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Univalence and starlikeness of a function
defined by convolution of analytic function
and hypergeometric function 3F5

Yutaka Shimoda, Yayoi Nakamura, and Shigeyoshi Owa

Abstract

We consider functions defined by a condition of functions in the subclass 2()) of
analytic functions with generalized Gauss hypergeometric functions. In this paper, we
give a condition of the parameter X for which the function to be univalent and starlike.

1 Introduction

Let A denote the class of functions f(z) of the form

(1.1) f(z2)=z+ ianz"’

that are analytic in the open unit disk U= {2 € C : |z|] < 1}, and let S be the subclass of
A consisting of f(z) that are univalent in U. :

Obradovi¢ and Ponnusamy define in [4] the class U()) of f(z) € A satisfing the condition

(1.2) ‘(-J;fg)z (z) -1

for some real A > 0, where f’ denotes the derivative of f with respect to the variable 2.
We set U(1) =U. It is easy to see that the the condition (1.2) is equivalent to

“(753)

If f(z) € S maps U onto a starlike domain (with respect to the origin), i.e. if tw € f(U)
whenever ¢ € [0,1] and w € f(U) , then we say that f is a starlike function. The class of all
starlike functions is denoted by S*. A necessary and sufficient condition for f(2) € A to be
starlike is that the inequality

<A (z€l)

<A (z€U).
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Re(i}f(g—)-)>0 (z € D)

holds.

For these facts, the following lemmas hold.

Lemma 1 ([3]) If f(2) € U(}), a = -l-j%(m <1land0 <A< 2—20 — 2 then

f(z) € 8*.

Lemma 2 ([7]) If f(2) = 2+ @py12™ +--- (n > 2) belongs to U(N) and
n—1

0<A< )
;7(11 -1)2+1
then f(z) € S*.
For analytic functions f(z) and g(z) on U with f(z) = § an2" and g(z) = i bn2™ , the
n=0 n=0
power series Y anbn2" is said the convolution of f(z) and g(2), denoted by f * g (cf ([5])]).
n=0

For f(z) = z+ Y aqz" in A , we have a natural convolution operator defined by
n=2

2F(a,b;c; 2) * f(z) == Z EZ)):::((i’;:;anz", ce{-1, -2, -3, ---},2€0,

where (), denotes the Pochhammer symbol (a)o = 1, (@) = a(a +1)---(a +n — 1) for
n € N. Here F(a,b; ¢; z) denotes the Gauss hypergeometnc function which is analytic in U.
As a special case of the Euler integral representation for the hypergeometric function, one
has '

F(1,b ¢ 2) = - 1(1-t)c>dt, zeU, Rec>Red>0.

I‘(b)I‘(c ~b) / 1-tz

Using this representation, we have, for f(2z) € A,

2F(l,cc+1;2) x f(z)—z(F(lcc+1 z)*f( )) /f(t )t"’ldtzeU Re ¢ > 0.

Obradovi¢ and Ponnusamy have shown the following result.

Theorem A ([5])
Let f e U()) and c € C with Re ¢ > 0 such that

((z)) F(l,ee+1;2)#0 in z€0,
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and G(z) = G$(2) be the transformed function defined by

z

G(z) = (z € 0).
(f( )) * F(l,¢c+ 1;2)
Then we have the following;
A "
VNGelUu (l _5_121) The result is sharp especially when f_2(0_)' < 1 - A In particular,
G € U whenever 0 < \ < Ctz .
(2) G € S* whenever 0 < X\ < ‘62-;- l2i(\/2 A% — A) with A= E—-E-If_g)l <1l

2 Main Result

For the generalized hypergeometric function 3F3(1,, 3;a + 1,3 + 1; z), we obtain

Theoreml
Let f(z) € U(X). Let a, B € C satisfying

Rea>0, Re >0, ! (1a||ﬁ| + |Bllof ) <1and |la+ 8| > |af)

o+ 3 \I8+2]  |a+2|

and .

7—(;5 x3Fh(la,Ba+1,8+1;2)#0, zeU.
Denote by G(z) = G?’ﬂ (2) the function defined by
(2.1) G(z) = — Z z€eU,

x3F(l,a,0a+1,3+1; z)
f@)

where 3F2(1,0,3; 0 + 1,3 + 1; 2) is the generalized hypergeometric function. Then we have
the following:

/ "
(1) G(z)elU (%)' The result is sharp especially when lf 2(0)l <1-A\

In particular, G(z) € U whenever 0 < A < lﬂlz—f—-—;’ﬂ-

(2) G(z) € S*

la+ 8+ 4! : of3 £"(0)
. wl;eneverO <A< — o T e (V2T A2 - A) with A= GrDGID 2 | S <L
roof.

Since

2. { R = S aﬁ
(22) sR(l,a,8,0+1,8+1;2) —gm +Z (a+n)(3+n)

n




we have
a3ay aj3(a3 —as) , N
7@ teRha Bat LA+ 1) =1- oot e G g
_f,_ _aa a(a - as3) Ba B(a2 — a3)
"{1 oo S z2+'"}"{1';3*+21er G ot }

{f( )*F(l ,a+1; z)}*F(l,ﬂ;ﬁ-i— 1; 2).

Thus G(z) can be written as

¥4

{f( )*F(l aa+l; z)}*F(l,,-’)’;,3+1;z)

G(z) =

In the same manner, G(z) can be also written as

4

G(z) = —-
{f( y *F(1,8,8+1; z)} * F(l,a;a + 1;2)
Put 2 z
hi(2) = —  FLmatl z), hy(z) = «F(1,3:8+ l'z)'
F@ e 7 o
then
z z
-f(—;)-*F(l,a,a+1,z)=m, f()*F(l B8+ 12) = h()
By the Theorem A in the introduction, we have
Alal , ! Aial
hx(z)eu(m) ve l(h( )) ha(2) - “Ta+2
™ h()eu( s ) ie ('2_)2"'@)—1 <2
2\# B+2) 7 [\h()/) 16+2]
Since
z z
-dm=m*F(l,5;ﬁ+ 1;2) (ze€W),
we have
/, z ’ —— z ’
(23) C+Dem ~ (ma) G =gyt (m@)'
On the other hand, —— can be also written as

G(z)

4

E(z—)- hz()*F(laa*—lz) (ZEU),

88
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we have
4 6+ 9555~ (at) 00 =4z (a5)
Then we have

(2.5) (a+DG() C;))iﬂa hid (z € U)
and

(2.6) B+ 1) G( ) (E‘a-)-)za'(z) = ,972-;-’2-5 (z € U).
Set

2
20 = (g5 €@
Then p(z) is analytic on U with p(0) = 1 and p'(O) =0, and

27) pe) = (a+ Nigrs = h;z)
and
(2.8) P(z) = (B+ Vg ( i hjz).

From (2.3), (2.4), (2.5), (2.6), (2.7) and (2.8) one then obtain that

e ) *latls (G()) - “77(’5 - o (F‘%'F)
- a|r gt hsz) -+ (523) ]
T [hzzz) —F (h;z)) ]

- (53 ))2"5“)

Bp(2) + zp/(z) = (/3+1)5G()+(5+1) ( Z’ ) gzhjz) ‘?Z(E%;)')

)
= 2605 (e )]
=7 [hfz) ~F (nm)]

= ﬂ(h—l%;;)zha(z).

ap(z) + zp'(z2) = (a+1l)a=—

and
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Since
(ot D000+ 220 = o (25 ) o) +8 (525)

we have

o)+ () = = (1) W)+ 5 () M@

Now, as hy(2) e U (;L‘flz') and ho(z) € U (I;lmzl) it follows that

R A (C R (GRS
< fzzl| i) = |+ 3 ) e
o ol N8l 18] Ale]

la+ 01842  |a+8|la+2|
_ 1 (lollgl . |Bllel
= A{|ar+m (lﬁ+2l+la+2l)}'

By the assumption, we have

(2.9)

(2) += zp’(z) - ll <A

From the work of Hallenbeck and Rusheweyh ([2],[6]), we deduce that

Aa + 5|

(z € U).

Ma+ 3]
Thus we have G(2) e U (|a+5+4l)'

To prove the sharpness, we consider functions f(2) in U()) of the form

flz) =

z
1 — asz + \2?’

"
wherea.2=-f-é—oland |a2|Sl—)\,sothat1—a2z+z\z29é0forallzeU. Since Re a >0
and Re 3 > 0, it follows that |a+2| > |a+1| > |a| and |3+ 2| > |5+ 1| > | 5] and, therefore

aff aff
(a + 1)(8+ 1) Zt '\(a +2)(3+2)

for all z € U, provided |az] < 1— ). By the series expantion (2.2) of 3F3(1, o, 5; a+1, 3+1; 2),
we have

1- 2l #0

2z
_ a2aﬁ 2 A(037 22 .
(a+1)(B+1)"  (@+2)(B8+2)

G(z) =
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Obviously, G(z) is analytic on U and ——— # 0 on U. Since

G()

z 4 _ /\arj 2
(G( )) CE-l=-GGy"

we have that

' )‘largl
(G( )) RS ey &

Now, let us compare the right hand sides of (2.10) and (2.11). Firstly, since [a + 5+ 4| <
[(e+2)(8+ 2)], then .

(2.11)

< . From the assumption, we see
@+ D@+~ JatB+4 P

|aS| «_Ja+pl _ _letBl
(e+2)(3+2)]  [a+2)(B+2)] |a+38+4

Then, we have that

(a5 )) =)~

la + 3|
e+ 3+ 4|

Mag| < letdl
‘“I( +2)(3+2) la+g+4]

Thus, we have that the bound is sharp. We conclude that the first assertion of

Theorem 1.

The second assertion is a direct consequence of Lemma 1. In fact, obviously

G"(0) _ aj f(0)

A= 2 (a+1)(B+1) 2

is smaller than or equal to 1.

Theorem 2
For a fized n > 2, let f(2) = z + any12™ + - -+ belong to U(N). Let o, 3> 0 and

Rea >0, Re §> 0, — (lallﬂl + iallﬁl)<1’

la+ 8 \|8+n| |a+n]
and 2
-J;-(-;S *x3Fy(l,a, B35a+1,8+1;2)#0, zeU.
and G(z) = G?’ﬂ (2) be the transform function defined by (2.1). Then we have the following:
(1) Gz)eU (’—(;/\Tla-;-;_—%l-—’-) In paticular, G(z) € U whenever 0 < A < W

(n—-1)|a+,9+2nl

T la+ 8V in-1)2+1

Proof. Using the Gaussian hypergeometric function, G(z) can be written as

(2) G(2) € S* whenever 0 < A <
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G(Z): r4
z
{f( )*F(l ,aga+1; z)}*F(1,5,5+1,z)
. G(z) = z
Z .
{W*F(l’ﬁ;wrl;z)}*F(l,a;aH;z)
" hal2) : ha(2) = z
)= 2 ) 4\ 2 z
@) * F(L,a;a+ 1;2) G )*F(l G ATL z)
Then
z
f()*F(laa+12) ha(z), f()*F(lﬁ)3+12) h()
W
e see ) y Aa| _ 2 2h, 1 Al
3(2)6 (|a+nl) t.€. (m) 3(2)— < m
and
28| v
ha(z) €U ({5+n|) (h (2 )) W(z) — |,9+n|'
Since 1
f(z)=1+an+1z"+...=1"an+1z"+-- ,
so that
ﬁ n
f(z )*st(l o fia+1,8+1z) =1~ an+1{( +n)(3+n)} e

Thus, G(z) can be written in the form

G(Z)=z+a,,+1{(a+nc;'(eﬁ+n)}z"+1+..._

Therefore, as in the proof of Theoreml, the function p(z) defined by

p(z) = (G( )) G'(2)=1+(n— 1)“”+‘{(a+n0;?ﬁ+n)} S

is analytic in U and p(0) = 1, p'(0) = - -- = p(®~D(0) = 0. p(2) can be written as

P) = (@ + gy R

and

p(2) = B+ Vg0 ~ Py

By the same argument of proof of Therorem 1 using hs(2) and hy(z) instead of h;(z) and
ha(2), p(z) satisfies (2.9). Consequentry, we obtain that
Ala + 32"
1l < 22T AR
(=) =1 < S35+ 2n)
and the proof of part(1) is complete. The second part is a direct consequence of Lemma 2.

(z €0),
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