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ON THE DIMENSION DATUM OF A SUBGROUP

JINPENG AN, JIU-KANG YU, AND JUN YU

1. THE PROBLEMS
Langlands [6] has suggested to use the dimension datum of a subgroup as a key

ingredient in his programme “Beyond endoscopy”. In this expository article, we
will survey recent advances in the theory of dimension data by the authors ([1],
[12] $)$ . No proof is given here.

Definition 1.1. Let $G$ be a compact Lie group and let $H$ be a closed subgroup of
$G$ . We define the dimension datum of $H$ (as a subgroup of $G$), to be the following
function on the unitary dual $\hat{G}$ of $G$ :

$\mathscr{D}_{H}:\hat{G}arrow \mathbb{Z}, V\mapsto\dim V^{H}$

1.2. Variants. We may consider the same notion when $G$ and $H$ are complex re-
ductive groups, and $\hat{G}$ is taken to be the set of equivalence classes of irreducible
rational representations. By the relation between compact groups and complex
reductive groups ([1, Section 8]), studying the dimension data in this context is ex-
actly the same as studying them in the compact Lie group context. By the Lefschetz
principle, we can further replace“complex reductive groups” by“reductive groups
over $F$” for any algebraically closed field $F$ of characteristic $0$ , such as $F=\overline{\mathbb{Q}}_{\ell}$

without changing the essence of this notion. These variants are what actually occur
in Langlands’ programme.

1.3. Alternative formulations. The dimension datum $\mathscr{D}_{H}$ is also equivalently en-
coded in the following objects:

$\bullet$ the equivalence class of the $G$-module $L^{2}(G/H)$ ;
$\bullet$ the push forward $\mu_{H}^{\mathfrak{h}}$ of $\mu_{H}$ by the composition $H\hookrightarrow Garrow G\natural$ , where $\mu_{H}$

is the normalized Haar measure of $H$ , and $G\natural$ is the space of conjugacy
classes of $G.$

The equivalences follow from the Frobenius reciprocity and the Peter-Weyl theo-
rem. The convenience of using these alternative formulations is the reason why we
choose to work in the compact Lie group context.
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1.4. The role in the Langlands program I. Let $F$ be a number field and let $L_{F}$

be the conjectural Langlands group. Let $G$ be a connected reductive group over $F$

and let $LG$ be the $L$-group of G. Consider an $L$-homomorphism $\phi$ : $L_{F}arrow LG.$

Then $\phi$ maps $ker(L_{F}arrow W_{F})$ into $G^{\vee}$ , the (complex) dual group of G. Let $H_{\phi}$ be
the Zariski closure in $G^{\vee}$ of $\phi(ker(L_{F}arrow W_{F}))$ . Then $H_{\phi}$ is a complex reductive
group normalized by $\phi(L_{F})$ . The group $\mathscr{H}_{\phi}$ $:=H_{\phi}\phi(L_{F})$ is of great interests in
the Langlands program [2].

Conjecturally [6], when $\phi$ is the Langlands parameter of an automorphic repre-
sentation $\pi$ of $G(\mathbb{A}_{F}),$ $\mathscr{D}_{\mathscr{K}_{\phi}}(V)$ is the order of the pole of $L(s, \pi, V)$ at $s=1.$

Therefore, Langlands suggested to pinpoint $\lambda H_{\pi}$
$:=\mathscr{H}_{\phi}$ through its dimension da-

tum. Thus it is important to investigate: To what extent is $H$ (up to $G$-conjugacy)
determined by its dimension datum $\mathscr{D}_{H}$ ?

In palticular, Langlands wrote that it will be important to establish the following
result, which we did in [1].

Theorem. Ifthefunction $\mathscr{D}_{H}$ is given then there are onlyfinitely manypossibilities
for the conjugacy class of $H.$

It turns out that this number of possibilities is usually small when $G$ and $H$

are connected, and one may even consider those cases when this number is $>1$

exceptional. Therefore it is natural to consider:

Problem. Assume that $G$ is connect\‘ed. Identify all $(H, H’)$ with $H,$ $H’$ connected
such that $\mathscr{D}_{H}=\mathscr{D}_{H’}$ and $H$ is not $G$-conjugate to $H’.$

See Theorems 2.1, 2.2, 3.1 for results about this problem. We will describe the
complete solution to this problem by Jun Yu in Section 4.

1.5. Linear relations. Observe that $\mathscr{D}_{H}$ lives in the vector space $\mathbb{R}^{\hat{G}}$ of real-
valued functions on $\hat{G}$ , while $\mu_{H}^{\natural}$ is in the vector space $\mathscr{M}$ of real-valued measures
on $G^{\natural}$ . The Peter-Weyl theorem says that

$D:\mathscr{M}arrow \mathbb{R}^{\hat{G}},$
$D( \mu)(V)=\int_{G^{\natural}}$ Tr $(g|V)d\mu(g)$

is a linear injection sending $\mu_{H}^{\natural}$ to $\mathscr{D}_{H}$ . Therefore, it makes sense to consider

linear relations among $\mathscr{D}_{H}$ ’s for varying $H’ s$ , or among $\mu_{H}^{\natural}$ ’s, and they are the
same relations.

1.6. The role in the Langlands program II. There is another question raised by
Langlands in [6, 1.1 and 1.6], which is related to linear relations. Denote by $\mathbb{R}[\hat{G}]$

the free $\mathbb{R}$-module with basis $\hat{G}$ , so that its dual space $Hom(\mathbb{R}[\hat{G}],\mathbb{R})$ is $\mathbb{R}^{\hat{G}}.$

Problem. Let $\mathscr{L}$ be a set of subgroups of $G$ . Can we find a collection $\{a_{H}\}_{H\in \mathscr{S}}$

of elements in $\mathbb{R}[\hat{G}]$ with the following property?

For all $H,$ $H’\in \mathscr{L},$ $(a_{H}, \mathscr{D}_{H’})=\{\begin{array}{l}1 if H’\sim LPH,0 if H’\mu_{LP}H,\end{array}$
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where $(-, -)$ is the natural pairing between $\mathbb{R}[\hat{G}]$ and $\mathbb{R}^{\hat{G}}$ . We refer to [6] or [1]
for the definition of $\prec LP.$

Langlands proposed that the existence of $\{a_{H}\}_{H\in \mathscr{L}}$ may facilitate a way to deal
with the dimension data of $\lambda H_{\pi}$ using the trace formula. It is very easy to observe:
Lemma. If $\{a_{H}\}_{H\in \mathscr{L}}$ exists, then $\{\mathscr{D}_{H_{1}}, \ldots, \mathscr{D}_{H_{n}}\}$ is linearly independent for
any $H_{1},$

$\ldots,$
$H_{n}\in \mathscr{L}$ such that $\mathscr{D}_{H_{i}}\neq \mathscr{D}_{H_{g}}$ for $i\neq j.$

Therefore, non-trivial linear relations are obstmctions to what Langlands pro-
posed. In [6, 1.2], Langlands started with the class $\mathscr{L}_{1}=\{H\subset G$ : $Harrow$

$G/G^{o}$ is surjective}. He then analyzed the case $G=SU$(2) $\cross F$, where $F$ is a
finite group, in [6, 1.3] and decided that it is necessary to restrict to a smaller class
([6, 1.4]): $\mathscr{L}_{2}=\{H\subset G$ : $H\cap G^{o}=H^{o}$ and $H/H^{o}\simeq G/G^{o}\}$ so that there is
a chance of an affirmative answer for the above question (Langlands expects this
restnicted class to be enough for his purpose in that $\mathscr{L}_{2}$ should contain all his con-
jectural groups $\lambda H_{\pi}’ s$ ; see also [2, Section 5] $)$ . Indeed for $G=SU$(2) $\cross F$ one can
show the existence of $\{a_{H}\}_{H\in \mathscr{L}}$ for $\mathscr{L}=\mathscr{L}_{2}$ . However, Langlans suspected ([6,
discussions following (14)$])$ that in general the above question can not be solved
exactly $($for $\mathscr{L}=\mathscr{L}_{2})$ . We confirmed this in [1] (see also Corollary3.3) by finding
non-trivial linear relations. Again, such relations are relatively rare and it is natural
to consider:

Problem’. Assume that $G$ is connected. Identify all linear relations among $\{\mathscr{D}_{H}$ :
$H\subset G,$ $H$ connected}.

Again we will describe Jun Yu’s solution to this problem in Section 4.

2. THE WORK OF LARSEN AND PINK

The most important result about the dimension datum is in the work of Larsen
and Pink [8]. The key results there are:
Theorem 2.1. If $H_{1}$ and $H_{2}$ are connected semisimple subgroups of $G$ such that
$\mathscr{D}_{H_{1}}=\mathscr{D}_{H_{2}}$ , then $H_{1}$ is isomorphic to $H_{2}.$

Theorem 2.2. If $G=U(n)$ and $H_{1}$ and $H_{2}$ are connected semisimple subgroups
of $G$ such that each $H_{i}$ acts irreducibly on $\mathbb{C}^{n}$ and $\mathscr{D}_{H_{1}}=\mathscr{D}_{H_{2}}$ , then $H_{1}$ is G-
conjugate to $H_{2}.$

These striking results are very $insp\ddot{m}ng$ and encouraging to the intended appli-
cation in [6]. However, for that application it is desirable to have the semisim-
phcity hypothesis removed in those theorems. It seems that it was widely be-
lieved that indeed the semisimplicity hypothesis is unnecessary (private communi-
cations). However, we will show (Theorem 3.1) that this is not true.

2.3. Translating the problem to root data. Assume that $G$ is connected. Let
$(X, R,\check{X},\check{R})$ be the root datum of $G$ . Since this gadget determines (and is deter-
mined by) $G$ up to isomorphism, philosophically we can translate Problems 1.4
and 1.6’ to problems about $(X, R,\check{X},\check{R})$ . Larsen and Pink established a formalism
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for doing so, which has been the foundation of all subsequent works. Below we
review just enough of the Larsen-Pink formalism so that we can present Jun Yu’s
results in Section 4.

2.4. Metrized root datum and metrized root system. It will be useful to in-
troduce an invariant Riemannian metric on $G$ . This amounts to give an inner
product $m$ on $\check{X}_{\mathbb{R}}$ $:=\check{X}\otimes \mathbb{R}$ invariant under the Weyl group $W$ . The 5-tuple
$(X, R,\check{X},\check{R}, m)$ then can be reduced to a triple $(X, R, m)$ . We call the triple
$(X, R, m)$ a metrized root datum.

We will not elaborate the definition of $(X, R, m)$ being a metrized root datum
here. Similarly, we are going to use the notion of“metrized $\mathbb{R}$-root datum” with-
out any explanation more than that $(X_{\mathbb{R}}, R, m)$ is a metrized $\mathbb{R}-ro$ot datum when
$(X, R, m)$ is a root datum. We also trust that the reader can figure out the meaning
of semisimplicity of a metrized $(\mathbb{R}-)$ root datum, and we call a semisimple metrized
$\mathbb{R}$-root datum a metrized root system.

2.5. The polynomial $F_{\Phi,\Gamma}$ . Assume $H$ is connected and let $T$ be a maximal torus

of $H$ . The natural map $Tarrow G^{\natural}$ is surjective onto the support of $\mu_{H}^{\natural}$ , and the pull
back of $\mu_{H}^{\natural}$ by this map is of the form $F_{H}\cdot\mu_{T}$ , where $F_{H}$ is a regular function
on $T$ by the Weyl integration formula. Notice that the ring of (complex-valued)
regular function on $T$ is simply the group algebra $\mathbb{C}[Y]$ of $Y$ . We will not give
Larsen-Pink’s formula for $F_{H}\in \mathbb{C}[Y]$ here, but merely notice that it depends only
on the set of roots $\Phi=R(H, T)$ and the finite group $\Gamma=N_{G}(T)/Z_{G}(T)$ as a
subgroup of Aut$(T)=$ Aut $(Y)$ . Therefore it will be denoted by $F_{\Phi,\Gamma}$ also.

2.6. Varying the tori. For any torus $T$ in $G$ , let $D_{T}$ be the linear span of $\mu_{H}^{\natural}$ for all
connected $H$ with maximal torus $T$ . Then one can show that the subspaces $\{D_{T_{i}}\}_{i}$

are linearly independent (i.e. the sum $\sum D_{T_{i}}$ is direct) if the $T_{i}$ ’s are pairwise
non-conjugate in $G$ . Therefore, when considering Problems 1.4 and 1.6’, about
equalities/linear relations among dimension data, it suffices to work with one torus
at a time.

2.7. Conclusion. Fix a torus $T$ in $G$ . Put $\Gamma=N_{G}(T)/Z_{G}(T)$ and $\mathscr{P}=\{R(H, T)$

$T\subset H\subset G\}$ , where $H$ ranges over all connected closed subgroups of $G$ with
maximal toms $T$ . According to the above discussion, Problems 1.4 and 1. $6’$ amount
to

Problem. Study the equalities/linear relations among $\{F_{\Phi,\Gamma} : \Phi\in \mathscr{P}\}.$

3. THE FIRST EXAMPLES

The results in this section are from [1].

3.1. The following result gives the first known examples of $\mathscr{D}_{H_{1}}=\mathscr{D}_{H_{2}}$ with $H_{1}$

not isomorphic to $H_{2}$ , and $H_{1},$ $H_{2}$ connected.

Theorem. Let $m\geq 1$ be an integer. Put
$\bullet G=SU(4m+2)$ ,
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$\bullet$ $H_{1}=U(2m+1)$ , embedded in $G$ through st $\oplus st^{*},$

$\bullet$ $H_{2}=$ Sp$(m)\cross SO(2m+2)$ , embedded in $G$ in the only way.
Then $\mathscr{D}_{H_{1}}=\mathscr{D}_{H_{2}}.$

We remark that connected, non-conjugate subgroups $H_{1},$ $H_{2}$ with $\mathscr{D}_{H_{1}}=\mathscr{D}_{H_{2}}$

are known to exist from the work ofLarsen and Pink. However, the groups involved
are of very large dimensions and not very easy to describe. In contrast, our example
for $m=1$ involves only groups of fairly small dimensions.

3.2. The following result gives the first known non-trivial linear relations (which
is not an equality) among dimension data of connected subgroups.

Theorem. Let $m\geq 1$ be an integer. Put
$\bullet G=SU(4m)$ ,
$\bullet$ $H_{1}=U(2m)$ , embedded in $G$ through st $\oplus st^{*},$

$\bullet$ $H_{2}=Sp(m-1)\cross SO(2m+2)$ , embedded in $G$ in the only way,
$\bullet$ $H_{3}=$ Sp$(m)\cross SO(2m)$ .

Then $2\mathscr{D}_{H_{1}}=\mathscr{D}_{H_{2}}+\mathscr{D}_{H_{3}}.$

Corollary 3.3. Let $m\geq 1$ . Let $H_{1},$ $H_{2},$ $H_{3}$ be as in Theorem 3.2, and let $G$ be $an\gamma$

connected compact Lie group containing $SU(4m)$ . Then the answer to Problem 1.6
is negative for any class $\mathscr{L}$ containing $\{H_{1}.H_{2}, H_{3}\}$

3.4. Application. It is well-known, following the celebrated Sunada method ([4],
[9], [10] $)$ , that non-conjugate subgroups with identical dimension data can be used
to construct isospectral manifolds. These are Riemannian manifolds with identical
Laplacian spectmm (counting multiplicities), in other words, counterexamples to
the famous problem“Can you hear the shape of a drum?”

However, the following has been an outstanding problem for decades: Can we
have isospectral $M_{1},$ $M_{2}$ such that $M_{1}$ and $M_{2}$ are compact, connected and simply
connected, but non-diffeomorphic? In [1] we gave the first example to answer this
question affirmatively.

Theorem. Let $G,$ $H_{1}$ , and $H_{2}$ be as in Theorem 3.1. Then the compact homo-
geneous Riemannian manifolds $M_{1}$ $:=G/H_{1}$ and $M_{2}$ $:=G/H_{2}$ are isospectral,
simply connected, and have different homotopy types.

Indeed, $M_{1}$ and $M_{2}$ are isospectral by a theorem of Sutton [10], and it is easy to
show $\pi_{1}(M_{1})=\pi_{1}(M_{2})=1,$ $\pi_{2}(M_{1})\simeq \mathbb{Z},$ $\pi_{2}(M_{2})\simeq \mathbb{Z}/2\mathbb{Z}.$

4. CLASSIFYING ALL $EQUALITIES/$LINEAR RELATIONS

In this section, we will describe Jun Yu’s solution [12] to Problem 2.7, which is
equivalent to Problems 1.4 and 1.6’.

Let $T$ be a torus in $G$ as before. We may assume that $T$ is contained in the max-
imal torus $S$ of $G$ such that $X^{*}(S)=X$ . Then to specify $T$ is to give a surjection
$Xarrow Y$ $:=X^{*}(T)$ . For any $H$ with maximal torus $T$ , our fixed Riemannian met-
ric on $G$ induces invariant Riemannian metric on $H$ , and the corresponding inner
product on $\check{Y}$ is simply the restriction $m|_{Y^{-}}$ of $m\backslash on\check{Y}\subset\check{X}.$
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Lemma 4.1. Let $Y$ be any free $\mathbb{Z}$-module offinite rank and let $m$ be an inner
product on $Hom(Y, \mathbb{R})$ . Put

$\Phi(Y, m)$ $:=\{\alpha\in Y$ : $\alpha\neq 0$ and $2m(\lambda, \alpha)/m(\alpha, \alpha)\in \mathbb{Z}$ for all $\lambda\in Y\}.$

Then $(Y, \Phi(Y, m), m)$ is $a$ (not necessarily reduced) metrized root datum. More-
over, for any metrized root datum of the form $(Y, R, m)$ , we $ha\nu eR\subset\Phi(Y, m)$ .

It follows from the above lemma that there exists a set $\Psi$ which is minimal
among sets with the following properties: $(Y, \Psi, m)$ is a metrized root datum and
$\Phi\subset\Psi$ for all $\Phi\in \mathscr{P}$ , where $\mathscr{P}$ is defined in 2.7. Observe also we have $\Gamma\subset$

Aut$(Y, \Psi, m)$ . Therefore, we see that Problem 2.7 is part of

Problem 4.2. Given a metrized root datum $(Y, \Psi, m)$ and a finite subgroup $\Gamma\subset$

Aut $(Y, \Psi, m)$ , study the equalities/linear relations among $\{F_{\Phi,\Gamma} : \Phi\subset\Psi\}$ , where.
$\Phi$ ranges over all subsets of $\Psi$ such that $(Y, \Phi, m)$ is a reduced metrized root datum.

We observe that Problem 4.2 is unchanged if we replace“metrized root damm”
by“metrized $\mathbb{R}$-root datum”. Moreover, when $(Y, \Psi, m)$ is a metrized $\mathbb{R}$-root da-
tum, we may decompose $Y$ into the subspace $Y_{ss}$ spanned by $\Psi$ and its orthogonal
complement $Y_{0}$ . It can be shown easily that $F_{\Phi,\Gamma}$ lies in $\mathbb{C}[Y_{ss}]$ and coincides with
$F_{\Phi,\overline{\Gamma}}\in \mathbb{C}[Y_{ss}]\subset \mathbb{C}[Y]$, where $\overline{\Gamma}$ is the image of $\gamma\mapsto\gamma|_{Y_{SS}},$ $\Gammaarrow$ Aut $(Y_{ss}, \Psi, m)$ .
Since $(Y_{ss}, \Psi, m)$ is semisimple, i.e., it is a metrized root system, we conclude that
Problem 4.2 is equivalent to:

Problem 4.3. Study Problem 4.2 with “metrized root datum $(Y, \Psi, m)$
” replaced

by“metrized root system $(Y, \Psi, m)$
”

Let $\Gamma\dot{\subset}\Gamma’$ be finite subgroups of Aut $(Y, \Psi, m)$ . Then a relation $\sum c_{\Phi}F_{\Phi,\Gamma}=0$

implies a relation $\sum c_{\Phi}F_{\Phi,\Gamma’}=0$ . Therefore, if we already have a solution to
Problem 4.3 for $(Y, \Psi, m)$ and $\Gamma’$ , then we only needs to examine the relations
found there to solve Problem 4.3 for $(Y, \Psi, m)$ and $\Gamma$ . In this sense, we may reduce
Problem 4.3 to the case where $\Gamma$ is largest possible.

Problem 4.4. Study Problem 4.3 when $\Gamma=$ Aut $(Y, \Psi, m)$ .

4.5. The solution to Problem 4.4. Jun Yu’s solution [12] to Problem 4.4 takes
the following shape. First, he gave a reduction theorem that reduces Problem 4.4
to the case where $\Psi$ is simple. Next, for each simple (not necessarily reduced) root
system $\Psi$ , he gave an explicit description of all the equalities/linear relations.

When $\Psi$ is simple of classical type $(A_{n}, B_{n}, BC_{n}, C_{n}, or D_{n})$ , the equali-
ties/relations are, very roughly speaking, generated by those responsible for Theo-
rems 3.1 and 3.2.

When $\Psi$ is simple of type $F_{4}$ , there are two non-trivial equalities among dimen-
sion datum. There is no other non-trivial equality when $\Psi$ is simple of exceptional
type.

When $\Psi$ is simple of exceptional type $E_{6},$ $E_{7},$ $E_{8},$ $F_{4}$ , or $G_{2}$ respectively, the
dimension of the space of linear relations among dimension datum is 2, 5, 10, 12,
or 1, respectively.
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5. SOME CONSEQUENCES

There are quite a few reduction steps before we can start to use Jun Yu’s clas-
sffication results as described in 4.5. These steps are effective. Starting with a
connected $G$ , one can indeed figure out all the equalities/linear relations among the
dimension data of connected subgroups using Jun Yu’s theory by finite amount of
computations. But it can be a long computation.

Here we will gather a few theoretical consequences from his work.

5.1. The Lie algebras of compact Lie groups form an additive category. Let $K$

be the Grothendieck group of this additive category. Then $K$ is a free abelian
group with the set of all (isomorphism classes of) simple Lie algebras together
with $u(1)$ as a basis. Let $K’$ be the quotient of $K$ by the subgroup generated by
$u(2m+1)-\epsilon \mathfrak{p}(m)-\epsilon \mathfrak{o}(2m+2)$ for all $m\geq 1.$

Theorem. Let $H_{1},$ $H_{2}$ be closed subgroups of $G$ such that $\mathscr{D}_{H_{1}}=\mathscr{D}_{H_{2}}$ Let $\mathfrak{h}_{i}’$ be
the image of Lie $H_{i}$ in $K’$ . Then $\mathfrak{h}_{1}’=\mathfrak{h}_{2}’.$

We remark that this result is not saying that the examples in Theorem 3.1 is
responsible for all equalities among dimension data.

Theorem 5.2. Let $G$ be simple, not of type $A_{n},$ $B_{2},$ $B_{3}$ , or $G_{2}$ . Then there exist
a list $H_{1},$

$\ldots,$
$H_{s}$ of connected full-rank subgroups of $G$ such that $\mathcal{S}\geq 2$ and

$\mathscr{D}_{H_{1}},$

$\ldots,$
$\mathscr{D}_{H_{s}}$ are distinct and linearly dependent.

Theorem 5.3. Let $H_{1},$
$\ldots,$

$H_{s}$ be closed connected subgroups of $U(n)sn\acute{c}h$ each
$H_{i}$ acts irreducibly on $\mathbb{C}^{n}$ . Suppose that $H_{i}$ is not $G$-conjugate to $H_{j}$ for $i\neq j,$

then $\mathscr{D}_{H_{1}},$

$\ldots,$
$\mathscr{D}_{H_{S}}$ are linearly independent.

This is a strengthening of Theorem 2.2.
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