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§0 Introduction.
In the present paper, we consider the behavior of radial solutions to the

following problem.

Ug=V-(VU-UVV) in R" x (0, 00),

(PE) 0=AV+U in R" x (0,00), V(0,)=0 in (0,00),
U(-,0)=U* >0 in R™

Here,n=1,2,3,---.

In two dimensional case, the system (PE) is a simplified version of so
called Keller-Segel system, and is also a model of self-interacting particles.
In the Keller-Segel model, U represents density of cells, and V represents the
concentration of a chemoattractant secreted by themselves. In the physical
model, U represents the density of particles, and V represents the potential.

We consider the behavior of radial solutions to (PE).

§1 Time local existence and uniqueness of radial solutions

In this paper, we consider radial solutions. The radial solutions exists
uniquely under some conditions.

If U7 is radial, positive and

s [ OW/If (n>3),
v (”)‘{ 0(1)/lal* (n = 2),

as |z| — oo, there exists a unique solution (U, V) as follows.
U(z,t) = G(x — z,t)U*(2)dz
Rn
t p ~ .
_ / / {ng(x _gt-7) —2 U, f)d:f:} U, D) didi
o JRe Wl Jig1<ja

in R" x [0, T") with a constant T € (0, 00]. And we defined the function V as

Ja| .
V(z,t) = — / L U(% ¢)dzdr inR™ x [0,T),

-1
0 WnT" |Z|<r
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since we define V = 0 at the origin.
Here, G is the Gauss kernel of ;, — A in R™ and w,, = |S"}|.

§2 Fundamental properties of solutions
In this section, we explain some fundamental properties of solutions.

Lemma 1 The following hold.
(i) U is non-negative in R™ x (0,T).
(ii) In the case where n > 2, for any o > 0 there exists a unique radial
stationary solutions (U, V,) satisfying U,(0) = ¢,

0= AV, +ae” inR"
(SPE) { Va(0) =0, U, =ae"™ inR"™

(iii) In the case where n = 2, for o > 0 the function U, satisfies

04

(1 + (a/8)|z[?)?

(iv) In the case where n > 10, the function U, satisfies

Un(z) = and / Ua(z)dz = 8.
R?

o(1
Uy(z) = |-’I§|2) as |z| = oo.

(v) In the case where n > 10 and n = 2, the function U, is continuous with
respect to « and satisfies

IimU,=0 and limU,="U,.

a—0 a—00
Here,
2(n—-2) .
_ >
Us() = mE ifn >3,
87T60 Zf n=2.

Sketch of proof. (i) comes from the comparison theorem, since we assume
that UZ > 0 in R™.

(ii) radial stationary solutions satisfies VU, — U,VV, = 0, V,(0) = 0 and
U.(0) = a. These ensure U, = aeV=, which together with the second equa-
tion of (PE) implies (SPE).

(iii) The straightforward calculation gives us this property.

(iv) This property is shown in [8, Lemma 2.1].

(v) This property is shown in the proof of [8, Theorem 3.1]. a



§3 Known results ~ radial case ~
e Finite time blowup solutions.
There exist radial solutions to (PE) satisfying

limsup [|U (-, ?)]| zee(mn) = 00.
t—»T

Many persons contribute to this problem (see [3]).
e Time-global solutions.
If the initial function U7 is radial and satisfies
0<Ur< Uy, UT#U, (n>3),
U >0, A= / UX(z)dr <81 (n=2),
R2

the radial solution exists globally in time.
In the case where n > 3, the property is shown by the comparison theorem

for the mass function M(r,t) = U(z,t)dz. In the case where n = 2, the
|z|,r

property is shown in [1]. In the non-radial case, there exists many open

problems.

e Infinite time blowup solution.
There exist solutions satisfying

limsup [|U(+, ?)| zeo(rmy = 00.
t—o0

In two dimensional case, these solutions are found in [2, 4]. In [2], non-
radial solutions are treated. In [4], radial solutions in a disk are treated and
investigated blowup rate. Moreover, such radial solutions are found also in
the case where n > 11 (see [7]).

§4 Oscillating solutions in two dimensional case

Although system (PE) has several solutions, the behavior of each solution
is not so complicated. However, there exists solutions having complicate
behavior. We define w-limit set as

w(UT:C(R?) = {FeC®)nI®R?) : lim #, = oo,

le NU(-,tn) — F||po@2) =0 for some {t,} C (O, oo)}

Theorem 1 [5]
(i) For a and d with 0 < a < d there exists a radial solution (U,V) with

U(-,0) = U? satisfying

(Uhicaa (U : ORY), | Ulat)de =8
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(i) For {b;}32, C (0,00) with lim; .o, b; = 0o there exists a radial solution
(U, V) with U(-,0) = UT satisfying

{Us,}32, C w(UF : C(R?)), /Rz U(z,t)dz = 8r

According to the definition of w-limit set, these solutions satisfies the
following.
Concerning the solution in (i), for each b € [a, d] there exists a sequence

{tx}x>1 C (0, 00) satisfying
kl_l_)I{.lo “U(‘,tk) — Ub“Lco(Rz) =0, klgglo tr = 00.

Then, the solution oscillates among any stationary solutions between U, and
Uy.

Concerning the solution in (ii), for each j = 1,2,3,--- there exists a
sequence {tx}32; C (0,00) satisfying

klggo “U(,tk) — Ubj“L°°(R2) = 0, Ji)lglotk = O0.
Since limp_,o, Uy = 870y, there exists a sequence {tx}52; C (0, 00) satisfying

lim HU(',tk)“Loo(RZ) =00, lim t; = oo.
k—o0 k—o0

§5 Idea of proof of Theorem 1

Essentially, using stability of stationary solutions, layer of stationary so-
lutions and Pold¢ik and Yangida’s argument in [9], we construct oscillating
solutions.

The stability of radial stationary solutions are shown in [1]. The following
proposition is a modified version of the result.

Proposition 1 Let UL be nonnegative and radial, ||U?||11r2) = 87 and

sup (1 + |2])°|U% (z) — Us()] < o0
zeR?2

with some b > 0. Then, lim; o |U(+,t) — Us||Lo(m2) = 0.

In two dimensional case, radial stationary solutions layer in the following
sense.

lir.na__,b ”Ua — Ub”L°°(R2) =0 (b > 0)
Us(z)ds < / Up(z)dz (r>0), ifa<b.

|z|<r |z|<r



Polacik and Yanagida [9] show stability of radial stationary solutions to

the problem
U= AU+ U? in R" x (0, 00),
{ U(-,0)=U%f inR"

with n > 11 and p > ps;. = {(n — 2)® — 4n + 8v/n — 1}/{(n — 2)(n — 10)}.
Moreover, radial stationary solutions to this problem layer in the case where
n > 11 and p > pyr. Using the stability and the layer, they construct
oscillating solutions to this problem.

In order to describe the idea of proof of Theorem 1, we consider a special
case.

Theorem 2 (Special case of our problem) There exists a radial so-
lution (U,V) to (PE) with U(-,0) = UT such that {U,,U;} C w(U% : C(R?))
with 0 < a < d < oo.

Let (U,V) be a solutions to (PE). Put
1

"2
27y jz|<r

u(r,t) = U(z,t)dz.

The function u satisfies
L(w) =us — Upr — 3u, —u{ru, +2u} =0 (0<r <oo, t>0),

(IPE){ u.(0,)=0 (¢>0),
u(z,0) =u? (0<7r<o00).

Put

1
UQ(T) - 2mr? lzl<r

Uy(x)dz.
The function u, is a stationary solution to (IPE).

Sketch of Theorem 2. For two positive constants L; > L; > 1 put
uf(r) = ug(r) (r < L1), oX(r) =ua(r) (L <7).

Let u; be the solution to (IPE) with u(-,0) = u?. By the continuity with
respect to initial data, there exists C(77) > 0 such that

Ju1(- 1) — uallzo(ooo)y < C(T1)la (-, 0) — ual|Loo((0,00))
< C(Ty)Li? sup r2|ue(r) — ug(r)|
L

1<r

< C(Ty,a,d)Ly* for t € [0,Tq].
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Therefore, for 0 < € < 1 and T7 > 0 the solution u; satisfies
||u1(-,t) — ud”L°°((0,oo)) <e forte [0, Tl],
if 1 « L; < L;. On the other hand, Proposition 1 guarantees

Hm {|uy (-, 8) = ta]|Loo((0,00)) = 0,

since u;(-,0) — u, has a compact support.
For Ly, > L, > L,, putting initial data

u(r) =u(r,0) (r < Ly), ui(r)= uq(r) ( Ly < T).

Let uy be a solution to (IPE) with uy(-,0) = uf. Taking T; > T} and
Ly > Lo > L, such that

lui(-2) — tallg0,00) <€/2 fort e [T —1,00)

and
”u2('7 t) - ul(', t)”ﬂ,(o,oo) < 6/2 fort € [0, 15 + 1],

we get
|ug (-, T2) — ua”ﬁ,(ﬂ,oo) <e forte[I2-1,T>+ 1],
tliglo ”’U,z(',t) - 'U:d”ﬂy(O,oo) =0.

Since the initial function 4 satisfies the property having the function uf,

then the solution u, satisfies
fluz(-,t) — udllg0,00) <€ forte [Ty —1,T3 +1].
Repeating this argument, we find a solution u with u(-,0) = u° such that
{tg,uq} C w(u? : C([0,00))). (1)

Moreover, the parabolic regularity method guarantees the following.
There exists a constant C such that

[U(,8) = Usllgr <C  max u, 8) —uallgoe) fort > 1.
t—L<s<t+l

Then, for solution u satisfying (1) we obtain that

1 gl

U0, V@) = (el [ ulrtar
0

|z



is the desired solution to (PE). ]

§6 High dimensional case
As mentioned in the previous section, stability of stationary solutions and
layer of stationary solutions guarantee the existence of oscillating solutions.
In the case where n > 11, stationary solutions are stable in the following
sence.

Theorem 3 [6]/ Letn > 11. f_ = {n+2—/(n — 2)(n — 10)}/2 € (2,7n).
Suppose 0 < UL < U,, in R™ and

lim (1+ |z])%-|U%(z) - Uy(z)| = 0

|z}—00

with some a > 0. Then, the solution (U,V) to (PE) satisfies
Yim U, 8) = Ualls_mn =0,

where ||Flgr» = sup,epa(1 + |2])°| F(z)].

Moreover, stationary solutions layer in the case where n > 11 in the
following sense.

Proposition 2 [8] Let n > 11. For a > 0, there exists a unique station-
ary solutions (U,, Vy,) to (PE) satisfying U,(0) = 0 and (SPE). Moreover,
the set of functions {Uy,}aso satisfies the following.

(i) lim,_y “US - Ubgﬁ—,R’;lzbO (> 0)
(ZZ) Ub(l') = (lezlz ) — ,xl(ﬂz as I:I,'I — O0.
(iti) U, < Uy in R™, if a < b.
Here, A(b) is continuous and strictly decreasing with respect to b > 0.

In order to describe our result, we define some functional spaces and
w-limit sets.
For a non-negative constant £, put

Cs(R™) = {F € C(R")NL>®(R"): ﬂr:seunpil(l + |z|)P|F(z)| < oo} .

Let (U,V) be a solution to (PE) with initial data U7 satisfying U €
C([0,00) : C(R™) N L*(R™)). We put

w(UT : C4(R™)) = {F € CRMNL®(R") : lim t, = oo,
lim [|U(-,,) = Fllggs =0 for some {tn}  (0,00) }.

Using Theorem 3 and Proposition 2, we construct the following solutions.
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Theorem 4 [6] Let n > 11 and let A be a set of [0, 00).
Then, there erists a radial and continuous function UT such that

2(n—2)

BE in R™.

0<U*<U,

and
{Us}aen C w(U* : C4(R™))  for any B € [0,2).

Moreover, suppose inf A > 0. Then, we can take 8 € [0,-).
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