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一般化上界制約付き集合多重被覆問題に対する発見的解法

梅谷俊治 (大阪大学), 荒川正尚 (富士通株式会社), 柳浦睦憲 (名古屋大学)

概要

集合被覆問題とは，台集合とその部分集合の族および各部分集合のコストが与えられたと
き，台集合の全ての要素を被覆するコスト最小の部分集合の組み合わせを求める問題である．
大規模な集合被覆問題に対して効率的な発見的解法が提案されている一方で，実際の応用事例
では個々の事業者に固有の追加制約をともなうため，現場では整数計画問題に対する汎用ソル
バーを利用せざるを得ない場合が少なくない．本研究では，人員スケジューリング問題におけ
る職種毎の人数制限，配送計画における車種毎の台数制限，データの論理的解析におけるロバ
ストな解析など応用事例に頻繁に現れる追加制約に対応するため，多重制約と一般化上界制約
を集合被覆問題に導入した一般化上界制約付き集合多重被覆問題に対して効率的な発見的解法
を提案する．

1 Introduction
The set covering problem (SCP) is one of representative combinatorial optimization problems.

We are given a ground set of $m$ elements $i\in M=\{1, \ldots, m\},$ $n$ subsets $S_{j}\subseteq M(|S_{j}|\geq 1)$ and
costs $c_{j}(>0)$ for $j\in N=\{1, \ldots, n\}$ . We say that $X\subseteq N$ is a cover of $M$ if $\bigcup_{j\in X}S_{j}=M$

holds. The goal of SCP is to find a minimum cost cover $X$ of $M$ . The SCP is formulated as a
0-1 integer programming ($IP$ ) problem as follows:

(SCP) minimize $\sum c_{j}x_{j}$

subject to $\sum_{j\in N}^{j\in N}a_{ij}x_{j}\geq 1,$ $i\in M$ , (1)

$x_{j}\in\{0,1\}, j\in N,$

where $a_{ij}=1$ if $i\in S_{j}$ holds and $a_{ij}=0$ otherwise, and $x_{j}=1$ if $j\in X$ holds and $x_{j}=0$

otherwise, respectively. That is, a column $a_{j}=(a_{1j}, \ldots, a_{mj})^{T}$ of matrix $(a_{ij})$ represents the
corresponding subset $S_{j}$ by $S_{j}=\{i\in M|a_{ij}=1\}$ , and the vector $x$ also represents the
corresponding cover $X$ by $X=\{j\in N|x_{j}=1\}$ . For notational convenience, for each $i\in M,$

let $N_{i}=\{j\in N|a_{ij}=1\}$ be the index set of subsets $S_{j}$ that contain element $i.$

The SCP is known to be $NP$-hard in the strong sense, and there is no polynomial time ap-
proximation scheme (PTAS) unless $P=NP$. However, the worst-case performance analysis does
not necessarily reflect the experimental performance in practice. The continuous development of
mathematical programming has much improved the performance of heuristic algorithms accom-
panied by advances in computational machinery [7, 21]. For example, Beasley [2] presented a
number of greedy algorithms based on Lagrangian relaxation (called the Lagrangian heuristics),
and Caprara et al. [5] introduced pricing techniques into a Lagrangian heuristic algorithm to
reduce the size of instances. Several efficient heuristic algorithms based on Lagrangian heuristics
have been developed to solve very large-scale instances with up to 5000 constraints and 1,000,000
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variables with deviation within about 1% from the optimum in a reasonable computing time
[5, 8, 9, 23].

The SCP is often referred in the hterature that it has many important applications, e.g., crew
scheduling [5], vehicle routing [17], facihty location, and logical analysis of data [4]. However,
it is often difficult to formulate problems in real applications into the SCP, because they often
have additional side constraints in practice. Most practitioners accordingly formulate them into
general mixed integer programming (MIP) problem and apply general purpose solvers, which
are usually less efficient compared to solvers specially tailored to SCP.

In this paper, we consider an extension of SCP introducing (i) multicover and (ii) generalized
upper bound (GUB) constraints, which arise in many real apphcations of SCP, e.g., vehicle
routing [10], crew scheduling [19], staff scheduling [6, 18] and logical analysis of data [16].
The multicover constraint [20, 22] is a generalization of covering constraint, in which each
element $i\in M$ must be covered at least $b_{i}\in \mathbb{Z}_{+}$ ( $z_{+}$ is the set of non-negative integers)
times. GUB constraint is defined as follows. We are given a partition $\{G_{1}, \ldots, G_{k}\}$ of $N$

$( \forall h\neq h’, G_{h}\cap G_{h’}=\emptyset, \bigcup_{h=1}^{k}G_{h}=N)$ . For each block $G_{h}\subseteq N(h\in K=\{1, \ldots , k\})$ , the
number of selected subsets $S_{j}(j\in G_{h})$ is constrained to be at most $d_{h}(\leq|G_{h}|)$ . We call this
problem the set multicover problem with GUB constraints (SMCP-GUB).

The SMCP-GUB is $NP$-hard, and the (supposedly) simpler problem of judging the existence
of a feasible solution is $NP$-complete, since the satisfiability (SAT) problem can be reduced
to this problem. In real applications, we often encounter instances with no feasible solution,
and it is necessary to find an acceptable solution that violates only a small number of less
important constraints. We accordingly consider the following formulation of SMCP-GUB that
allows violations of the multicover constraints and introduces a penalty function with a penalty
weight vector $w=(w_{1}, \ldots, w_{m})\in \mathbb{R}_{+}^{m}.$

(SMCP-GUB) minimize
$z(x)= \sum_{j\in N}c_{j}x_{j}+\sum_{i\in M}w_{i}y_{i}$

subject to $\sum a_{ij}x_{j}+y_{i}\geq b_{i},$ $i\in M,$

$\sum_{j\in G_{h}}^{j\in N}x_{j}\leq d_{h}, h\in K$, (2)

$x_{j}\in\{0,1\}, j\in N,$
$y_{i}\in\{0, \ldots, b_{i}\}, i\in M.$

For a given $x\in\{0,1\}^{n}$ , we can easily compute an optimal $y$ by $y_{i}= \max\{b_{i}-\sum_{j\in N}a_{ij}x_{j}, 0\}.$

We note that when $y^{*}=0$ holds for an optimal solution $(x^{*}, y^{*})$ of SMCP-GUB under the
soft multicover constraints, $x^{*}$ is also optimal under the original (hard) multicover constraints
if $w_{i}> \sum_{j\in N}c_{j}$ holds for all $i\in M$ . In this paper, we accordingly set $w_{i}= \sum_{j\in N}c_{j}+1$ for all
$i\in M.$

This generalization of SCP substantially extends the variety of its applications. However,
GUB constraints often make the pricing method less effective, because they prevent solutions
from containing highly evaluated variables together. To overcome this, we propose a heuris-
tic algorithm to reduce the size of problem instances. In this algorithm, we introduce a new
evaluation scheme of variables taking account of GUB constraints. We also develop a 2-flip
neighborhood local search algorithm. It features (i) an efficient implementation that reduces
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the number of candidates in the neighborhood without sacrificing the solution quality, and (ii)
an adaptive control of penalty weights to guide the search to visit better solutions. The latter
feature is adopted because when fixed large penalty weights are used, the search tends to stop
at locally optimal solutions of low quality. This is because to reach from a good solution to
a better one by a sequence of neighborhood operations, it is often unavoidable to temporarily
increase the values of some variables $y_{i}$ , and large penalty weights prevent the algorithm from
moving between such solutions. To guide the search to visit a wide variety of good solutions,
we also introduce an evolutionary approach called the path relinking method [15] that generates
new solutions by combining two or more solutions obtained by then.

Figure 1 illustrates the outline of the entire algorithm for SMCP-GUB. Our algorithm first
solves a Lagrangian dual problem to obtain a Lagrangian multiplier vector $\overline{u}$ and a lower bound
$z_{LR}(\overline{u})$ by the subgradient method (Section 2), where it is applied only once in the entire algo-
rithm. Then, our algorithm applies the following three procedures in this order: (i) the heuristic
reduction of problem sizes (Section 6), (ii) the path relinking method to generate initial solutions
(Section 5), and (iii) the 2-ffip neighborhood local search algorithm with the adaptive control of
penalty weights (Sections 3 and 4), where they are iteratively applied until a given time limit
has run out.

図 1: The outline of the proposed algorithm for SMCP-GUB

2 Lagrangian Relaxation and Subgradient Method
For a given vector $u=(u_{1}, \ldots, u_{m})\in \mathbb{R}_{+}^{m}$ , called the Lagrangian multiplier vector, the

Lagrangian relaxation of SMCP-GUB is defined as follows:

$(LR(u))$ minimize $z_{LR}(u)$ $=$ $\sum_{j\in N}c_{j}x_{j}+\sum_{i\in M}w_{i}y_{i}+\sum_{i\in M}u_{i}(b_{i}-\sum_{j\in N}a_{ij}x_{j}-y_{i})$

$= \sum_{j\in N}(c_{j}-\sum_{i\in M}a_{ij}u_{j})x_{j}+\sum_{i\in M}y_{i}(w_{i}-u_{i})+\sum_{i\in M}b_{\iota’}u_{l}$ ’

(3)
subject to

$\sum_{j\in G_{h}}x_{j}\leq d_{h},$
$h\in K,$

$x_{j}\in\{0,1\}, j\in N,$

$y_{i}\in\{0, \ldots, b_{i}\}, i\in M,$
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where we call $\tilde{c}_{j}(u)=c_{j}-\sum_{i\in M}a_{ij}u_{i}$ the Lagrangian cost associated with column $j\in N.$

For any $u,$ $z_{LR}(u)$ gives a lower bound on the optimal value of SMCP-GUB $z(x^{*})$ . The problem
of finding a Lagrangian multiplier vector $u$ that maximizes $z_{LR}(u)$ is called the Lagrangian dual
problem:

(LRD) maximize $\{z_{LR}(u)|u\in \mathbb{R}_{+}^{m}\}$ . (4)

For a given $u$ , we can easily compute an optimal solution to $LR(u)$ . Let $\tilde{x}(u)=(\tilde{x}_{1}(u),$
$\ldots,$

$\tilde{x}_{n}(u))$ and $\tilde{y}(u)=(\tilde{y}_{1}(u), \ldots,\tilde{y}_{m}(u))$ be an optimal solution to $LR(u)$ . For each block $G_{h}$

$(h\in K)$ , if the number of columns $j\in G_{h}$ satisfying $\tilde{c}_{j}(u)<0$ is equal to $d_{h}$ or less, then set
$\tilde{x}_{j}(u)arrow 1$ $($ respectively, $\tilde{x}_{j}(u)arrow 0$) for variables satisfying $\tilde{c}_{j}(u)<0$ $($ respectively, $\tilde{c}_{j}(u)\geq 0$ );
otherwise, set $\tilde{x}_{j}(u)arrow 1$ for variables with the $d_{h}$ lowest Lagrangian costs $\tilde{c}_{j}(u)$ and $\tilde{x}_{j}(u)arrow 0$

for the other variables. For $i\in M$ , set $\tilde{y}_{i}(u)arrow b_{i}$ $($ respectively, $\tilde{y}_{i}(u)arrow 0$ ) if $u_{i}\geq w_{i}$

$($respectively, $u_{i}<w_{i})$ holds.
The Lagrangian relaxation $LR(u)$ has integrality property, i.e., an optimal solution to the

hnear programming ($LP$ ) relaxation problem of $LR(u)$ (i.e., the problem obtained by replacing
$x_{j}\in\{0,1\}$ with $0\leq x_{j}\leq 1$ for $j\in N$ , and $y_{i}\in\{0, \ldots, b_{i}\}$ with $0\leq y_{i}\leq b_{i}$ for $i\in M,$

respectively) is also optimal to the original problem $LR(u)$ . In this case, any optimal solution
$u^{*}$ to the dual of the $LP$ relaxation problem of SMCP-GUB is also optimal to the Lagrangian
dual problem LRD. Hence, the optimal value of the $LP$ relaxation problem of SMCP-GUB $z_{LP}$

is equal to that of LRD $z_{LR}(u^{*})$ .
A common approach to compute a near optimal Lagrangian multiplier vector $u$ is the subgra-

dient method. It uses the subgradient vector $s(u)=(s_{1}(u), \ldots, s_{m}(u))\in \mathbb{R}^{m}$ , associated with
a given $u$ , defined by

$s_{i}(u)=b_{i}- \sum_{j\in N}a_{ij}\tilde{x}_{j}(u)-\tilde{y}_{i}(u)$
. (5)

This method generates a sequence of non-negative Lagrangian multiplier vectors $u^{(0)},$ $u^{(1)},$
$\ldots,$

where $u^{(0)}$ is a given initial vector and $u^{(l+1)}$ is updated from $u^{(l)}$ by the following formula:

$u_{i}^{(l+1)} arrow\max\{u_{i}^{(l)}+\lambda\frac{z_{UB}-z_{LR}(u^{(l)})}{||s(u^{(l)})||^{2}}s_{i}(u^{(l)}), 0\}, i\in M$ , (6)

where $z_{UB}$ is an upper bound on $z(x)$ , and $\lambda>0$ is a parameter called the step size.
When huge instances of SCP are solved, the computing time spent on the subgradient method

becomes very large if a naive implementation is used. Caprara et al. [5] developed a variant of
pricing method on the subgradient method. They define a dual core problem consisting of a
small subset of columns $C_{d}\subset N(|C_{d}|\ll|N|)$ , chosen among those having the lowest Lagrangian
costs $\tilde{c}_{j}(u)(j\in C_{d})$ , and iteratively update the dual core problem in a similar fashion to that
used for solving large scale $LP$ problems. In order to solve huge instances of SMCP-GUB, we
also introduce their pricing method into the basic subgradient method (BSM) described in [21].

3 The 2-flip Neighborhood Local Search Algorithm

The local search ($LS$ ) starts from an initial solution $x$ and repeats replacing $x$ with a better
solution $x’$ in its neighborhood $NB(x)$ until no better solution is found in $NB(x)$ . For a positive
integer $r$ , the r-ffip neighborhood $NB_{r}(x)$ is defined by $NB_{r}(x)=\{x’\in\{0,1\}^{n}|d(x, x’)\leq r\},$
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where $d(x, x’)=|\{j\in N|x_{j}\neq x_{j}’\}|$ is the Hamming distance between $x$ and $x’$ . In other words,
$NB_{r}(x)$ is the set of solutions obtained from $x$ by ffipping at most $r$ variables. In our $LS$ , the $r$

is set to 2. In order to improve efficiency, our $LS$ searches $NB_{1}(x)$ first, and $NB_{2}(x)\backslash NB_{1}(x)$

only if $x$ is locally optimal with respect to $NB_{1}(x)$ .
Since the region searched in a single application of $LS$ is limited, $LS$ is usually applied many

times. When a locally optimal solution is obtained, a standard strategy of our algorithm is to
update penalty weights and to resume $LS$ from the obtained locally optimal solution. We accord-
ingly evaluate solutions with an altemative evaluation function $\hat{z}(x)$ , where the original penalty
weight vector $w$ is replaced with $\hat{w}=(\hat{w}_{1}, \ldots,\hat{w}_{m})\in \mathbb{R}_{+}^{m}$ , which are adaptively controlled in
the search (See the details in Section 4).

We first describe our $LS$ to search $NB_{1}(x)$ , called the l-flip neighborhood search. Let

$\triangle\hat{z}_{j}^{+}(x) = c_{j}- \sum \hat{w}_{i},$

$\triangle\hat{z}_{j}^{-}(x) = -c_{j}+\sum^{i\in M_{L}}(x)\cap S_{j} \hat{w}_{i}$ ,
(7)

$i\in(M_{L}(x)\cup M_{E}(x))\cap S_{j}$

denote the increase of $\hat{z}(x)$ by flipping $x_{j}=0arrow 1$ and $x_{j}=1arrow 0$ , respectively, where
$M_{L}(x)= \{i\in M|\sum_{j\in N}a_{ij}x_{j}<b_{i}\}$ and $M_{E}(x)= \{i\in M|\sum_{j\in N}a_{ij}x_{j}=b_{i}\}$ . Our $LS$ first
searches for an improved solution obtainable by flipping $x_{j}=0arrow 1$ by searching for $j\in N\backslash X$

satisfying $\triangle\hat{z}_{j}^{+}(x)<0$ and $\sum_{j\in G_{h}}x_{j’}<d_{h}$ for $G_{h}\ni j$ . If an improved solution exist, it chooses
$j$ with the minimum $\triangle\hat{z}_{j}^{+}(x)$ ; otherwise, it searches for an improved solution obtainable by
flipping $x_{j}=1arrow 0$ by searching for $j\in X$ satisfying $\triangle\hat{z}_{j}^{-}(x)<0.$

We next describe our $LS$ to search $NB_{2}(x)\backslash NB_{1}(x)$ , called the 2-flip neighborhood search.
Yagiura et al. [23] developed an $LS$ with the 3-flip neighborhood for SCP. They derived condi-
tions that reduce the number of candidates in $NB_{2}(x)\backslash NB_{1}(x)$ and $NB_{3}(x)\backslash NB_{2}(x)$ without
sacrificing the solution quality. However, those conditions are not applicable to the 2-ffip neigh-
borhood for SMCP-GUB because of GUB constraints. We therefore propose new conditions
that reduce the number of candidates in $NB_{2}(x)\backslash NB_{1}(x)$ taking account of GUB constraints.

Our $LS$ is based on the following three lemmas. Let $\triangle\hat{z}_{j_{1},j_{2}}(x)$ denote the increase of $\hat{z}(x)$ by
ffipping the values of $x_{j_{1}}$ and $x_{j_{2}}$ simultaneously.

Lemma 1 Suppose that a solution $x$ is locally optimal with respect to $NB_{1}(x)$ . Then $\triangle\hat{z}_{j_{1},j_{2}}(x)<$

$0$ holds, only if $x_{j_{1}}\neq x_{j_{2}}.$

The proofs is omitted due to space hmitations. Based on this lemma, we consider only the set
of solutions obtainable by ffipping $x_{j_{1}}=1arrow 0$ and $x_{j_{2}}=0arrow 1$ simultaneously. We now define

$\triangle\hat{z}_{j_{1},j_{2}}(x)=\triangle\hat{z}_{j_{1}}^{-}(x)+\triangle\hat{z}_{j_{2}}^{+}(x)-\sum_{i\in M_{E}(x)\cap S_{j_{1}}\cap S_{j_{2}}}$砺．(8)
Lemma 2 Suppose that a solution $x$ is locally optimal with respect to $NB_{1}(x),$ $x_{j_{1}}=1$ and
$x_{j_{2}}=0$ . Then $\triangle\hat{z}_{j_{1},j_{2}}(x)<0$ holds, only if at least one of the following two conditions holds.

(i) Both $j_{1}$ and $j_{2}$ belong to the same block $G_{h}$ satisfying $\sum_{j\in G_{h}}x_{j}=d_{h}.$

(ii) $M_{E}(x)\cap S_{j_{1}}\cap S_{j_{2}}\neq\emptyset.$
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Lemma 3 Suppose that a solution $x$ is locally optimal with respect to $NB_{1}(x)$ , and for a block $G_{h}$

and a pair of indices $j_{1},j_{2}\in G_{h}$ with $x_{j_{1}}=1$ and $x_{j_{2}}=0,$ $\triangle\hat{z}_{j_{1},j_{2}}(x)<0$ and $M_{E}(x)\cap S_{j_{1}}\cap S_{j_{2}}=$

$\emptyset$ hold. Then we have $\min_{j\in G_{h}}\Delta\hat{z}_{j}^{-}(x)+\min_{j\in}c_{h}\triangle\hat{z}_{j}^{+}(x)<0.$

The proof of Lemmas 2 and 3 are omitted due to space hmitations. Note that the condition of
Lemma 3 imphes that the condition (i) of Lemma 2 is satisfied. Then, from Lemma 3, we can
conclude that to find an improved solution that satisfies condition (i), it suffices to check only
one pair for each block $G_{h}$ satisfying $\sum_{j\in G_{h}}x_{j}=d_{h}$ , instead of checking all pairs $(j_{1},j_{2})$ with
$j_{1},j_{2}\in G_{h},$ $x_{j_{1}}=1$ and $x_{j_{2}}=0$ (provided that the algorithm also checks the solutions that
satisfy condition (ii) $)$ .

Our $LS$ first searches for an improved solution in $NB_{2}(x)\backslash NB_{1}(x)$ that satisfies the condition
(i). For each block $G_{h}(h\in K)$ that satisfies $\sum_{j\in G_{h}}x_{j}=d_{h}$ , it checks the solution obtained by
flipping $x_{j_{1}}=1arrow 0$ and $x_{j_{2}}=0arrow 1$ with the minimum $\triangle\hat{z}_{j_{1}}^{-}(x)$ and $\Delta\hat{z}_{j_{2}}^{+}(x)(j_{1}, j_{2}\in G_{h})$ ,
respectively. Our $LS$ then searches for an improved solution in $NB_{2}(x)\backslash NB_{1}(x)$ that satisfies the
condition (ii). Let $NB_{2}^{(j_{1})}(x)$ denote the subset of $NB_{2}(x)$ obtainable by ffipping $x_{j_{1}}=1arrow 0.$

Our $LS$ searches $NB_{2}^{(j_{1})}(x)$ for each $j_{1}\in X$ in the ascending order of $\triangle\hat{z}_{j_{1}}^{-}(x)$ . If an improved
solution is found, it chooses a pair $j_{1}$ and $j_{2}$ with the minimum $\Delta\hat{z}_{j_{1},j_{2}}(x)$ among those in
$NB_{2}^{(j_{1})}(x)$ , and it returns to the l-ffip neighborhood search algorithm. Our $LS$ is formally
described as follows.

Algorithm $LS(x,\hat{w})$

Input: $A$ solution $x$ and a penalty weight vector $\hat{w}.$

Output: $A$ solution $x.$

Step 1: If $I_{1}^{+}(x)=\{j\in N\backslash X|\triangle\hat{z}_{j}^{+}(x)<0,$ $\sum_{j\in G_{h}}x_{j’}<d_{h}$ for $G_{h}\ni j\}\neq\emptyset$

holds, choose $j\in I_{1}^{+}(x)$ with the minimum $\triangle\hat{z}_{j}^{+}(x)$ , set $x_{j}arrow 1$ and return to
Step 1.

Step 2: If $I_{1}^{-}(x)=\{j\in X|\triangle\hat{z}_{j}^{-}(x)<0\}\neq\emptyset$ holds, choose $j\in I_{1}^{-}(x)$ with the
minimum $\triangle\hat{z}_{j}^{-}(x)$ , set $x_{j}arrow 0$ and return to Step 2.

Step 3: For each block $G_{h}$ satisfying $\sum_{j\in G_{h}}x_{j}=d_{h}(h\in K)$ , if $\triangle\hat{z}_{j_{1},j_{2}}(x)<0$ holds
for $j_{1}$ and $j_{2}$ with the minimum $\Delta\hat{z}_{j_{1}}^{-}(x)$ and $\Delta\hat{z}_{j_{2}}^{+}(x)(j_{1},j_{2}\in G_{h})$ , respectively,
set $x_{j_{1}}arrow 0$ and $x_{j_{2}}arrow 1$ . If the current solution $x$ has been updated at least
once in Step 3, return to Step 3.

Step 4: For each $j_{1}\in X$ in the ascending order of $\Delta\hat{z}_{j_{1}}^{-}(x)$ , if $I_{2}(x)=\{j_{2}\in N\backslash X|$

$\triangle\hat{z}_{j_{1},j_{2}}(x)<0,$ $\sum_{j\in G_{h}}x_{j’}<d_{h}$ for $G_{h}\ni j_{2}$ } $\neq\emptyset$ holds, choose $j_{2}\in I_{2}(x)$ with
the minimum $\triangle\hat{z}_{j_{1},j_{2}}(x)$ and set $x_{j_{1}}arrow 0$ and $x_{j_{2}}arrow 1$ . If the current solution
$x$ has been updated at least once in Step 4, return to Step 1; otherwise output
$x$ and exit.

We note that our $LS$ does not necessarily output a locally optimal solution with respect to
$NB_{2}(x)$ , because the solution $x$ is not necessarily locally optimal with respect to $NB_{1}(x)$ in
Steps 3 and 4. Though it is easy to keep the solution $x$ locally optimal with respect to $NB_{1}(x)$

in Steps 3 and 4 by returning to Step 1 whenever an improved solution is obtained in Step 2 or
3, we did not adopt this option because it consumes much computing time just to conclude that
the current solution is locally optimal with respect to $NB_{1}(x)$ in most cases.
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Let one-round be the computation needed to find an improved solution in the neighbor-
hood or to conclude that the current solution is locally optimal. For convenience, let $\sigma=$

$\sum_{i\in M}\sum_{j\in N}a_{ij},$ $\tau=\max_{j\in N}\sum_{i\in S_{j}}|N_{i}|,$ $\nu=\max_{j\in N}|S_{j}|$ and $n’= \sum_{j\in N}x_{j}$ . If implemented
naively, our $LS$ requires $O(\sigma)$ and $O(n\sigma)$ one-round time for $NB_{1}(x)$ and $NB_{2}(x)$ , respectively.
In order to improve efficiency, we make use of the following auxiliary data

$\rho_{j}^{+}(x) = \sum \hat{w}_{i}, j\in N\backslash X,$

$\rho_{j}^{-}(x) = (x)\cap S\sum^{j}^{i\in M_{L}} \hat{w}_{i}, j\in X$ .
(9)

$i\in(M_{L}(x)\cup M_{E}(x))\cap S_{j}$

We store the values of $\rho_{j}^{+}(x)$ and $\rho_{j}^{-}(x)$ for $j\in N$ in memory to compute each $\triangle\hat{z}_{j}^{+}(x)=c_{j}-$

$\rho_{j}^{+}(x)$ and $\triangle\hat{z}_{j}^{-}(x)=-c_{j}+\rho_{j}^{-}(x)$ in $O(1)$ time. We also store the values of $\theta_{i}(x)=\sum_{j\in N}a_{ij}x_{j}$

for $i\in M$ in memory to update the values of $\rho_{j}^{+}(x)$ and $\rho_{j}^{-}(x)$ for $j\in N$ in $O(\tau)$ time when
$x$ is changed. In our implementation, one-round time is reduced to $O(n+\tau)$ for $NB_{1}(x)$ and
$O(n+k\nu+n’\tau)$ for $NB_{2}(x)\backslash NB_{1}(x)$ by making use of the memory structure. Because $\tau\leq\sigma$

and $n’\leq n$ always hold, these orders are not worse than those of naive implementation, and are
much better if $\tau\ll\sigma$ and $n’\ll n$ hold.

4 Adaptive Control of Penalty Weights

Recall that in our algorithm, solutions are evaluated by the alternative evaluation function
$\hat{z}(x)$ in which the fixed penalty weight vector $w$ in the original objective function $z(x)$ is replaced
with $\hat{w}=(\hat{w}_{1}, \ldots,\hat{w}_{m})\in \mathbb{R}_{+}^{m}$ , and the values of $\hat{w}_{i}$ are adaptively controlled in the search. It is
often reported that local search ($LS$ ) alone may not attain a sufficiently good solution. $O$ur $LS$

tends to be also attracted to locally optimal solutions of insufficient quality when the original
large penalty weights $w_{i}= \sum_{j\in N}c_{j}+1(i\in M)$ are used as $\hat{w}_{i}$ in the evaluation function
$\hat{z}(x)$ . We accordingly incorporate a mechanism to adaptively control the values of $\hat{w}_{i}$ , i.e., our
algorithm iteratively applies $LS$ , updating the penalty weight vector $\hat{w}$ after each call to $LS$ . We
call such a sequence of calls to $LSLS$-probe, and use it as the main engine to improve solutions.

Let $x$ denote the solution at which the previous local search stops. The $LS$-probe resumes $LS$

from $x$ after updating the penalty weight vector $\hat{w}$ . Starting from the original penalty weight
vector $\hat{w}arrow w$ , the penalty weight vector $\hat{w}$ is updated as follows. Let $x$

best denote the best
feasible solution with respect to the original objective function $z(x)$ obtained in the current
call to $LS$-probe. If $\hat{z}(x)\geq z(x^{best})$ holds, $LS$-probe uniformly decreases the penalty weights
$\hat{w}_{i}arrow(1-\eta)\hat{w}_{i}$ for $i\in M$ , where the parameter $\eta$ is adaptively computed so that for 15% of
variables satisfying $x_{j}=1$ , the new value of $\triangle\hat{z}_{j}^{-}(x)$ becomes negative. Otherwise, $LS$-probe
increases the penalty weights by

$\hat{w}_{i}arrow\min\{\hat{w}_{i}(1+\delta\frac{p_{i}(x)}{\max_{i\in M}p_{i}(x)}), w_{i}\}, i\in M$, (10)

where $p_{i}(x)= \max\{b_{i}-\sum_{j\in N}a_{ij}x_{j}, 0\}$ is the amount of violation of the ith multicover con-
straint, and $\delta$ is a parameter that is set to 0.2 in our experiment. $LS$-probe iteratively applies
$LS$ , updating the penalty weight vector $\hat{w}$ after each call to $LS$ , until the best solution obtained
in the current call to $LS$-probe with respect to the original objective function $z(x)$ has not
improved in the last 50 iterations.
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Algorithm $LS-probe(x)$

Input: $A$ solution $x.$

Output: The best solution $x$
best with respect to $z(x)$ .

Step 1: Set $iterarrow 0,$ $x^{best}arrow x,\hat{x}arrow x$ and $\hat{w}arrow w.$

Step 2: Apply $LS(\hat{x},\hat{w})$ to obtain an improved solution $\downarrow\hat{x}’$ . Let $x’$ be the best
solution with respect to the original objective function $z(\cdot)$ obtained during the
call to $LS(\hat{x},\hat{w})$ . Set $\hat{x}arrow\hat{x}’.$

Step 3: If $z(x’)<z(x^{be\epsilon t})$ holds, then set $x^{best}arrow x’$ and $iterarrow 0$ ; otherwise set
$iterarrow iter+1$ . If $iter\geq 50$ holds, output $x^{best}$ and halt.

Step 4: If $\hat{z}(\hat{x})\geq z(x^{best})$ holds, then uniformly decrease the penalty weights $\hat{w}_{i}$ for
all $i\in M$ by $\hat{w}_{i}arrow(1-\eta)\hat{w}_{i}$ ; otherwise, increase the penalty weights $\hat{w}_{i}$ for all
$i\in M$ by (10). Retum to Step 2.

5 Path Relinking Method
The path relinking [15] is an evolutionary approach to integrate intensification and diversifica-

tion strategies that generates new solutions by combining two or more solutions. This approach
generates new solutions by exploring trajectories that connect good solutions. It starts from one
of the good solutions, called an initiating solution, and generates a path by iteratively moving
to a solution in the neighborhood that leads toward the other solutions, called guiding solutions.

Because it is preferable to apply path relinking to solutions of high quahty, we keep reference
sets $R_{1}$ and $R_{2}$ of good solutions with respect to the original objective function $z(x)$ and the
alternative evaluation function $\hat{z}(x)$ with the current penalty weight vector $\hat{w}$ , respectively.
Initially $R_{1}$ and $R_{2}$ are prepared by applying $LS$-probe to randomly generated solutions. They
are then updated by reflecting outcomes of $LS$-probe whenever $LS$-probe stops. Suppose that
the last call to $LS$-probe stops at a solution $x$ and $x$

best is the best solution with respect to $z(\cdot)$

obtained during the last call to $LS$-probe. Then, the worst solution $x^{worst}$ in $R_{1}$ (with respect to
$z(\cdot))$ is replaced with the solution $X^{be8}t$ if $z(x^{best})\leq z(x^{worst})$ and $x^{best}\neq x’$ hold for all $x’\in R_{1}.$

The worst solution $\hat{x}^{worst}$ in $R_{2}$ (with respect to $\hat{z}(\cdot)$ ) is also replaced with the solution $x$ if
$\hat{z}(x)\leq\hat{z}(\hat{x}^{worst})$ and $x\neq x’$ hold for all $x’\in R_{2}.$

The path relinking is applied to two solutions $x’$ (initiating solution) and $x”$ (guiding solution)
randomly chosen from $R_{2}$ and $R_{1}$ , respectively. Let $\xi=d(x’, x")$ be the Hamming distance
between solutions $x’$ and $x”$ . It then generates a sequence $x’=x^{(0)},$ $x^{(1)},$

$\ldots,$
$x^{(\xi)}=x"$ of

solutions ae follows. Starting from $x^{(0)}arrow x’$ , for $l=1,$ $\ldots,$
$\xi$ , it chooses a solution $x^{(l)}$ with the

best value of $\hat{z}(x)$ among those satisfying $x\in NB_{1}(x^{(l-1)})$ and $d(x, x”)<d(x^{(l-1)}, x")$ . Our
algorithm chooses the first solution $x^{(l)}(l=1, \ldots, \xi-1)$ satisfying $\hat{z}(x^{(l)})\leq\hat{z}(x^{(\iota+1)})$ ae the
next initial solution of $LS$-probe.

6 Heuristic Reduction of Problem Sizes
For a near optimal Lagrangian multiplier vector $u$ , the Lagrangian costs $\tilde{c}_{j}(u)$ give rehable

information on the overall utility of selecting columns $j\in N$ for SCP. Based on this property, the
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Lagrangian costs $\tilde{c}_{j}(u)$ are often utilized to solve huge instances of SCP, e.g., several heuristic
algorithms successively solve a number of subproblems, called primal core problems, consisting
of a small subset of columns $C_{p}\subset N(|C_{p}|\ll|N|)$ , chosen among those having low Lagrangian
costs $\tilde{c}_{j}(u)(j\in C_{p})[5,8,9,23].$

The Lagrangian costs $\tilde{c}_{j}(u)$ are unfortunately unrehable about selecting columns $j\in N$ for
SMCP-GUB, because GUB constraints often prevent solutions from containing more than $d_{h}$

variables $x_{j}$ with the lowest Lagrangian costs $\tilde{c}_{j}(u)$ . To overcome this, we develop an evaluation
scheme of columns $j\in N$ for SMCP-GUB taking account of GUB constraints. The main idea of
our algorithm is that we modify the Lagrangian costs $\tilde{c}_{j}(u)$ to reduce the number of redundant
columns $j\in C_{p}$ resulting from GUB constraints.

For each block $G_{h}(h\in K)$ , let $\gamma_{h}$ be the value of the $(d_{h}+1)$ st lowest Lagrangian cost $\tilde{c}_{j}(u)$

among those for columns in $G_{h}$ , where we set $\gamma_{h}arrow 0$ if $d_{h}=|G_{h}|$ holds. We then define a
score $\hat{c}_{j}(u)$ for a column $j\in G_{h}$ by $\hat{c}_{j}(u)=\tilde{c}_{j}(u)-\gamma_{h}$ if $\gamma_{h}<0$ holds, and $\hat{c}_{j}(u)=\tilde{c}_{j}(u)$

otherwise. That is, we normahze the Lagrangian costs $\tilde{c}_{j}(u)$ so that at most $d_{h}$ columns have
negative scores $\hat{c}_{j}(u)<0$ for each block $G_{h}(h\in K)$ . Let $n’= \sum_{j\in N}x_{j}$ be the number of
selected subsets for a solution $x$ . Given a solution $x$ and a Lagrangian multipher vector $u$ , a
primal core problem is defined by a subset $C_{p}\subset N$ consisting of (i) columns $j\in N_{i}$ with the $b_{i}$

lowest scores $\hat{c}_{j}(u)$ for each $i\in M$ , and (ii) columns $j\in N$ with the $10n’$ lowest scores $\hat{c}_{j}(u)$ .

Algorithm CORE$(x, u)$

Input: $A$ solution $x$ and the Lagrangian multiplier vector $u.$

Output: The primal core problem $C_{p}\subset N.$

Step 1: For each block $G_{h}(h\in K)$ , let $\gamma_{h}$ be the value of $(d_{h}+1)$ st lowest La-
grangian cost $\tilde{c}_{j}(u)(j\in G_{h})$ if $d_{h}<|G_{h}|$ holds and $\gamma_{h}arrow 0$ otherwise, and then
set scores by $\hat{c}_{j}(u)arrow\tilde{c}_{j}(u)-\gamma_{h}$ if $\gamma_{h}<0$ holds and $\hat{c}_{j}(u)arrow\tilde{c}_{j}(u)$ otherwise
for all $j\in G_{h}.$

Step 2: For each $i\in M$ , let $C_{1}(i)$ be the set of columns $j\in N_{i}$ with the $b_{i}$ lowest
$\hat{c}_{j}(u)$ among those in $N_{i}$ . Then set $C_{1} arrow\bigcup_{i\in M}C_{1}(i)$ .

Step 3: Set $C_{2}$ be the set of columns $j\in N$ with the $10n’$ lowest $\hat{c}_{j}(u)$ .
Step 4: Set $C_{p}arrow C_{1}\cup C_{2}$ . Output $C_{p}$ and halt.

The primal core problem $C_{p}$ is updated before every call to $LS$-probe. Before updating the
primal core problem $C_{p}$ , our algorithm heuristically fixes some variables $x_{j}$ to 1 to reflect the
characteristics of the incumbent solution $x^{*}$ and the current solution $x’$ . Let $\overline{u}$ be the Lagrangian
multiplier vector obtained by the subgradient method, and $V=\{j\in N|x_{j}^{*}=x_{j}’=1\}$ be an
index set from which variables to be fixed are chosen. $O$ur algorithm randomly chooses a variable
$x_{j}(j\in V)$ with probability

$prob_{j}(\overline{u})=\frac{\tilde{c}_{\max}\overline{u})-\tilde{c}_{j}(\overline{u})}{\sum_{j’\in V(\tilde{c}(\overline{u})-\tilde{c}_{j},(\overline{u}))}x}$ , (11)

and fixes $x_{j}=1$ , where $\tilde{c}_{\max}(\overline{u})=\max_{j’\in V}\tilde{c}_{j’}(\overline{u})$ . We note that uniform distribution is used if
$\tilde{c}_{\max}(\overline{u})=\tilde{c}_{j’}(\overline{u})$ holds for all $j’\in V$ . Our algorithm iteratively chooses and fixes a variable $x_{j}$

$(j\in V)$ unti120% of multicover constraints are satisfied. It then sets the Lagrangian multipher
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$u_{i}arrow 0$ if $\sum_{j\in F}a_{ij}\geq b_{i}$ holds and $u_{i}arrow\overline{u}_{i}$ otherwise for $i\in M$ , and computes the Lagrangian
costs $\tilde{c}_{j}(u)$ for $j\in N\backslash F$ , where $F$ is the index set of the fixed variables.

Algorithm FIX$(x^{*}, x’,\overline{u})$

Input: The incumbent solution $x^{*}$ , the current solution $x’$ and the Lagrangian
multiplier vector $\overline{u}.$

Output: The set of fixed variables $F\subset N$ and the Lagrangian multiplier vector $u.$

Step 1: Set $Varrow\{j\in N|x_{j}^{*}=x_{j}’=1\}$ and $Farrow\emptyset.$

Step 2: If $\sum_{j\in F}a_{ij}\geq b_{i}$ holds for 20% of multicover constraints $i\in M$ , then for
each $i\in M$ , set $u_{i}arrow 0$ if $\sum_{j\in F}a_{ij}\geq b_{i}$ holds and $u_{i}arrow\overline{u}_{i}$ otherwise, output $F$

and $u$ , and halt.

Step 3: Randomly choose a column $j\in V$ with probabihty $prob_{j}(\overline{u})$ defined by
(11), and set $Farrow F\cup\{j\}$ and $Varrow V\backslash \{j\}$ . Return to Step 2.

7 Computational Results
We first prepared eight classes of random instances for SCP, where classes $G$ and $H$ were

taken from Beasley’s $OR$ Library [3] and classes I-$N$ were newly generated in the same manner,
where each class has five instances. We denote instances in class $G$ as G.1, . . . , $G$ .5, and other
instances in classes H-$N$ similarly. The summary of these instances are given in Table 1, where
the density is defined by $\sum_{i\in M}\sum_{j\in N}a_{ij}/mn$ and the costs $c_{j}$ are random integers taken from
interval [1, 100]. For each SCP instance, we generate four types of SMCP-GUB instances with
different values of parameters $d_{h}$ and $|G_{h}|$ as shown in Table 1, where all blocks $G_{h}(h\in K)$

have the same size $|G_{h}|$ and upper bound $d_{h}$ for each instance. Here, the right-hand sides of
multicover constraints $b_{i}$ are random integers taken from interval [1, 5].

We compared our algorithm, called the local search algorithm with the heuristic size reduction
($LS$- $SR$), with one of the latest mixed integer program (MIP) solver called CPLEX12.3, where
they were tested on an IBM-compatible personal computer (Intel Xeon E54202.5 GHz, 4 $GB$

memory) and were run on a single thread. Table 1 also shows the time limits in seconds for $LS$-

$SR$ and CPLEX12.3, respectively. We tested two variants of $LS$-$SR$: $LS$-SRI evaluates variables
$x_{j}$ with the proposed score $\hat{c}_{j}(x)$ , and $LS$-$SR$2 uses the Lagrangian cost $\tilde{c}_{j}(x)$ in the heuristic
reduction of problem sizes. Tables 2-5 show the average objective values (columns “obj.”) and
the average time to find the best solution (columns “t.t. $b.$ ”) of $LS$-SRI, $LS$-$SR$2 and CPLEX12.3
for instance types 1-4. The best results among these algorithms are marked with underhnes.
We also illustrate in Figures 2 and 3 their comparison for each type of SMCP-GUB instances
with respect to the relative gap $($% $)$

gap $(x)= \frac{z(x)-z_{LP}}{z_{LP}}\cross 100$ , (12)

where $z_{LP}$ is the optimal value of $LP$ relaxation for SMCP-GUB.
We first observe that $LS$-SRI and $LS$-$SR$2 achieve better upper bounds than CPLEX12.3

for types 3 and 4 instances. This indicates that $LS$-SRI and $LS$- $SR$2 are more efficient than
CPLEX12.3 for large instances with 10,000 variables or more. One of the main reasons for this is
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$\ovalbox{\tt\small REJECT} 1$ : The benchmark instances for SMCP-GUB and time hmits for our algorithm $LS$-$SR$ and
the MIP solver CPLEX (in seconds)

Instance types $(d_{h}/|G_{h}|)$ Time limit

$\frac{InstanceRowsCo1umnsDensityType1Type2Type3Type4}{G.1-G.5100010,0002.0\% 1/1010/1005/1050/1006003600}$
$\overline{LS-SR}$CPLEX

H.I-$H$ .5 1000 10,000 5.0% 1/10 10/100 5/10 50/100 600 3600
I.I-$I$ .5 1000 50,000 1.0% 1/50 10/500 5/50 50/500 600 3600
J.I-$J$ .5 1000 100,000 1.0% 1/50 10/500 5/50 50/500 600 3600
K.I-$K$ .5 2000 100,000 0.5% 1/50 10/500 5/50 50/500 1200 7200
L.1-$L$ 5 2000 200,000 0.5% 1/50 10/500 5/50 50/500 1200 7200
M.I-$M$ .5 5000 500,000 0.25% 1/50 10/500 5/50 50/500 3000 18,000
N.I-$N$ .5 5000 1,000,000 0.25% 1/100 10/1000 5/100 50/1000 3000 18,000

that the proposed algorithms evaluate a series of candidate solutions efficiently while CPLEX12.3
consumes much computing time for solving $LP$ relaxation problems (even though it uses the
warm-start technique for solving a series of $LP$ relaxation problems efficiently). We also observe
that $LS$-SRI achieves much better upper bounds than those of $LS$-$SR$2 and CPLEX12.3 for types
1 and 2 instances. This indicates that $LS$-$SR$2 was not able to choose appropriate columns for
the primal core problem $C_{p}$ and $LP$ relaxation based heuristic algorithms in CPLEX12.3 (e.g.,
local branching [12], feasibihty pump [1, 13, 14] and RINS [11] $)$ does not work efficiently for the
tested instances. This is probably because the gap between upper and lower bounds is large.

表 2: Computational results of $LS$-$SR$ and CPLEX12.3 on instance type 1

LS-SRI LS-SR2 CPLEX

$\underline{Instancez_{LP}\overline{obj.}}$t.t. $b.$ $\overline{obj.}$t.t. $b.$ $\overline{obj.t.t.b.}$

G.I-$G$ .5 1683.51 2313.4 346.3 2319.8 335.6 2578.0 3286.6
H.I-$H$ .5 395.17 586.6 325.2 5892 1915 658.8 1514.9
I. I-$I$ .5 2806.81 3920.4 37555708.4 173,3 4339.0 1882.5
J.I-$J$ .5 1453.48 2012.4 36283977.8 117.2 2361.0 2054.2
K.I-$K$ .5 559362 7974.4 9514 117218 64.9 188422515.9
L.I-$L$ .5 2916.64 4178.8 1037.0 8633.6 186.3 5447.2 5295.2
M.I-$M$ .5 5451.55 8424.4 1432.0 18250.8 858.4 19066.0 1555.2
N. $1-N.5$ 4761.81 7951.6 1115.9 207462747.7 18790.0 48415

GH $\ovalbox{\tt\small REJECT}$ JKLMN GH I JKLMN
Instance (Typel) Instance (Type2)

図 2: Comparison of $LS$- $SR$ and CPLEX12.3 on instance types 1 and 2
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表 3: Computational results of $LS$-$SR$ and CPLEX12.3 on instance type 2

LS-SRI LS-SR2 CPLEX

$\frac{Instancez_{LP}}{G.1-G.5347.21896.2298.62084.21654.7}$
$\overline{obj.}$t.t. $b.$ $\overline{obj.t.t.b.}$ $\overline{obj.}$t.t. $b.$

1491.11 1888.4
H.I-$H$ .5 370.59 512.0 286.0 513.4 271.8 571.6 1227.6
I.I-$I$ .5 2661.28 3518.6 312.6 4637.6 156.2 5663.4 3453.8
J.I-$J$ .5 1382.59 1810.2 389.1 3427.0 32683499.4 3384.0
K.I-$K$ .5 5322.89 7301.2 736.2 10300.4 128.9 14407.2 6608.2

M.I-$M$ .5 5219.12 2060.5 16695.4 1007.3 17504.2 1354.4$N.1-N.5L.1-L.5$

2771. $20$

$\frac{}{}\frac{3780.0}{707807642..0}$ $17803940.\cdot 6$

8089. $4$

$1255.667.5$

$8491.6$
$3277.6531.7$

4596.99 20177.0 17348.4

表 4: Computational results of $LS$-$SR$ and CPLEX12.3 on instance type 3

LS-SRI LS-SR2 CPLEX

$\frac{Instancez_{LP}\overline{obj.t.t.b..}\overline{obj.t.t.b..}\overline{obj.t.t.b}}{G.1-G.5711.02765.62618765.62622830.03308.1}$

H.I-$H$ .5 182.71 205.0 238.8 205.0 239.3 210.0 1186.7
I.I-$I$ .5 930.40 1108.0 243.5 1108.4 300.6 1245.0 2440.9
J.I-$J$ .5 547.47 638.4 423.5 638.0 351.0 693.6 3261.0
K.I-$K$ .5 1851.0 2218.4 846.3 2233.0 633.5 3461.8 6724.1
L.I-$L$ .5 1087.2 1286.8 845.5 1293.0 673.5 2022.2 5298.4
M.I-$M$ .5 2083.5 2575.2 2429.4 2583.2 2534.5 4292.8 1178.9
N.I-$N$ .5 1743.5 2324.4 2282.3 2394.4 1446.1 4444.0 3922.4

We finally compared $LS$-SRI with the 3-flip neighborhood local search algorithm proposed

by Yagiura et al. [23] (denoted as “YKI”) and CPLEX12.3 on the standard SCP instances,

where YKI was run on the same conditions as $LS$-SRI. Table 6 shows the average objective

values and the average time to best solution of $LS$-SRI, YKI and CPLEX12.3 for the standard
SCP instances. Figure 4 illustrates their comparisons for the SCP instances with respect to the
relative gap $($% $)$ .

We observe that $LS$-SRI achieve comparable upper bounds to those of YKI and better upper
bounds than CPLEX12.3, and the gap between upper and lower bounds is still large regard-
less of multicover and GUB constraints. We accordingly suppose that $LS$-SRI achieved good
performance for both SMCP-GUB and SCP instances.

8 Conclusion

In this paper, we considered an extension of SCP called the set multicover problem with the
generalized upper bound constraints (SMCP-GUB). We proposed a heuristic algorithm to reduce
the size of problem instances. For this algorithm, we introduced a new evaluation scheme of
variables taking account of GUB constraints. We also developed an efficient implementation of
a 2-flip neighborhood local search algorithm. The algorithm reduces the number of candidates
in the neighborhood without sacrificing the solution quality. According to computational com-
parison on benchmark instances with the latest version of a MIP solver called CPLEX12.3, our
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2115: Computational results of $LS$-$SR$ and CPLEX12.3 on instance type 4

LS-SRI LS-SR2 CPLEX
$\overline{obj.t.t.b.}$$\underline{Instancez_{LPO}\overline{bj.t.t.b.}\overline{obj.}}t$. $t$ . $b.$

G. I-$G$ .5 690. $00$ $\underline{727.0}$ 351.6 727.0 3523728.6 2715.2
H.I-$H$ .5 179. $40$ $\underline{197.2}$ 208.0 1972 2085 200.8 1691.7
I.I-$I$ .5 915.54 1063.8 444.3 1065.0 553.9 1132.6 2893.9
J.I-$J$ .5 537.95 612.0 327.6 6114 2964632.8 2779.1
K.I-$K$ .5 181901 2132.6 665.8 21306 8314 3138.0 7052.2
L.I-L5 1017.17 1235.2 S40.0 12348 736.9 19324 6799.9
M.I-$M$ .5 2052.04 2491.4 2423.0 2492.4 186343985.2 7097.9

1720.12 2309.1 2238.2N.I-$N$ .5 1720. $12$ $\underline{2230.2}$ 2309.1 1638.5 4336.2 2887.7

GH I $J$ $K$ $L$ $M$ $G$ $H$ I JKLMN
Instance (Type3) Instance (Type4)

図 3: Comparison of $LS$-$SR$ and CPLEX12.3 on instance types 3 and 4

algorithm performs quite effectively for various types of instances, especially for very large-scale
instances.

参考文献

[1] Achterberg, T., Berthold, T.: Improving the feasible pump. Discrete Optim., 4 (2007),
77-86.

[2] Beasley, J. $E$ .: A Lagrangian heuristic for set-covering problems. $Nav$. Res. Logist., 37
(1990), 151-164.

[3] Beasley, J. $E$ .: $OR$-Library: Distributing test problems by electronic mail. J. Oper. Res.
Soc. 41 (1990), 1069-1072.

[4] Boros, E., Hammer, P. $L$ ., Ibaraki, T., Kogan, A.: An implementation of logical analysis of
data. IEEE Trans. Knowl. Data. Eng., 12 (2000), 292-306.

[5] Caprara, A., Fischetti, M., Toth, $P$ : $A$ heuristic method for the set covering problem. Oper.
Res., 47 (1999), 730-743.

[6] Caprara, A., Monaci, M., Toth, P.: Models and algorithms for a staff scheduling problem.
Math. Progmm., 98 (2003), 445-476.

175



表 6: Computational results of $LS$-SRI, YKI and CPLEX12.3 on the standard SCP

LS-SRI YKI CPLEX

$\frac{Instancez_{LP}\overline{obj...t.t.b..\cdot}\overline{obj...t.t.b..\cdot}\overline{\circ bj..\cdot t.t.b}}{H.1-H.545.674414608649.8G.1-G.5149.48\frac{1664}{596}1193\frac{1664}{596}281676605.9}$

I.I-$I$ .5 138.27 158.4 88.5 157.6 22.4 160.6 2966.0
J.I-J.5 104.78 130.8 235.9 129.4 SO.O 136.0 2740.1
K.I-$K$ .5 276.66 319.4 267.3 3138 175.3 321.6 6430.8
L.I-L.5 209.33 263.6 S29.0 258.4 445.8 285.2 4640.6
M.I-$M$ .5 415.77 565.8 1554.1 550.4 1265.3 635.6 8452.0
N.I-$N$ .5 348.79 517.6 2048.3 503.8 1517.7 631.4 4274.3

GHIJKLMN
Instance (standard $SCP\rangle$

図 4: Comparison of $LS$-SRI, YKI and CPLEX12.3 on the standard SCP

[7] Caprara, A., Toth, P., Fischetti, M.: Algorithms for the set covering problem. Ann. Oper.
Res., 98 (2000), 353-371.

[8] Caserta, M.: Tabu search-based metaheuristic algorithm for large-scale set covering prob-

lems. In: Gutjahr, W. $J$ ., Hartl, R. $F$ ., Reimann, M. (eds.) Metaheuristics: Progress in
Complex Systems optimization, pp. 43-63. Springer-Verlag, Berhn, 2007.

[9] Ceria, S., Nobih, P., Sassano, A.: A Lagrangian-based heuristic for large-scale set covering
problems. Math. Progmm., 81 (1998), 215-228.

[10] Choi, E., Tcha, D-$W$ .: $A$ column generation approach to the heterogeneous fleet vehicle
routing problem. Comput. Oper. Res., 34 (2007), 2080-2095.

[11] Danna, E., Rothberg, E., Pape, C. $L$ .: Exploring relaxation induced neighborhoods to im-
prove MIP solutions. Math. Prog., 102 (2004), 71-90.

[12] Fischetti, M., Lodi, A.: Local branching. Math. Prog., 98 (2003), 23-47.

[13] Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Math. Prog., 104 (2005), 91-104.

[14] Fischetti, M., Salvagnin, D.: Feasibility pump 2.0. Math. Prog. Comp., 1 (2009), 201-222.

[15] Glover, F., Laguna, M.: Tabu Search, Kluwer Academic Pubhshers, Massachusetts, 1997.

176



[16] Hammer, P. $L$ ., Bonates, T. $O$ .: Logical analysis of data – An overview: $\mathbb{R}om$ combinatorial
optimization to medical applications. Ann. Oper. Res., 148 (2006), 203-225.

[17] Hashimoto, H., Ezaki, Y., Yagiura, M., Nonobe, K., Ibaraki, T., Lkketangen, A.: $A$ set
covering approach for the pickup and delivery problem with general constraints on each
route. $Pac$ . J. Optim., 5 (2009), 183-200.

[18] Ikegami, A., Niwa, A.: $A$ subproblem-centric model and approach to the nurse scheduhng
problem. Math. Prog., 97 (2003), 517-541.

[19] Kohl, N., Karisch, S. $E$ .: Airline crew rostering: Problem types, modeling, and optimization.
Ann. Oper. Res., 127 (2004), 223-257.

[20] Pessoa, L. $S$ ., Resende, M.G. $C$ ., Ribeiro, C. $C$ .: $A$ hybrid Lagrangean heuristic with GRASP
and path-relinking for set $k$-covering. Comput. Oper. Res., in press.

[21] Umetani, S., Yagiura, M.: Relaxation heuristics for the set covering problem. J. Oper. Res.
Soc. Jpn., 50 (2007), 350-375.

[22] Vazirani, V.$V$ .: Approximation algorithms, Springer-Verlag, Berlin, 2004.

[23] Yagiura, M., Kishida, M., Ibaraki, T.: $A$ 3-flip neighborhood local search for the set covering
problem. $Eur$. J. Oper. Res., 172 (2006), 472-499.

177


