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On Algebraic Structures of Petri Net Morphisms
based on Place Connectivity

FA B TRERSE - A ERALT
B¢ B AT (Yoshiyuki Kunimochi)
Faculty of Comprehensive Informatics,
Shizuoka Institute of Science and Technology

1 Introduction

A Petri net is a useful mathematical model applied to descriptions of various parallel processing systems.
So far, some types of morphisms related to Petri nets (or condition/event net) have been studied in terms of
the category theory, in order to investigate the relationship between different Petri nets and understand the
concurrency in other computation models [4][10].

Usually such a morphism is defined based on connection of transitions and thier nearby places. It is one
of necessary conditions that such morphisms commute with the transition function of a Petri net.

Studying how the structure of Petri nets have an effect on Petri net languages and codes, we often realize
that the ratio between the number of tokens in a place and the weights of edges connected to the place is
important. We give our definition of morphims between Petri nets focusing on the connection state/level of
edges which come in or go out a place. This is an extension of an automorphism which we used to introduce
to a net in [5][6].

After summarising the monoid of all surjective morphisms of a Petri net and ideals in the monoid, we
state the decomposition of automorphism group G = Aut(P) of a Petri net P into G = KN = NK,
where N is a kind of normal subgroup of G.

2 Preliminaries

Here we give our definition of morphisms of a Petri net and state the properties of some monoids com-
posed of these morphisms.

2.1 Petri Nets and Morphisms

In this section, we give definitions and fundamental properties related to Petri nets. We denote the set of
all nonnegative integers by Ny, that is, No = {0,1,2,...}.

First of all, a Petri net is viewed as a particular kind of directed graph, together with an initial state 1405
called the initial marking. The underlying graph N of a Petri net is a directed, weighted, bipartite graph
consisting of two kinds of nodes, called places and transitions, where arcs are either from a place to a
transition or from a transition to a place.

DEFINITION 2.1 (Petrinet) A Perri net is a 4-tuple (P, T, W, o) where
(1) P={p1,p2,...,pm} is a finite set of places,
(2) T ={ti,ts,...,t,} is a finite set of transitions,
() W : E(PT) — {0,1,2,3,...}, ie.W € No®PT) is a weight function, where E(P,T) =
(PxT)U(T x P),
4) po:P—{0,1,2,3,...},ie., o € No¥,is the initial marking,
5 PNT=0and PUT #0.
A Petri net structure (net, for short) N = (P, T, W) without any specific initial marking is denoted by
N, a Petri net with a given initial marking po is denoted by (N, o). O
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In the graphical representation, the places are drawn as circles and the transitions are drawn as bars or
boxes. Arcs are labeled with their weights(positive integers), where a k-weighted arc can be interpreted
as the set of k parallel arcs. Labels for unity weights are usually omitted. A marking (state) assigns a
nonnegative integer k to each place. If a marking assigns a nonnegative integer k to a place p, we say that
p is marked with k tokens. Pictorially, we put k black dots (tokens) in place p. A marking is denoted by n,
an n-dimensional row vector, where n is the total number of places. The ¢-th component of u, denoted by
w(pi), is the number of tokens in the i-th place p;.

EXAMPLE 2.1 Fig. 1 shows a graphical representation of a Petri net P = (P, T, W, uo). P = {a,b}
and T' = {t}. (a, t) and (t, b) are arcs of weights 2 and 1 respectively. (t, a) and (b, t) are arcs of weight 0,
which are not usually drawn in the picture. Note that the weight of (t, b) is omitted since it is unity. That is,
W(a,t) = 2,W(b,t) = 1, W(t,a) = W(b,t) = 0. The initial marking uo with po(a) = 3, po(b) =0
is often written like a row vector uo = (3,0). O

a t b
OO
Figure 1. Graphical representation of a Petri net

Now we introduce a Petri net morphism based on place connectivity. We denote the set of all positive
rational numbers by Q. .

DEFINITION 2.2  Let P, = (P, T1, W, 1) and P2 = (P, T, Wa, u2) be Petri nets. Then a triple
(f, (o, B)) of maps is called a morphism from Py to P, if the maps f : P, — Q4+, : P, — P; and
B : T1 — T satisfy the condition that forany p € Py and t € T7,

W2(a(p)’ﬁ(t)) = f(p)Wl (p, t),

W2(;8(t))a(p)) = f(p)Wl(tvp)> (2.1
p2(a(p)) = f(p)ra(p)-
In this case we write (f, (o, 8)) : P1 — Ps. O

The morphism (f, (o, 3)) : Py — P, is called injective (resp. surjective) if both o and 3 are injective
(resp. surjective). In particular, it is called an isomorphism from P; to P- if it is injective and surjective.
Then P; is said to be isomorphic to Pz and we write P; ~ P,. Moreover, in case of P; = Pz, an
isomorphism is called an automorphism of P;. By Aut(P) we denote the set of all the automorphisms of
P.
For Petri nets P; and P., we write P; 2 P, if there exists a surjective morphism from P; to P;. The
relation 3 forms a pre-order (a relation satisfying the reflexive law and the transitive law) as shown below.
Of course, the pre-order is regarded as an order by identifying isomorphisms. '

PROPOSITION 2.1  Let Py, P2, P3 be Petri nets. Then,

(1) P3Py

(2) P13PrandPy I P, < Py ~Ps.

(3) P12 P2and P, 3 Ps imply P; 3 Ps. a

DEFINITION 2.3 (Similar) Let P = (P, T, W, ) be a Petri net. Two places p,q € P are said to be
similar if there exists some positive rational number r such that p(p) = ru(q), W(q,t) = rWi(p,t) and
W(t,q) = rW(t,p) for all t € T. Two transitions s,t € T are said to be similar if W(p,s) = W (p,t)
and W (s,p) = W(t,p) forallp € P. o



The similarity defined above is obviously an equivalence relation on P U T. We denote this relation by
~p or simply ~ and the ~p-class of a place or a transition u by C(u). A place (resp. a transition) is said
to be isolated if it has no connection to any transitions (resp. any places). Especially, a place p is O-isolated
if it is isolated and p(p) = 0. Note that two 0-isolated places p and q are similar because for any positive
rational number r u(p) = 0 = ru(q), W(q,t) = 0 =rW(p,t) and W (t,q) = 0 = rW (¢, p) forall t € T.

2.2 Monoids S of Surjective Morphisms of Petri Nets

We introduce a composition of morphisms; all the morphisms between Petri nets form a monoid under
this composition.

Let P; = (P;, Ti, Wi, ps) (i = 1,2, 3) be Petri nets, (f, (o, 8)) : P1 — Pz and (g, (7,6)) : P2 — Ps
be morphisms. Then,

Ws(v(a(p)), 6(8(1))) = g(a(p)) Wa(a(p), B(t))
W3(6(8(8)), v(a(p))) = g(a(p)) Wa(B(t), a(p))

= g(a(p)) f(p)W1(t, p),
p3(v(a(p))) = g(a(p))u2(a(p)) = g(a(p)) F(P)p1(p)

hold.

In this manuscript, by writing compositions of maps like goc, Yo and §0 3 in the form of multiplications
like arg, vy and 36 respecnvely, the composition of morphisms is written as ( f ®p, (ag), (a, 36)), where
®p, is the operatlon in the following fundamental commutative group (Q+"*, ®p, ).

The set (Q+F, ®p) of all maps from a set P to Q. forms a commutative group under the operation ® p
defined by f ®p g : p+— f(p)g(p). 1gp : P — Q4 : pr> listheidentityand f~1: P - Q. : p
1/f(p) is the inverse of a f € Q+F. Whenever it does not cause confusion, we write ® instead of p.
Immediately we obtain the following lemma.

LEMMA 2.1  Let « and 3 be arbitrary maps on P and f,g : P — Q.. Then the following equations
are true.

1) (af)f = a(Bf).

@) alf®g)=(af)® (ag).

3) ale = 1g.
@ (af) @ (af™") =1g.
G (af)tP=af O

For a surjective morphim z : P, — P,, P is called the domain of z, denoted by Dom(z), and P, is
called the image(or range) of z, denoted by Im(z).

We denote the set of all surjective morphisms between two Petri nets and a zero element 0, by S.
Especially Dom(0) = Im(0) = 0. Sy forms a semigroup, equipped with the multiplication of z =

(fv (a’ﬁ)) andy = (97 (7, 5))

aor [ (f@pag,(n,p8) if Im(z)=Dom(y).
¥=3%o otherwise.

§ = Sp U {1} is the monoid obtained from Sy by adjoining an (extra) identity 1, thatis,1-s =s-1 = s
foralls€ Spand1-1=1.

3 Ideals in the monoid S

In this section we consider ideals and Green’s relations on the monoid S. At first, we consider some
properties of the structure of the automorphism group of a Petri net P.
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3.1 Green’s equivalences on the monoid §

In general, Green’s equivalences £,R,J,H,D on a monoid M, which are well-known and important
equivalence relations in the development of semigroup theory, are defined as follows:

zly <= Mz = My,
TRy <= zM =yM,
zJy < MzM = MyM,
H=LNR,
D=(LUR)*,

where (£ U R)* means the reflexive and transitive closure of LUR. Mz (resp. M) is called the principal
left (resp. right ) ideal generated by x and Mz M the it principal (two-sided) ideal generated by z. Then,
the following facts are generally true[2, 1].

FACT 1 The following relations are true.

(1)D = LR = RL
2)HCL (resp.RycDCJ

FACT 2 An H-class of a monoid M is a group if and only if it contains an idempotent.

Now we consider the case of M = S in the rest of the maniscript. The following lemma is obviously
true.

LEMMA 3.1 Letxz: Py — P2,y :Ps — Py €S. Then,

(1) 28 CyS==>P;=PsandP, C Ps.

2 SzcC Sy == P; C P3 and P; = P;4.

3) :L‘S=ys=>P1 ='P3dfld’Pz':'P4.

4) Sz=S8y==P; ~Psand Py =Ps. O

Note that any reverses of the implications above are not necessarily true.

PROPOSITION 3.1 The following conditions are equivalent.
(1) H is an H-class and a group.
(2) H = Aut(P) for some Petri net P.

PROPOSITION 3.2 On the monoid S, J =D .
3.2 Intersection of principal ideals

The aim here is that for given z,y € S we find a elements 2 such that Sz N Sy = Sz (resp. zSNyS =
28). 28 NyS = {0} (resp. Sz N Sy = {0}) is a trivial case(i.e., z = 0). We should only consider the
non-trivial case.

LEMMA 32 Let P; = (P, T;. Wi, u;)(¢ = 1,2,3) be Petri nets, z = (f,(0,0)) : P = P3,y =
(9,(7,8)) : Pz — Ps be elements of S. If |~ (p)| < |y~ (p)| and |B~1(¢)| < |67 (t)| for any p € Ps
andt € Tg, then Sy C Sz. O

LEMMA 33 Let P; = (PiaTi’Winu/i)(i = 0’1’2) be Petri nets, x = (f’ (aaﬂ)) :Po = Py =
(g,(7,98)) : Py — P5 be elements of S. If for anyp € Py and t € T}, there exist ¢ € P> and s € T; such
that o~} (p) C v~ Y(q) and B~1(t) C 671(s), then yS C zS. ]

PROPOSITION 3.3 (Intersection of Principal Left Ideals) Let P; = (B, T;. Wy, 1;)(i = 1,2,3) be
Petrinets, x : P, — Pz andy : Py — P be elements of S. Then, there exist a Petri net P and a
surjective morphism z such that St N Sy = Sz. a



COROLLARY 3.1 (Diamond Property I) Let P; = (Piy T3y Wy, i) (5 = 1,2, 3) be Petri nets with P; 3
Ps3 and Py 3 Ps. Then there exists a Petri net P such that P JPrandP I Ps. O

PROPOSITION 3.4 (Intersection of Principal Right Ideals) Ler P; = (B;, T;.W;, )@ = 0,1,2) be
Petrinets,  : Py — P3 and y : Py — Py be elements of S. Then, there exist a Petri net P and a surjective
morphism z such that xS NyS = 28. O

COROLLARY 3.2 (Diamond Property II)  Let P; = (P, T3, Wi, i) (3 = 0,1,2) be Petri nets with
Po 3 Py and Py O P,. Then there exists a Petri net P3 such that P; 1 P3 and P, 3 Ps. O

We define the concept of irreducible forms of a Petri net with respect to J and show the uniqueness of
them up to isomophism.

DEFINITION 3.1 (Irreducible) A Petri net P is called a J-irreducible if P 3 P implies P ~ P’ for
any Petrinet P'. Then P is called an J-irreducible Jform. O

COROLLARY 33 Let P, P’ and P” be Petri nets with P3P andP I P'. If P and P" are
J-irreducible, then P’ ~ P". |

4 Structure of the automorphism group of a Petri net

Our aim in this section is to decompose the automorphism group G = Aut(P) of a Petri net P into
G = KN = NK, where N is a kind of normal subgroup of G.

At first, we consider some properties of the structure of the automorphism group of a fixed (given) Petri
net? = (P, 7, W, p).

4.1 The group of automorphisms of a Petri net

Let Q1% x (PP x TT) be the semi-direct product of the group Q.. and the monoid PP x T'T, equipped
with the multiplication defined by

(f, (e B))(g, (', 8) ¥ (f ® ag, (ac?, B3")), @.1)

where PP s the set of all maps from P to P and T7 is the set of all maps from T to T'. Q.+ ¥ x (PP x T7)
forms a monoid with the identity (1g, (1p, 17)), where 1g is the identity of the group @, %, 1p and 11
are the identity maps on P and T respectively.

Let P = (P, T, W, 11) be a Petri net. Now we consider the following set related to the Petri net P.

Mor(P) : the set of all the morphisms of P.
Aut(P) : the set of all the automorphisms of P.

By changing the weight function and the markings of P, we can construct another Petri net Py =
(P,T,0EPT) 0P) be Petri nets, where 0F denotes the special marking with 0 : P — Ng,p — 0
and 0FPT) the special weight function with 0E(PT) . E(P,T) — Np,e ~ 0. Then the following
inclusion relation holds.

PROPOSITION 4.1 Let P = (P, T, W, ) and Po = (P, T,0E®PT) 0F) be Petri nets. And let Sp and
St be the symmetric groups of P and T, respectively.

(1) The subset Q4+F x (Sp x Sr) of Q+F % (PP X T7T) forms a group with the identity (1g, (1p, 17)).
(2) Mor(Po) = Q¥ x (PP x TT).

(3) Mor(P) is a submonoid of Mor(Py).

(4) Aut(Po) = Q+F x (Sp x Sr).

(5)  Aut(P) is a subgroup of Aut(P,). 0
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Mor(Ps)
by (3) _=Q+7x (PP xTT)by
Mor(P) by (1)

by (1) by (5) AUt(PO)
=Q+7 » (SF x ST) by (9)
Aut(P)

Figure 2. Inclusion relations among monoids of morphisms and groups of automor-
phisms related to the Petri nets P and P, as a result of Propositon 4.1.

4.2 Similarity and automorphism

Recall that (Q+P , ®p) is an abelian group and a 0-isolated place does not have any connection to any
transition and is marked with O tokens.

LEMMA 4.1 Let P be a nonempty set and Py, P; be subsets of P.
() @47 ={f € Qs | f(p) =1,p & P\ Pi}is asubgroup of (Q+", ®P).
Q) Q+P1 ®p Q+Pn =Qy 1UP2

LEMMA 4.2 (Transposition-type automorphisms) Let P = (P, T, W, p) be a Petrinet, p, q € P be
two distinct similar places in P and s, t € T be two distinct similar transitions in T. Then

(1) Ifpis not O-isolated, Ny g3 = {(fp,a: (P @), 17))) is a subgroup of Aut(P) and its order is 2, where
(p q) is the transposition of p and q, fpq(p) = 7, fa,e(@) = 1/, foq(z) =1forz € P\{p,q},andris
the rational number such that u(p) = ru(q), W(p,t) = rW(q,t) and W (t,p) = rW(t,q) forallt € T.
(2) IfpisO-isolated, N(p 3 = QP9 x (((p q),17))) is a subgroup of Aut, (P).

(3) Nisy = ((lep, (1p, (8 1)))) is a subgroup of Aut(P) and its order is 2. O

a

For a ~p-class C(u) of u, the subgruop Nc(y) of Aut(P) is defined as follows:

[ SplabeClart) i (CWI22
Now ={ (el S it 1O =1

If w is a O-isolated place, the ~p-class Z = C/(u) is the set of all O-isolated places in P and we can easily
verify that Nz = Q.% x (Sz x {17}), where Sz is the symmetric group of Z. The following proposition
holds with respect to Nz.

PROPOSITION 4.2 (Separation of 0-isolated places) Let P = (P, T, W, u) be a Petri net, Z C P be
~p-class of all the O-isolated places, Nz = Q% x (Sz x {17}), H = {(f,(a, 8)) € (Aut(P)| f|z =
1lg,,alz = 1z}. Then, Aut(P) = Nz x H.

Proof) Here set G = Aut(P) and 1 = (1g, (1p,17)). What we have to do is to prove that

() G=NzH,(b) NzNH = {1},and (c) zy = yz foranyz € Nz,y € H.
@ Let(f, (c,B)) be an arbitrary elementin G. f = fo® fi = f1® fo forsome fo € Q+7, f1 € Q. P\2.
Since a(Z) = Z and a(P \ Z) = P\ Z hold, o = ape; for some g € Sz,a1 € Sp\z. Because ap
and f; are constant on P \ Z and Z respectively, we have apf1 = f1 and (fo, (0, 17))(f1, (a1, B)) =
(fo ® a0 f1, (@001, B)) = (f, (, B)). Therefore G = Nz H.



The condition(b) is trivial by the construction of H. (¢) Letz = (f,(a,8)) € H,y = (g,(v,17)) €
Nz. Since o and + are constant on Z and P\ Z respectively, zy = (f®ag, (o, 8)) = (9®7f, (ya, 8)) =
yx, that is, z and y commute, a

LEMMA 43 LetP = (P, T, W, u){p, ¢} C P{s, t} C T and C(u) be the ~p-class of u € PUT. If
(f, (o, B8)) is an automorphism of P, then

(1) p~p g <> alp) ~p alg),

(I') s~pt <= [(s) ~p B(2),

@) a(C(p)) ={a(g)lg ~» p} = C(a(p)),

@) B(C@) ={B(s)ls ~p t} = C(B(1)),

(3) min{i|C(a*(u)) = C(u)} = min{i|C(F(v)) = C(v)} if u,v € PUT are connected,. a

Note that |C(a(p))| = |C(p)| for all p € P and |C(B(t))| = |C(t)| forallt € T

Let Cy,Cy,...,Cy be the all ~p-classeson PUT and 7 = {C1,C4,. .., Ck} be the partition of PUT
determinded by ~p. Then we introduce the permutation group Sy = {0 € Spur |VX € 7,X° = X} =
Sc, x Sg, x +++ x S¢, , which does not move any elements of 7.

PROPOSITION 4.3 (Embedding into a symmetric group) Let P = (P, T, W, 1) be a Petri net without
O-isolated places.

(1) ¢: Aut(P) — Spur, (f, (@, 8)) — (e, B) is a monomorphims, i.e. Aut(P) ~ ¢(G) C Spur.

(@) Sr C¢(G).

(3) X €m = g(X) € forany g € 4(G).

(4) Sr is a normal subgroup of ¢(G), that is, S, <1 ¢(G).

(5) Letay,az,...,ax be a system of representatives for S, of ¢(G) and A = (a;,as,... ,ak). Putting
K = ¢71(4), N = ¢~1(S,), Aut(P) = KN = NK.

Proof) Here set G = Aut(P) and 1 = (1g, (1p,17)).

(1) ¢ is a homomorphim from G to Spyr. Indeed, for any = = (f, (o, 8)),y = (9, (7,9)) € Aut(P),
Since zy = (f ® ag, (ory, 85)) holds, ¢(zy) = (ary,08) = (a, 8)(7,6) = $(z)$(y). Next, suppose
¢(z) = (o, 8) = 1pur = (1p,171). = = (f,(1p, 17)) must hold. Since P has no O-isolated places,
f = 1g, that is, ker(¢) = 1. Therefore ¢ is a monomorphism.

(2) N = Ng¢,Ng,...Ng, is a subgroup of G.

#(N) = é(Nc,)¢(Ne,) ... ¢(Ne,)
= 86,5¢, ... Sc,
=S, C $(G).

(3) Letg € ¢(G). By LEMMA43 (2)and (2'),if X =C; e n(1<i < k), then g(X) € .

(4) Leto € Sr, g € ¢(G) and z be an arbitrary element of P U T'. Suppose that z € X, X € . Since
9(z) € 9(X) and g(X) € 7 by (3), (90)(X) = g(X). (909~ 1)(X) = gg~*(X) = X and gog~! € Spyur
imply gog™' € Sy, thatis, gSxg~' C Sy. Therefore S, is a normal subgroup of ¢(G).

(5) Itis trivial. O

THEOREM 4.1 Let P = (P, T, W, u) be a Petrinet and Cy,Ca, . .., Cy, be the all ~p-classes on PUT.
N = Ng, x N¢, X - -+ x Ng, is a normal subgroup of G = Aut(P) and K = ({as|i € A}) is a subgroup
generated by {a;|i € A} withG = J,c, a;N.

(1) If P has no 0O-isolated places, G = KN = NK.

(2) Otherwise,G = Q% x (KN) = (KN) x Q+7, where Z C P be ~p-class of a 0-isolated place.

LEMMA 4.4 (1-step reduction) Let P = (P, T, W, v) be a Petri net.

(1) p, ¢ € P be two distinct similar places in P. Then ? 3 P’ = (P', T, W', i/), where P/ = P — {g},
W'=W|(P' xT)U(T x P'), u' = u|P'.

(2) s, ¢ € T be two distinct similar transitions in 7. Then® 3 P’ = (P, T/, W', p), where T' = T'—{s},
W' =W|{(PxT')U(T' x P). a

In the lemma above, [P’ UT| = |PUT'| = |PUT| ~ 1 holds. So we call such a relation I-step reduction,
denoted by ;.
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PROPOSITION 4.4 Let P; = (P, T;, Wi, ps)(i = 1,2) be Petri nets with Py 3 Pe, (f, (e, 3)) : P1—
P, be a surjective morphism. If P; is a normal form, then

(1) Forany p, ¢ € P,p ~p ¢ <= a(p) = o(q),

(2)Forany t, s € T,t ~p 8 <= [(t) = B(s). O

Proof) (1)(if part) For an arbitrary transition t € T,

F(p)Wi(p, t) = Wa(a(p), B(t)) = Wa(al(q), B(t)) = f(a)Wh(a,t),
f(p)Wi(t,p) = Wa(B(t), a(p)) = W2(B(t), a(q)) = f(g)W1(¢,q), and
F@)u1 () = p2(e(p)) = p2(a(q)) = f(g)u(g)

hold. So setting r = f~1(p)f(g), we have p1(p) = ru1(g) and Wi(p,t) = rWi(q,t) and Wi(t,p) =
rWi(t,q) for all t € T'. Therefore p ~p q.

(only if part) Suppose that a(p) # a(g). Since p # g, By lemma 4.4 there exists a Petri net P such that
P, J; P} and thus P2 % Pj. This contradicts that P is a normal form.
(2) The claim is proved in a similar way to (1). a
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