha + 2| > |\alpha + 1| > |\alpha|$ and $|\beta + 2| > |\beta + 1| > |\beta|$ and, therefore

$$\left|1 - a_2 \frac{\alpha \beta}{(\alpha + 1)(\beta + 1)} z + \lambda \frac{\alpha \beta}{(\alpha + 2)(\beta + 2)} z^2\right| \neq 0$$

for all $z \in \mathbb{U}$, provided $|a_2| \leq 1 - \lambda$. By the series expantion (2.2) of ${}_3F_2(1, \alpha, \beta; \alpha + 1, \beta + 1; z)$, we have

$$G(z) = \frac{z}{1 - \frac{a_2 \alpha \beta}{(\alpha + 1)(\beta + 1)} z + \frac{\lambda(\alpha \beta)}{(\alpha + 2)(\beta + 2)} z^2}.$$

Obviously, G(z) is analytic on \mathbb{U} and $\frac{z}{G(z)} \neq 0$ on \mathbb{U} . Since

$$\left(\frac{z}{G(z)}\right)^2G'(z)-1=-\frac{\lambda\alpha\beta}{(\alpha+2)(\beta+2)}z^2,$$

we have that

(2.11)
$$\left| \left(\frac{z}{G(z)} \right)^2 G'(z) - 1 \right| \le \frac{\lambda |\alpha \beta|}{|(\alpha + 2)(\beta + 2)|}.$$

Now, let us compare the right hand sides of (2.10) and (2.11). Firstly, since $|\alpha + \beta + 4| < |(\alpha + 2)(\beta + 2)|$, then $\frac{1}{|(\alpha + 2)(\beta + 2)|} < \frac{1}{|\alpha + \beta + 4|}$. From the assumption, we see

$$\frac{|\alpha\beta|}{|(\alpha+2)(\beta+2)|} < \frac{|\alpha+\beta|}{|(\alpha+2)(\beta+2)|} < \frac{|\alpha+\beta|}{|\alpha+\beta+4|}.$$

Then, we have that

$$\left| \left(\frac{z}{G(z)} \right)^2 G'(z) - 1 \right| \leq \frac{\lambda |\alpha \beta|}{|(\alpha + 2)(\beta + 2)|} < \frac{|\alpha + \beta|}{|\alpha + \beta + 4|}.$$

Thus, we have that the bound $\frac{|\alpha + \beta|}{|\alpha + \beta + 4|}$ is sharp. We conclude that the first assertion of Theorem 1.

The second assertion is a direct consequence of Lemma 1. In fact, obviously

$$A = \frac{G''(0)}{2} = \frac{\alpha\beta}{(\alpha+1)(\beta+1)} \frac{f''(0)}{2}$$

is smaller than or equal to 1.

Theorem 2

For a fixed $n \geq 2$, let $f(z) = z + a_{n+1}z^{n+1} + \cdots$ belong to $U(\lambda)$. Let $\alpha, \beta \geq 0$ and

$$\mathrm{Re}\ \alpha\geq0,\ \mathrm{Re}\ \beta\geq0, \frac{1}{|\alpha+\beta|}\left(\frac{|\alpha||\beta|}{|\beta+n|}+\frac{|\alpha||\beta|}{|\alpha+n|}\right)<1,$$

and

$$\frac{z}{f(z)} * {}_3F_2(1,\alpha,\beta;\alpha+1,\beta+1;z) \neq 0, \quad z \in \mathbb{U}.$$

and $G(z) = G_f^{\alpha,\beta}(z)$ be the transform function defined by (2.1). Then we have the following:

(1)
$$G(z) \in \mathcal{U}\left(\frac{\lambda|\alpha+\beta|}{|\alpha+\beta+2n|}\right)$$
. In patientar, $G(z) \in \mathcal{U}$ whenever $0 < \lambda \leq \frac{|\alpha+\beta+2n|}{|\alpha+\beta|}$.

(2)
$$G(z) \in S^*$$
 whenever $0 < \lambda \le \frac{(n-1)|\alpha + \beta + 2n|}{|\alpha + \beta|\sqrt{(n-1)^2 + 1}}$.

Proof. Using the Gaussian hypergeometric function, G(z) can be written as

$$G(z) = \frac{z}{\left\{\frac{z}{f(z)} * F(1, \alpha; \alpha + 1; z)\right\} * F(1, \beta; \beta + 1; z)}$$

and

$$G(z) = \frac{z}{\left\{\frac{z}{f(z)} * F(1, \beta; \beta + 1; z)\right\} * F(1, \alpha; \alpha + 1; z)}.$$

Put

$$h_3(z) = \frac{z}{\frac{z}{f(z)} * F(1,\alpha;\alpha+1;z)}, \quad h_4(z) = \frac{z}{\frac{z}{f(z)} * F(1,\beta;\beta+1;z)}.$$

Then

$$\frac{z}{f(z)}*F(1,\alpha;\alpha+1;z)=\frac{z}{h_3(z)}, \quad \frac{z}{f(z)}*F(1,\beta;\beta+1;z)=\frac{z}{h_4(z)},$$

We see

$$h_3(z) \in \mathcal{U}\left(rac{\lambda |lpha|}{|lpha+n|}
ight) \quad i.e. \ \left|\left(rac{z}{h_3(z)}
ight)^2 h_3'(z) - 1
ight| < rac{\lambda |lpha|}{|lpha+n|}$$

and

$$h_4(z) \in \mathcal{U}\left(\frac{\lambda|\beta|}{|\beta+n|}\right) \quad i.e. \ \left|\left(\frac{z}{h_4(z)}\right)^2 h_4'(z) - 1\right| < \frac{\lambda|\beta|}{|\beta+n|}.$$

Since

$$\frac{z}{f(z)} = \frac{1}{1 + a_{n+1}z^n + \cdots} = 1 - a_{n+1}z^n + \cdots,$$

so that

$$\frac{z}{f(z)} * {}_3F_2(1,\alpha,\beta;\alpha+1,\beta+1;z) = 1 - a_{n+1} \left\{ \frac{\alpha\beta}{(\alpha+n)(\beta+n)} \right\} z^n + \cdots$$

Thus, G(z) can be written in the form

$$G(z) = z + a_{n+1} \left\{ \frac{\alpha \beta}{(\alpha + n)(\beta + n)} \right\} z^{n+1} + \cdots$$

Therefore, as in the proof of Theorem 1, the function p(z) defined by

$$p(z) = \left(\frac{z}{G(z)}\right)^2 G'(z) = 1 + (n-1)a_{n+1} \left\{\frac{\alpha\beta}{(\alpha+n)(\beta+n)}\right\} z^n + \cdots$$

is analytic in \mathbb{U} and p(0) = 1, $p'(0) = \cdots = p^{(n-1)}(0) = 0$. p(z) can be written as

$$p(z) = (\alpha + 1)\frac{z}{G(z)} - \alpha \frac{z}{h_3(z)}$$

and

$$p(z) = (\beta + 1)\frac{z}{G(z)} - \beta \frac{z}{h_A(z)}.$$

By the same argument of proof of Theorem 1 using $h_3(z)$ and $h_4(z)$ instead of $h_1(z)$ and $h_2(z)$, p(z) satisfies (2.9). Consequentry, we obtain that

$$|p(z)-1| \le \frac{\lambda |\alpha+\beta||z|^n}{|\alpha+\beta+2n|} \quad (z \in \mathbb{U}),$$

and the proof of part(1) is complete. The second part is a direct consequence of Lemma 2.

References

- P. L. Duren, Univalent Functions, Springer-Verlag, New York, Berlin, Heiderberg, Tokyo, 1983
- [2] D.J.Hallenbeck, St Ruschweyh, Subordination by convex functions, Proc. Amer. Math. Soc.52(1975)191-195
- [3] M. Obradvić, S. Ponnusamy, V. Singh, P. Vasundhra, *Univalency starlikenss and convexity applied to certain classes of rational functions*, Analysis (Munich) 22 (3) (2002) 225–242
- [4] M. Obradović and S. Ponnusamy, Radius properties for subclasses of univalent functions, Analysis 25(2005), 183 – 188
- [5] M. Obradović, S. Ponnusamy, Univalence and starlikeness of certain transforms defined by convolution of analytic functions, J. Math. Anal. Appl. 336(2007)758-767
- [6] S. Ponnusamy, Differntial subordination and Bazilevic functions, Proc. Ind. Acad. Sci. Math. Sci 105(1995)169-186
- [7] S. Ponnusamy, P. Sahoo, Geometric properties of certain linear transforms, Bul. Belg. Math. Soc. Simon Stevin 12(2005)95-108

Department of Mathematics Kinki University Higashi-Osaka, Osaka 577-8502 Japan

E-Mail: yutakashimoda119@gmail.com yayoi@math.kindai.ac.jp shige21@ican.zaq.ne.jp