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UNPREDICTABILITY OF QUASI-PERIODIC DYNAMICAL
SYSTEMS WITH FREQUENCY
OF p-ADIC LIOUVILLE TYPE NUMBERS

HIROHITO INOUE AND KOICHIRO NAITO

DEPARTMENT OF MATHEMATICS AND ENGINEERING,
KUMAMOTO UNIVERSITY

1. INTRODUCTION

There are only two types of complete extensions of the rationals, the real
numbers and the p-adic numbers. The p-adic numbers were first introduced by
Kurt Hensel in 1897 and during almost 100 years they are considered mainly
objects of pure mathematics. From 1980’s applications of p-adic numbers were
started and proposed in mathematical physics and quantum mechanics. Now p-
adic analysis has been studied in various fields to investigate extremely complex
models, which have chaotic properties.

In this paper we introduce the definitions of p-adic numbers and a special
type of Schneider’s continued fractions for p-adic numbers ([2], [5]). Then we
study a quasi-periodic dynamical system with its frequency, which has a p-adic
Liouville type property. We investigate the recurrent properties of its orbits by
using these p-adic continued fractions and we estimate the positive gap values of
the recurrent dimensions, which measure the unpredictability level of the orbit
(cf. [8]).

Our plan of this paper is as follows. In section 2 we give a brief introduction of
p-adic numbers. In section 3 we introduce p-adic continued fractions. In Section
4 we treat approximation lattices of p-adic numbers and we define p-adic weak
Liouville numbers. In Section 5 we study the quasi-periodic dynamical system
and in section 6 we give some numerical results on exponents of p-adic weak
Liouville numbers by using an open-source mathematics software SAGE.

2. p-ADIC NUMBERS

Here we give a brief introduction to p-adic numbers. (For further details, see

1], 3])

For a prime p the p-adic valuation v, is the function
vp 1 Z\{0} = Z
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defined as follows. For n € Z, let v,(n) be the unique non-negative v such that
n=p"-n', ged(p,n)=1.
For z = a/b € Q\{0}, define
vp() = vp(a) — vy(b).
Then we can easily show the following properties
(1) vp(zy) = vp(2) + v, (y)
(2) vp(z +y) > min{v,(z), up(y)}

for all z,y € Q\{0}.
For z € Q the p-adic absolute value |z|, is defined as follows.

|, = p @ i £ #£0
P10 if x=0.
Then the function = — |z|, satisfies the following conditions for all z,y € Q.
(i) |z]p=0<=2z2=0
(1) [zylp = [2lplyl,
(iii) | + ylp < max{|z|p, [yl,}.
Since max{|z|p, |y|p} < |z|p + |ylp, the property (iii), called the strong triangle
inequality, implies the triangle inequality
(iv) [z +ylp < |z]p + [ylp-

The absolute value, which satisfies the condition (i), (ii), (iv), is said to be
Archimedean and if (iv) is replaced by the stronger (iii), then the absolute value
is said to be non-Archimedean. The property (iii) implies the following isosceles
triangle principle.

[zlp # [y, = |2 + ylp = max{|zl,, |y}

for all z,y € Q.
The property (iii) also implies the following equivalent relation for Cauchy
sequences in Q:

|Tn — Tmlp = 0 a8 n,m — 00 <= |Tp, — Tpy1lp = 0 asn — oo.

The completion of Q w.r.t. |- |, is called the field of p-adic numbers, denoted
by Qp. The p-adic numbers z,y € Q, satisfy the conditions (i), (i), (iii) . We
define the ring of p-adic integers by

Zp={z € Qp: |z|, <1}
where = € Z, has the expansion in base p

z=Y dip¥, drp€{0,1,.,p—1}.
k=0
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3. p-ADIC CONTINUED FRACTIONS

First we introduce a special type of Schneider’s continued fractions, which was
given by Bugeaud in [2] to investigate p-adic extremal numbers.

Let {v,} be a sequence of positive integers. Then we consider the following
p-adic continued fraction, which gives a p-adic number w:

P

D
p”

1+

w=1+

1+
1+

We denote the continued fraction by
w=1+ [p™/1,p"/1,p"/1,...].

On the other hand we can obtain the rational approximation w, of w iteratively

as follows.
Let P_1 = 1,Q_1 =0,P0= 1,Q0:1,

Pn = P’I‘L—l +pvn n—2)
Qrn=0Qn1+9P"Qno, n=12 ...

Then we call (P,,@,) the p-adic convergents pair of p-adic number w. Then we
have

wp = P,/Qn =1+ [p"/1,p™/1,...,p" /1]

with the following estimates

[ = Pa/Quly = prrorttones),

maX{Pn, Qn} < p'vl+'U2+"'+'U'n .
We need the following Lemma, for the inequality relation between P, and Q.

Lemma 3.1. Given w € Z,, let (P,,Q,) be the p-adic convergents pair of w.
Then there exist positive constants cy,cCa:

aQn < P, < c@Qn, Vn.

Proof. Using the p-adic continued fraction of w, we have

— Y RN, 7
a=p 2 c=p.

In fact,
P=p", Q1=1,
P2 ___pvl, Q2 - 1+p'02

and the induction argument completes the proof. 4



11

4. APPROXIMATION LATTICES

In this section we introduce approximation lattices of p-adic numbers given by
B. de Weger in [11]. Let p be a prime number and o € Z,. The ordered pair of
rational integers (P, @) is called a p-adic approximations to « of order m if

|P—Qal,=p™™.
The set
Tm={(P,Q) eZ*: P —Qal, <p™™}
is called the mth approximation lattice of a.
The approximation lattices satisfy the following properties.
(i) ', is a lattice in Z2 of rank 2.
(i) Z2=To DI D> DTy Dl D -+
(iii) A pair of points {(P,Q), (R, S)} in I',, is a basis of T',, if and only if
[PS - QR| = pm.
We consider the norm in T',,:

I(P, @)l = max{|P|,|Q|}.

First we choose the minimal non-zero point (X;,Y;) in T',, and secondly we
choose the minimal point (X5, Y5) which is independent of (X;,Y;). The pair of
points {(X3,Y;), (X2, Y2)} is called the norm reduced basis.

We can show the following theorems by applying the results by Weger.

Theorem 4.1. If (P,Q) € Z? is the first minimal norm point, then it holds

1
P - Qalp < —5—.
TR Q)2
Theorem 4.2. If (P,Q) € Z? is not the first minimal norm point in any lattice,

then it holds )

2[(P,)I*

Constructing an algorithm to search the minimal norm point in a general
lattice is an extremely difficult problem, called SVP (shortest vector problem),
which has direct applications to cryptography. Here we can use the algorithm
for constructing p-adic continued fractions to find these minimal norm points.

To find these minimal points efficiently we define the following restrictions of
the lattices. We denote

I/ ={(P,Q) € T : c1Q < P},
T2/ ={(P,Q) €T\ : P < Q)
Ie/e = {((P,Q) €T c1Q < P < Q)

for some constants c; > ¢; > 0.
In section 3 we can iteratively construct the convergents (P,, Q,), using p-adic
continued fractions of w:

|Pn _ an|p — p—(v1+--~+vn+1)7

|P — Qal, >
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| (P, @u)l < p™F %0,

For a sequence of the first minimal norm points we can choose the subsequence of
{(Pm,, @m,)} from the p-adic convergents pairs under some algebraic assumptions
on p-adic numbers. In our previous papers ([7],[9]) we introduced a class of
irrational numbers, which have well rational approximation properties.

In p-adic numbers case we also say that a p-adic number w is a weak Liouville
number with its order v > 0 if there exists a subsequence {(Prn,,(@m;)} which
satisfies

1
Prrjs Qmy)IIPHY

Assume that v, > v1 + -+ + v, + 2c for a constant c: 2p~2¢ < 1. Then we
have

(4'1) IPmJ' - Qmjwlp < ”(

,Pn_anlp S p—2(v1+~~+‘vn+c)
1

2(|(Pn, @u)II*

It follows from Theorem 4.2 that (P,, Q) is the first minimal norm point in I',,.
If we assume that v, > (1 +7)(v1 + -+ + v,) for v > 0, then we have

|Pn - an|p S p_(2+7)(vl++vn)
< 1
S eI

5. QUASI-PERIODIC ORBITS

(4.2) <

For a given w € Z, and @ € Ny we denote
|Qu|l, = min{|P — Qwl, : 1Q < P < c2Q, P € No}
where c;,c; are the constants in Lemma 3.1. We denote a minimal pair by
(PQ’ Q)
|Pg — Qlp, = min{|P — Qu|p : c;Q < P < oQ, P € No}.
We consider the shift mapping f on Z, by
flz)=2z+w, z€Z,
We investigate some recurrent property of the orbit ¥, given by f,
Y = {a:,f(z),f2(x),  f(x), 0 }
where f2(z) = f(f(2)), f2(z) = f(f(f(2))),---. We have
ffz)=z+nw
and hence
1f™(z) — zllp = lInwll.
We estimate the recurrent properties of the q.p. orbits and the gap of recurrent

dimensions by using the algebraic property, p-adic weak Liouville property, of the
irrational frequency w.
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Definitions of recurrent dimensions:
Define the first e-recurrent time by
M,,(e) = min{m € N: || f™(z) — x|, = [|[mw|, < €}
The upper recurrent dimension is defined by
— log M, (e
D, = limsup 28 Fwie) «(€)
e»0  —loge
and the lower recurrent dimension is defined by

e=20 —loge

Then we can define the gaps of recurrent dimensions by G, = D,, — D,,.
If the gap values G, take positive values, we cannot exactly determine or
predict the e-recurrent time of the orbits:

woe (). ()"

Thus we propose the value G, as the parameter, which measures the unpre-
dictability level of the orbit (cf. [8]).
We obtain the following theorem.

Theorem 5.1. Let w be a weak Liouville number with its order v > 0, which
satisfies (4.1). Then we have

1

D ——
=w =9 + ~
Proof. For the sequence {(P;, Qm,)}, which specifies the weak Liouville property

of w;
1

(ija Qmj)||2+7,

Iij - Qmjwlp S ”
it follows from Lemma 3.1 that we have

lemj < ”(ij, QmJ)H < C2Qmj-
It follows from the definitions that

19z —zll, = [|Qmuwll
< lej - Qmjw|p
1
<

1(Prmgs @ )P+

Thus we have
17955 = ally < s =
TTgteRy T
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Now we can estimate the lower recurrent dimension as follows.

D, = liminf M
e=0 —loge

= liminf inf 1—05—]\11—(—8—)
jooo ejp1<e<e; —loge
log M(Ej)

< liminf -
j=oo  —loge;

: log Qm,
lim .
j—oo —log ey + (24 ) log Qm,
1

2+

O

For the upper estimate we assume some conditions on the sparse between
(P Qm,) and (Pr;_;, Qm;_,)-
Theorem 5.2. Under the same hypotheses as Theorem 5.1 we assume that there
ezist a sequence of lattice points (P,,Qy;) € I‘;«‘J?/q P Qmyoy < Qy < Qmyy V7,
which are not the first minimal points in any lattice, and a sequence of constants
K; :0 < K; < 1, which satisfy

K.
IP — le > - J
P “(Bj’Qlj)Hz
for every (P,Q) € T2/ ; Qm,_; < Q < Qy;. Then we have
— 1
D,6>=.
“=2
Consequently, we can estimate the positive gap value
Y
G, > .
Y= 2(24+7)
Proof. Tt follows from Theorem 4.2 that we have
K.
P, - Quuw|, > 2
B =@k = 3R, Q)P
I .
. Q?j = Ej.

For Q € N: Qm,_, < Q < Qy;, take the minimal pair (P, Q):
|Pg — Qulp, = min{|P — Qul, : c1Q < P < c2Q, P € No}.
Then we have
K;
”(-I)lja Qlj)“2
1

chzJ -

|Po — Qulp >

Ej.



Now we can estimate the upper recurrent dimension.

— loe M
lim sup 281 (€)
e—0 - 10g €

)
€
I

. log M(e)
= limsup sup ———=~

o0 gj41<€<¢; —loge

log M (¢;
jooo —loge;
> ]'Og Qlj 1

fared —logc + 2log Qy; )

6. NUMERICAL RESULTS

In this section we give some numerical results on exponents of p-adic weak Li-
ouville numbers by using an open-source mathematics software SAGE. Here we
apply the algorithm given by the continued fractions in section 3 and the Gauss-
ian algorithm that finds the shortest vector in a two dimensional lattice. (For
further details, see [6].) We examine the exponent values 2+~ of the weak Liou-
ville numbers, which are numerically given by the values log p™/ log ||( P, Qm)||
where [|(Pn,@m)|| is the norm of the shortest vector obtained by the Gaussian
algorithm in each lattice I',,. However we have not yet obtained some numerical
results which satisfy Hypotheses of Theorem 5.2.

Weak Liouvlle case: p=5m=30~450,n=1~ 35

v =[1,1,1,1,1,1,12,1,1,1,1,1,1,48,1,1,1,1,1, 1,156, 1,1, 1,1, 1, 1, 480,
1,1,1,1,1,1, 1452

35+

254+

L L ) L
100 200 300 400

15
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Quadratic irrational case: v/29 € Z,, p = 5,m = 100 ~ 400 (cf.[6])

Lol

10.
11.

32

28}

26|

24}

22

2 TN N A AN A A e s A
100 50 200 250 20 =0 200
REFERENCES

. S. Albeverio, A. Yu Khrennikov, V. M. Shelkovich; “Theory of p-adic Distributions: Linear
and Nonlinear Models”, Cambridge University Press, 2010.

. Y.Bugeaud, On simultaneous uniform approzimation to a p-adic number and its square.

Proc. Amer. Math. Soc.138 (2010), 3821-3826

F. Q. Gouvea; “p-adic Numbers; An Introduction”, Springer; 2nd edition 2003.

Y.A Khinchin, “Continued Fractions”, the University of Chicago Press 1964. 28 # 5037

V. Laohakosol and P.Ubolsri, p-adic continued fractions of liouville type, Proc. Am. Math.

Soc. 101 (1987), 403-410.

. H. Inoue and K. Naito, p-adic continued fractions and a p-adic behavior of quasi-periodic

dynamical system, Proc. of the Asian Conf. Nonlinear Analysis and Optimizations 2012,

submitted.

K. Naito, Recurrent dimensions of quasi-periodic solutions for nonlinear evolution equa-

tions, Trans. Amer. Math. Soc. 354 no. 3 (2002), 1137-1151.

, Recurrent dimensions of quasi-periodic solutions for nonlinear evolution equations

II: Gaps of dimensions and Diophantine conditions, Discrete and Continuous Dynamical

Systems 11 (2004), 449-488.

, Classifications of Irrational Numbers and Recurrent Dimensions of Quasi-Reriodic

Orbits, J. Nonlinear Anal. Convex Anal. 5 (2004), 169-185.

W.M.Schmidt, “Diophantine Approximation”, Springer Lecture Notes in Math. 785, 1980.

B.M.M. de Weger, Approzimation Lattices of p-adic Numbers, Journal of Number Theory.

24 (1986), 70-88.

Department of Mathematics and Engineering,
Kumamoto University,
Kurokami 2-39-1, Kumamoto, Japan

1

15d8157@st.kumamoto-u.ac.jp

knaito@gpo.kumamoto-u.ac.jp

BRAKYE - THEH  HE WO
REARKY - T2 Ak £



