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L? norms of nonnegative Schrodinger heat semigroup
and the large time behavior of hot spots

ALK RSFBEER LR
FH#E M3 (Kazuhiro Ishige)
Mathematical Institute, Tohoku University

KRR R E B TR
B E#E (Yoshitsugu Kabeya)
Department of Mathematical Sciences, Osaka Prefecture University

1 Introduction

The large time behavior of the solutions of parabolic equations is a classical subject and has
fascinated many mathematicians. In this paper we investigate the large time behavior of the
solution of the Cauchy problem for the heat equation with a potential,

{ du=Au—V(z))u in RY x (0,00),

(L.1) u(z,0) = ¢(z) in RV,

where 8; = 8/8t, N > 3, and ¢ € L(R"). Here V = V(|z|) is a smooth, nonpositive, and
radially symmetric function satisfying

(1.2) V(z) =wlz|?(1+0(1)) as |z|— o0

with w € (—ws,0] and w, = (N — 2)2/4. More precisely, we assume the following condition:
(i) V=V(r) eCY[0,00)) and V <0 (£ 0) on [0, 00);

(ii) there exist constants w € (—wx,0] and > 0 such that

V) J V(r)=wr 24029 asr— oo

L (iii) i1;11>|r3V'(r)| < 0o0.

We say that H := —A + V is nonnegative (which is abbreviated as H > 0) if
| 96l +Viiahetyda 20, peoF®Y).
R

Furthermore we say that H is subcritical if for any W € C°(RY), one has H — eW > 0 for
small enough € > 0. In addition, a subcritical operator H is said to be strongly subcritical
if H — eV_ > 0 for small enough € > 0, where V_ = max{-V,0}. In [10] the authors of this
paper studied the following two subjects:



o the decay rate of LY(R")-norm (g > 2) of the solution u as t — oo;

e the large time behavior of the solution u and its hot spots
H(t) = {x eRY : u(z,t) = max u(y,t)} ,
yeRN

and in this paper we introduce some results of [10]. Since the results of [10] on the decay
rate of LY(R™)-norm (g > 2) of the solution u were given in [9], we focus on the large time
behavior of the hot spots H(t). ’

The movement of hot spots for the heat equation in unbounded domains was first studied
by Chavel and Karp [1]. They proved that, for any nonzero, nonnegative initial data ¢ €
L (RY), the hot spots H(t) of the solution of the heat equation are contained in the closed
convex hull of the support of ¢ for any ¢ > 0, and the hot spots H(t) tend to the center of

mass of ¢
/R 24(@)de / /R dla)de

as t — 0o. Subsequently the movement of hot spots has been studied in several papers, see
(3], [4], and [6]-[11]. Among others, in [6]-[8] the authors of this paper studied the movement
of hots spots of the solution of the heat equation (1.1) with a potential V' for the case where
V is a nonnegative function satisfying (1.2) with w > 0. In this case the hot spots move to
the space infinity as ¢ — oo, and they gave the rate and the direction for hot spots to tend
to the space infinity. The behavior of hot spots is determined by the initial function ¢ and
the harmonic functions for the operator H = —A + V, and depends on the constant w and
the dimension N.

In this paper, under condition (V'), we study the movement of hot spots of the solution of
(1.1). This is a continuation of our previous papers [6]-[8]. We emphasize that, in our case,
the hot spots stay in a bounded set for all sufficiently large ¢, and its behavior is completely
different from in the cases treated in [6]-[8]. We prove that:

e if w <0, then the hot spots converge to the origin as ¢t — oo;

¢ if w = 0, then the hot spots converge to the one point z* as t — co. In particular, if
V(r) =0 on [0, R] for some R > 0, then the point z* does not necessarily coincide with
the origin and depends on the initial function ¢.

These assertions include an interesting fact in the study of the behavior of the hot spots.
Consider the case where V = 0 in [0, R] for some R > 0 and assume that the hot spots
stay in the ball B(0,R) := {z € R" : |z| < R} for all sufficiently large ¢t. Then, since the
harmonic functions for H = —A + V are independent of w in the ball B(0, R), the results
in [6]-[8] suggest that the behavior of hot pots in the case w < 0 is similar to that in the
case w = 0. However the behavior of hot spots for the case w < 0 is not necessarily similar
to that in the case w = 0. (See Theorem 1.2.) This means that the analysis of the behavior
of hots spots for the case we treat in this paper is more delicate and requires more careful
calculations than in [6]—[8].

We introduce some notation. For 1 < p < 0o, we denote by || - ||, the norm of the LP(RY)
space. We also denote by || - || the norm of the L2(R") space with weight e/?"/4, that is,
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LX(RN, el#1*/4dg). Let |S¥=1| be the volume of the (N — 1)-dimensional unit sphere sh-1,
Let Agn-1 be the Laplace-Beltrami operator on SV~1 and {wi}32, the eigenvalues of

(1.3) ~Agnv-1Q=wQ on SNVl Qe L?(SVY,
that is,
(1.4) wk :=k(N +k-2), k=0,1,2,....

Furthermore let {Qk,i}ﬁ’;l and l; be the orthonormal system and the dimension of the
eigenspace corresponding to wg, respectively. In particular, lp = 1, l; = N, and we may
write

T z Ti .
(1.5) Qo1 (m) = Ko, Q1 (—) = Hlm, i=1,...,N,

]

where k¢ and k; are positive constants.
For any sets A and X, let f = f(A,0) and h = h(),0) be maps from A x X to (0, 00).
Then we say
f(A,0) 2 h(\ o)

for all A € A if, for any o € %, there exists a poéitive constant C such that f(\, o) < Ch(A,0)
for all A € A. In addition, we say f()\,0) < h(),0) for all A € A if f(A,0) X h(A,0) and
f(A o) = h(A,0) for all A € A.

Assume condition (A). Let £k =0,1,2,.... Put

_(N-2)+VIN=27 4
L |

(1.6) an(w) =

Then we have

(1.7) ant2k(w) + k = an(w + wk)

for k =0,1,2,.... Furthermore there exists a unique positive solution Uy x = Un x(r) of
(1.8) v+ N1y (V(r) + “;—g) U=0 in (0,00)

such that

(1.9) dnk = lim r*Uni(r) >0,

(1.10) Unp(r) = ron@Hes(1 4 0(1))  as r— oo,

In addition, 7~*Uy(r) is monotone decreasing in [0, 00) and

Oo(r) as r—0 if k=0,
1.11 U; =
(1.11) Nk(r) { O@* 1) as r—0 if k>1,
(1.12) Un () = (an(w + wi) + o(1))rov@twn)=1 a5 5 o0,

(1.13) Uni(r) = TkUN+2k,o('r‘), r>0, k=0,12,....
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See [18] and [10]. In what follows, for notational simplicity, if there occurs no confusion, then
we use

aw),  Bw),  Uk(r),

instead of an(w), By (w), and Uy k(r), respectively. Put

M= [ o@uo(as, M= [ S e (= 1,....N),
(1.14) Mo (_M_l %) _Uj(0)
TWAM M ) VT Tho)

Furthermore, for any £ =0,1,2,..., since a(w + wy) > —N/2, we can define oy by

ONk(Y) = o ply| N @rere v/,

where ¢y is a positive constant such that ||on || = 1. Here, by (1.7) we have

N-1j1/2 N-+2k-1(1/2 A
(L18) ISV eng =S I eniaro,  onily) = le, PN+2k,0(Y)-

We write ¢ = o and ¢ = ¢y for simplicity.
We are ready to state the main results of this paper. In the first theorem we give a result
on the large time behavior of solution of (1.1).

Theorem 1.1 Let N > 3. Assume condition (V) and that H :== —A +V is subcritical. Let
u be a solution of (1.1) with the initial function ¢ € L*(RN,el**/4dx). Then there ezists a
constant C' such that

(1.16) (@)l < 5 g,  t>1.

Furthermore there hold

1.17 lim sup ¢2 o)y, z,t) — ceMoUy(z,t)| =0, L >0
0

t—00 2 B(0,L)

and

(118) Jim 75w (1 +)F5,¢) = coMogo(y) in CiooBY \ {0}) N LRV, /4y,

Next we give a result on the large time behavior of hot spots H(t) of the solution u. Let
R, =inf{r >0:V(r) <0}.

In the second theorem we prove that the hot spots converges to one point z,, which is given
exactly by the initial function and the functions Up(|z|) and U;(|z|). The point z, can be
characterized as the nearest point to the limit of vy A(t) as ¢ — oo over the ball B(0, R,),
where A(t) is the center of the mass of the solution u at the time ¢, that is,

Alt) = /R zu(a, t)da / /R u(a,t)da.
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Theorem 1.2 Assume the same conditions as in Theorem 1.1 and Mo > 0. Then H(t) # 0
for any t > 0. Furthermore there hold the following:

(i) For any sufficiently large t,
/ u(z,t)dz >0
RN

holds, and A(t) can be defined for all sufficiently large t. Furthermore there holds

(1.19) li A(t) 0 ¥ w<h
. 1im =
o0 N M if w=0
(ii) There holds
(1.20) tlirglosup{h: —-z*:z€ H{t)} =0,
where
0 if w<0,
s o=d M if w=0 and |IM| < R,,
M
R.,— if w=0 and |M| 2> R..

Next we give a sufficient condition for the set of the hot spots to consist of only one point
and to move along a smooth curve on RN for all sufficiently large t.

Theorem 1.3 Assume the same conditions as in Theorem 1.1 and Mo > 0. IfV(0) = 0 and
|z*| = R, further assume that —V (r) is monotone increasing on [Ry, R. + 6] for some é§ > 0.
Then there ezist a constant T > 0 and a curve z(t) € C*([T,00) : RY) such that

(1.21) H@) = {z(t)}, t>T

The rest of this paper is organized as follows. In Section 2 we give preliminary results in
order to prove our theorems. In Section 3 we study the large time behavior of the solution u
and prove Theorem 1.1. Sections 4 and 5 are devoted to the proofs of Theorems 1.2 and 1.3,
respectively.

2 Preliminaries

In this section we give preliminary results in order to prove our theorems. Assume condi-
tion (V). Then, by the standard arguments for ordinary differential equations, we see that
there exists a unique solution U of

©0) U + -AirllU' V(U =0 in (0,00)
with
(2.1) lim U(r) = 1.

r—0

Furthermore, by the same argument as in [6] we have:
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(P) for any solution U of (O) satisfying lim sup |U(r)| < 0o, there exists a constant ¢’ such
r—0
that U(r) = dU(r) on [0, 00).

Let k£ =0 and dy := dp,o be the constant given in (1.9). Since the function

Uo(0) + /O Ry ( /0 ’ TN*IV(T)UO(T)dT> ds

is also a solution of (O), the property (P) implies

(2.2) Uo(r) = Up(0) + /OT stV (/: TN_IV(T)U()(T)CZT> ds on [0,00).

Then we have

(2.3) o) =N /()T V=YY (1)U (r)dr < (#)0 on [0,00),
(2.4) Up(r) = &)Jgo—(o—)r(l +0(1)) as r—0.

In particular, (2.4) yields (1.11) with k& = 0. Furthermore we have:
Lemma 2.1 Assume condition (V), and let H := —A + V be a nonnegative operator on

L2(RY). Let f € C([0,00)) and v be a solution of

U// +

?U' -V(r)U=f in (0,00)

such that limsup |v(r)| < co. Then there exists a constant ¢ such that
r—0

(2.5) v(r) = clp(r) + Ff](r), r >0,

where . .
FIAI(r) = Up(r) / SN {Un(s)]2 ( / 150 (7) f(T)dT) ds.
0 0
Proof. The function
o(r) = v(r) — F[f](r)
is a solution of (O) such that limsup |#(r)| < co. Then the property (P) implies (2.5), and
r—0

Lemma 2.1 follows. O
On the other hand, by similar arguments as in [5]-[8] we have the following lemma.

Lemma 2.2 Assume condition (V). Let T > 0 and € be a sufficiently small positive constant.
Let u=e""H¢ be a solution of (1.1) such that

(2.6) @z < L1+ ) la,  t>0,
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for some constants C1 >0 and d > 0. Then there exists a constant Co such that

(1+1t)"¢% if A>-NJ/2,
(2.7) lu(z,8)] < Callglla x { (L+8) 4 Flog2+H)T if A=-N/2,
(1+t) @ rm if A<-N/2,

for all z € RN and t > T with |z| > he(t). Furthermore there exists a constant Cj3 such that

(1+¢)~¢ %2 if A>—N/2,
(2.8) lu(z, t)| < Csllgll2Uo(l2]) x g Ni2A

(1 + t) 2(2-N-24 zf A< _N/2,
for all (z,t) € D(T).

Next we consider the radial solutions of problem (1.1), and give the following proposition.

Proposition 2.1 Assume condition (V), and let H := —A+ V(|z|) be a subcritical operator
on L2(RY). Let ¢ be a radial function such that ¢ € LRV, elel*/ 4dz), and put v(t) = et
Then there holds the following:

(i) There ezists a constant C such that

lw(s)]| < Ce= ||, s> 0,

(2.9) )
o)l 2@~ pyazy < CA+8)7 2 floll, >0,

where pns(z) = (1+ )"/ exp(|z]?/4(1 + 1));
(ii) There hold
(2.10) tl_l_)l‘{.lo £y ((1 + t)%y, t) = a(d)po(y) i L*RY, ell*/4dy)

and

(211)  Jim 5 (Vo) (1 930 t) = a(@)(Vipo)) in CHLT SIS LD

for any L > 0 and l € {0,1,2}, where

(212 (@) =<o | o(a)Uo(lel)da

In particular, if a(¢) = 0, for any L > 0, there exists a constant Cy such that
(2.13) (14675 lv ((1 + t)%y,t)\ < Cy(1+1)7!

forall L' <|y|<Landt>1;
(iii) There ezists a function c(t) in (0,00) satisfying

(2.14) v(z,t) = c(t)Uo(|z|) + F[(8w) (-, t)](|z]) in RY x (0,0)



135

such that
(2.15) t2+ee(t) = coa(@)(1 +o(1)) + O(t™Y) as t — oo.

Furthermore there ezists a function d(t) in (0,00) satisfying

(2.16) t%“"(“’)ﬂd(t) = —cp(a(®) + o(1)) (g + a(w)) as t— oo

such that, for any sufficiently small e > 0 and [ € {0, 1,2},

(217) 3 HBLF|(B) (-, )](|e])
= 15+ () (BLF[Uo)) (J) + O(t~|2|*~Up(J=)) = O(t~ |2~ Tp(J=]))
for all (z,t) € D(1).

Proof. Since
N -2

a(w) + > 0,

we can apply the same argument as in the proof of [6, Proposition 3.1] (see also [6, Theorem
1.1]), and obtain assertion (i). Furthermore, by the same argument as in the proof of [6,
Proposition 3.2, Proposition 3.3] we have assertions (ii) and (iii), respectively. We leave the
details of the proof to the reader. O.

3 Large time behavior of solutions

In this section we study the large time behavior of solution of (1.1), and prove Theorem 1.1.
Put

=2
Hy:=—-An+V(gl), Hyp=-Ay+V(z|)+ ;—l’; pNa(x) = (L +1) 7 T,
where k = 1,2,.... Let u = e *#N¢ be the solution of (1.1). Then there exists a family of
radially symmetric functions {¢x;} C L2(RY, pdz) such that
o0 lk z
(3.1) $=> "> dillz))Qr, (EI) in  L*RN, pdz).
k=0 i=1 ‘

(See [3, Section 6].) For any k =0,1,2,... andi=1,..., 1, let

Di(x) = g i(|z]) Qus (%) , Uk (2, t) 1= (eTHN DL ) (2), sz, t) i= (e7HNkGy ) ().
Then we have

(3:2) (2, 1) = Ve (2, )Qns (%) .
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Furthermore, putting

(3.3) Ori(x) := |z| *ori(z) € LP(RNT pdz),
we have
(3.4) vk i(x,t) = (e7HNR g ) (z) = |zfF(eTHN+2k Gy ) ().

For any m =0,1,2,..., let

m—1
uo(z,t) = u(z,t), um Z Zuk,(x t) = u(z,t) — Z Zukz(x t).
k=m i=1 k=0 i=1

Then we prove the following lemma.

Lemma 3.1 Assume the same conditions as in Theorem 1.1. Let u be the solution of (1.1).
Then, for any m =0,1,2,..., there exists a constant Cy such that

_a!w+wm! _ w+w
(3.5) lum )| L2RA ,pu,edz) < Crt lum(O)]] < Cre™ 5™ g

for allt > 0. Furthermore there holds the following:
(i) For any € > 0, there exists a positive constant Ly such that

N+o(wt+wm)
2

(3.6) fum (@, )] < et gl

for all (z,t) € RN x (0,00) with |z| > L1(1+ t)1/2. Furthermore, for any Ly > 0,

Nta(wtwm ))
2

(3.7) um ((1 + 1)y, t)| =0 (t—

for all L7' < |y| < Ly and all sufficiently large t;
(ii) For any T > 0 and any sufficiently small € > 0, there exist constants C3 and Cy such
that

a(wtwm) w+w

(38) |um(z,t)| < Cat™ 7~ @Hem)(1 4 Upy(|2|))||6]| < Ca(t™F ~2Wtem) 4 ¢~ %= 4l

for all (z,t) € D(T). Furthermore, for any L3 > 0 andl € {0,1,2}, there ezists a constant
Cs such that

(3.9) |(Vium) (@,8)| < Cst™ 7 —Hem g
for all x € B(0,L3) and all sufficiently large t.

Here we remark that a(w + wp,) is not necessarily of definite sign.
Proof. Let m=0,1,2.... Forany k > mand ¢ =0,...,l, put

J”l?z(l') = |z ™k (z|) € L2RN1I™, pdz)
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and
(3.10) ri(2,t) = (e7HVm gy i|) (@) = |z[™ (e N +2m |G ) ()

(see also (3.4)). Then, since wy, > wm, the comparison principle together with (3.4) and (3.10)
yields

(3.11) |ok,i(2,t)] < Bpi(z,t) in RN x (0,00).

Furthermore the operator Hy oy, is a subcritical operator on L2(RY+?™), and we can apply
Proposition 2.1 (i) with the dimension N replaced by N + 2m. Then, by (1.7) and (3.10) we
obtain

) |SV-1)1/2 Cm .
(3.12) ||Uk,i(t)“L2(RN,pN,td:c) = m(l +t)"2 e tHN+2m|¢7I;:rfz'|||L2(RN+2m’PN+2m,td$)
SN2 an () _ afwtum)
<Cy Wt 2 |,¢kz|lL2(RN+2m,pd1?) = Cit “¢k 1”

for all t > 1, where C is a constant independent of k¥ and i. Furthermore we have

a w+wm

(3.13) e H+2m |G| 2 geaveamy <873~ 2 gl
for all sufficiently large ¢. By (3.13), applying (2.8) with the dimension N replaced by N +2m,
for any T' > 0 and any sufficiently small € > 0, we obtain

a(wtwm) _ N+4+2m _ “N42m (@)

_ - _N_ _ Nom_
|7t N tam |G| (z)| S Cot™a ™ 2t 2 Unsomo(lz])l| fr,l

for all (z,t) € RV x (T,00) with |z| < C3¢'/2(1 + t)1/2, where C3 and Cj; are constants
independent of k and . This together with (1.7), (1.13), (3.10), and (3.11) implies

(3.14) Joki(2, 8)| < Bri(x, t) < Cot™ 2 ~owtomdyy (1)) | i

for all (z,t) € RN x (T, 00) with |z| < C3e!/2(1 + t)1/2. In addition, for any L > 0, by (1.7),
(2.11), (3.10), and (3.11) we obtain

ves (L+03y,t)| < s (L +E02)
m _ ~ 1 m N+42m+a m (W) _ N+o(wtwm)
= (14 ) Fylm (e vamlgy) (1 + Dby, 1) < By R gt

for all L7! < |y| < L and all sufficiently large t.
We prove (3.5). By the orthonormality of {Qk}, (3.2), (3.11), and (3.12) we have

(3.15)

oo lk
”um(t)”%’Z(RN,ptdx) = Z Z ”uk’i(t)“%%RN,ptdm)
k=m i=1
<Cy Z Z ”U]” |IL2(RN prdr) = <Cy Z Z “vk ’L(t “L2(RN pedz)
k=m i=1 =m 1=1

o0 o0
< Ogtoletem) 2 Z lgrill? < Cetetrem) %~ Z 12kl12 = Cot™*+m) fum (0)]?

k=m i=1 k=m i=1
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for all ¢ > 1, where C4, Cs, and Cg are constants. Therefore, since [[um(0)|| < [|#]l, we have
(3.5). Furthermore, by (3.5) we apply the similar argument as in the proof of (2.7) to obtain
(3.6) (see also the proof of Lemma 4.1 in [6]).

Next we prove (3.7) and (3.8). Let M be a sufficiently large integer such that

(3.16) a(w+wpy) + a(w) > 20(w + wn).

Inequality (3.5) implies that

_ N _a(wtwpr)
lume@ll2 2t 27 un (0}

for all sufficiently large ¢. This together with (3.16) implies

(3.17) leae®lloo < llem#/2 g allurs (/2)12
alw a(wtwpr)
<t~ F ST g (0) [l < ¢ T Hem) gl

for all t > T. Then, since it follows from the definition of up, and (3.17) that

M-1 I

um (@, )] < Y Joki(e, 8|
k=m i=1
M-1 i

<30S fokale, )|+t E e g

k=m i=1

for all z € RN and all sufficiently large ¢, by (3.14) and (3.15) we have (3.7) and (3.8).
Furthermore (3.8) implies (3.9) with { = 0. Moreover, by (3.8) we apply the regularity
theorems for the parabolic equations, and obtain (3.9) with [ = 1,2. Thus Lemma 3.1
follows. O

Next we give a lemma on the asymptotics of ug; and u;; (¢ =1,...,N). Lemma 3.2 is
proved by Proposition 2.1.

ka(l |)l+|UM($,t)|

Lemma 3.2 Assume the same conditions as in Theorem 1.1. Leti=1,...,N. Then there
hold
. Nta(w) 1
(3.18) tlir(r’lot T wug ((1 +t)2y, t) = coMowo(y),
. Nta(wtwy) 1 ;
(3.19) tlirgot T Ul ((1 + t)2y,t) = clNMi<p1(y)|%|,

in Cioc(RN \ {0}) and L3(RY, elv?/ 4dy). Furthermore, for anyl=0,1,2 and any sufficiently
small € > 0, there hold

(320)  t7+e)(Vhugy)(z,) = (Mo + (1)) (VEUp)(x)
-3 (N 4 a(w)) £1 (Mo + o(1)) (VLF[Uol)(z) + O(t=2la|*~To(lz])),
(321)  Erre)(Thay (o, ) = EN(M; + o(1)) (VAZ:)(z) + O 2T (Ja))),

as t — 0o, uniformly for all z € RN with |z| < et'/2. Here Z;(z) := Ur(|z|)zi/|x|.



Proof. By (1.5), (1.14), (2.12), (3.1), and the orthonormality of {Qy i} we have

a(do,1) = ;c%/R koo,1(x)Uo(lz])dx CO/ #(x) Uo(|x|)dx_

Then, since ug,1(z,t) = Kovo1(x,t), we apply Proposition 2.1 to the function vg1(z,t), and
we obtain (3.18) and (3.20).
We prove (3.19) and (3.21). Let ¢ =1,...,N. By (1.13), (1.15), and (3.3) we have

- N+1
a(¢r,i) = CN+2,0/ b1,i()Un12,0(|a])dz = CN+20 SV 1:/ ¢1,i(x) U1 (|z|)dz
ISN+1|1/2
= c1 =i / 61,4(2)Ux (Jal)de
_ |SN+1|1/2 1 - 1.12
= @V‘_H—I/QNM - 51451,@(97)[]1([1'” l$|2dw

Then, by (1.5), (1.14), (3.1), and the orthonormality of {Q;} we have
s sN+/2
(3.22) a(¢1) = WN Ky M.
On the other hand, applying Propgsition 2.1 (ii) with the dimension N replaced by N + 2 to
the function 41 ;(z,t) := (e *HN+2¢; ;)(x), by (1.15) and (3.22) we obtain

N+2+apna(w)

(3.23) limt¢ 2 D14 ((1 +1)M2y,t ) = a(f1.:)ent20(y) = ca N&T ! M;ly| 21 (v)

t—oo

in Cioo(RV*2\ {0}) and L2(RN+2,elv"/4dy). Similarly, applying Proposition 2.1 (iii), by
(1.7), (1.13), (1.15), and (3.22) we obtain

(324) (Vhoni)(@,t) = a(t)(ViUns0)(@) + Ot~ 3 w2 @z o o(|a]))

)(z)
= a(t)V;, ['UI%I@] + Ot~ 2 )1 o2 o] 10 (Ja]))

as t — oo, uniformly for all z € RN with |z| < et!/2, where

(3.25) Gi(t) = enyaot™ 7 T2 (@(d1 ) + (1))
= ANkTH T oA (A, 4 o(1)) as t— 0.

Furthermore, since it follows from (1.5), (3.2), and (3.4) that

. z; A
u(z,t) = |@]Dri(x, t) - k1 = Kb (s, t),

||
by (L.7), (3.23), (3.24), and (3.25) we have
tlim tN+a_(;wL)u1,i ((1 + t)1/2y,t)
—00 .

N+14+a (w)
= lim ¢ 2N 2 (5% ((1 + t)1/2y t) = ClNMzﬂol(y)_z

t—00 I l
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in Cloo(RM \ {0}) and L2(RY, elv*/4dy) and

(Vhurd)(@,8) = ENE 3D (M, + o(1))(V4.2) ()
+O(t™ ) o 0y (a))
as t — 0o, uniformly for all z € RY with |z| < t!/2. Thus we have (3.19) and (3.21), and
the proof of Lemma, 3.2 is complete. O
Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. By (3.5) with m = 0 we have (1.16). Since u(z,t) = uo1(z,t) +
u1(z,t), by (3.9) with { = 0 and (3.20), for any L > 0, we have

Jim £¥+2@y(g,¢) = lim ¢5+2Cug; (z,t) = EMUp(|a])

— 00 —

in C(B(0, L)), and obtain (1.17). Furthermore, applying (3.5) and (3.7) to the function w;,
by (3.18) we have

lim ¢ 2y ((1 +8)12y, t) = tlil{.lotNT . ug,1 ((1 +1)1/2y, t) ‘= coMowo(y)

t—o0

in Cjoc(RN \ {0}) and in L2(RY, elv"/4dy). This implies (1.18), and Theorem 1.1 follows. O

4 Movement of hot spots

In this section we study the behavior of hot spots of the solution u of (1.1), and prove
Theorem 1.2. In-what follows we write ay = an(w + wy) for simplicity.

Assume the same conditions as in Theorem 1.2. We first prove that H(t) # @ for all £ > 0.
Since

/ w(z, to)Vo(|z])dz = / s(@)o(le)de = Mo >0, 0> 0,
RN RN

for any to > 0, there exists a point zp such that u(zo,t9) > 0. On the other hand, by (3.6)
we can find a constant L such that

|u(z, to)| < u(zo,to) for all [z|> L.

This implies that ® # H(to) C B(0, L).

Next we study the behavior of A(t) and the hot spots H(t), and prove Theorem 1.2 (i)
and (ii).
Proof of Theorem 1.2 (i). By (1.18) we have

(4.1) lim (1 + t)%(l / u(z,t)dz = coMo/ vo(y)dy > 0,
t—00 RN RN

and see that / u(z,t)dzx > 0 for all sufficiently large ¢. Then A(t) can be defined for all
RN
sufficiently large ¢. Furthermore, since it follows from (3.5) that

1/2 1/2 o
/ |z||uz(z, t)|dz < (/ |z|2pt(m)'1da:) (/ lug(z, t)]2pt(:c)dx> <t~ F*2
RN RN RN



for all sufficiently large ¢, by the radial symmetry of ug; and (3.19) we obtain
(42) (1+ t)ﬂz:l / ziu(z,t)d
RN

a1-—1 a1 —
= (1 -+ t)_lz— / xiul,i(x, t)dx -+ (1 -+ t)—12_1 / zius(z, t)d:l:
RN RN

N+a] 2
=(1+t)"2 / YUl ((1 +1)7y, t) dy+o(1) = CINMi/ 1(y) 2 dy + o(1)
RV RN lyl
ast — oo, where i =1,...,N. Since
(4.3) a(w+wg) > a(w) + &, k=1,23,...,

we have a1 > a9 + 1 for the case w < 0, and by (4.1) and (4.2) we have

(4.4) lim A(¢)=0 if w<DO.
t—00

On the other hand, if w =0, then ap =0, a3 =1, co/ wo(y)dy = ||po|? = 1, and
RN

2 2 2 2

i 2 —E o 51 T 1 g 1

— — . = — d = e— =—,
clfRN <P1(y)|y|dy clfRNe Tyidy = LA ly|“dy Nllsolll N

and by (4.1) and (4.2) we obtain

A (M My
(4.5) lim A(t) = <MO,..., MO).

Therefore, by (4.4) and (4.5) we obtain (1.19), and Theorem 1.2 (i) follows. O
Proof of Theorem 1.2 (ii). We first prove
(4.6) tlim sup{|z|: z € H(¢)} < R..

—00

Since Mp > 0 and o9 < 0, by (1.17) and (3.6) we can take a sufficiently large L so that

(4.7) £57904(0,8) > SRAMoUp(0) > t3+%  sup  u(a,?)
2 e[ >L(1+)1/3

for all sufficiently large t. Furthermore, for any sufficiently small € > 0, it follows from (1.18),
My > 0, and the monotonicity of the function ¢ that

(4.8) sup u(z,t) < u(z, t)

in
€l/2(14)1/2<|z|<L(1+8)1/2 |z|=2-1€!/2(1+)1/2
for all sufficiently large ¢. By (4.7) and (4.8) we have

(4.9) H(t) C B(0,e/2(1 +t)1/?)

141



142

for all sufficiently large ¢. On the other hand, by (2.3) and the definition of R. we have

(4.10) Us(r) = Up(0) in re€0,R.], Uj(r) <0 in 7€ (Rs,00).
Then, by (3.8) with m = 1, (3.20), and (4.10), for any § > 0, we have
$3+e0 sup u(z,t) = (Mo + 0o(1))Up(Rs + 8) + 0(1) < t%"'a"u(O, t)

Raté<|z|<el/2(148)1/2
for all sufficiently large ¢. This together with (4.9) and the arbitrariness of § implies (4.6).
In particular, by (4.6) we have (1.20) for the case R, = 0.
Next we prove (1.20) for the case R, > 0. We divide the proof into the following three
cases:
(a) w<O0; (b) w=0 and M| < R,; () w=0 and |M| > R..

We consider case (a). Let 0 < 8 < R, < R. Then, by (1.11) and the definition of F' we can
take a constant Ci-satisfying
(4.11) F[Uo](r) > Ch, T e [5, R]
Since F[Uo)(0) = 0, Ul(r) < 0, and o > —N/2, by (3.9) with m = 1, (3.20), (4.3), and (4.11)
we have

t7+e0 [u(z,t) — u(0,t)]

N .
< —c} (—2— + ao) t™Y (Mo + o(1))F[Uo)(|z]) + O(t™2) + O(t*~*1)

< —CQt_l + C3t™ ™ <0

for all z € B(0, R)\ B(0, §) and all sufficiently large ¢, where C> and Cj are positive constants.
This together with (4.6) implies that H(t) C B(0,4) for all sufficiently large ¢. Therefore,
since § is arbitrary, we have (1.20) for case (a).

Next we consider case (b). By w = 0 we have ¢ = (47()_ , &3 = c3/2N, and

(4.12) Uo(r) = Up(0), Ui(r) =Ui(0)r, F[Uol(r) = Ug](\(/)) 2
for all r € [0, R.]. Furthermore, by (3.9) we have
(4.13) sup |ug(z,t)| = Ot~ o)) = Ot~ %-2)
z€B(0,R)
for any R > 0. Since
z; = UI(O) =1,...,N,

Uo(0) Mo
by (3.20), (3.21), (4.12), and (4.13) we have

(4.14)  (4nt) 2t [u(a*,t) — u(z, t)]

N v .
= S0+ o))~ o) + 3 R0+ o) —22) + 07
=1

=2 MOZ [z? — (27)? - 2z} (zi — 2f)] + o(1) =

2 Myl — |2 + o(1)

=1



for all z € B(0, R,) and all sufficiently large t.
Let 6; > 0 and = € B(0, R, +6;) with [z| > R.. Put & = R.z/|z| for z € RY \ {0}. Since
|Z] = R, and |z4| = |M| < Ry, by (4.14) we can find a positive constant Cy satisfying

(4.15) (4rt) Tt [u(z*, t) — w(F, t)] > Ca

for all sufficiently large t. Furthermore, by (3.20), (3.21), (4.10), (4.13), and the continuity
of the functions F[Uy](r) and Uy(r) at r = R., taking a sufficiently small é; if necessary, we
have

(4.16) (4rt) Tt [u(E, t) ~ u(z, ?)]
>~ (Mo +o(1)) {FIU6)(2) - FlUo](2))

N ~
+; %(Mz +0(1)) {Ulﬂxl) _ U1(|:L‘|)} +O(t—l) > _%

R, |z]
for all sufficiently large ¢. This together with (4.15) yields
(4.17) (4rt) =t [u(z*, t) — u(z, t)]
= (4mt) ¥t fula”, §) — (@ 0] + (4m0) e fu(E, ) — ula, 0] > L > 0

for all z € B(0, R, + 1) with |z| > R, and all sufficiently large ¢t. Therefore, since

(4nt) T t[u(z* t) —u(z,t)] <0 if e H(@),

by.(4.6), (4.14), and (4.17) we obtain (120) for case (b).
Next we consider case (c). Then we can assume, without loss of generality, that M =
(IM],0,...,0). Then, since

My Uj(0)M;

=1 > R.,
N T TUol0)Mo =

z* = (R4,0,...,0),
by the same argument as in (4.14) we have

(4nt) Tt [u(z*, t) — u(z, t)]

= O 0y + o))l ~ ) + DD (01, + (1) (R. — 1) + 067
= 2O pfe 2 +-o1)

for all z € B(0, R,) and all sufficiently large ¢. This implies that, for any d5 > 0,
(4.18) {x € B(O,R.) : |z —z*| > 6} NH(t) =

for all sufficiently large ¢.
Let 8 > 0 and put

C(9) ={xeRN\{0} W<1 e}
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Then, similarly to (4.16), by (3.20), (3.21), (4.10), (4.13), and the continuity of the functions
F[Uo)(r) and Uy(r) at r = R., taking a sufficiently small d3 > 0, we see that there exist
positive constant C such that

(4mt) Tt [u(z*, t) — u(z, 1)

> ~ 3 MFIUAI(R.) ~ Fltl ()] + "5 | Ga(R.) ~ Ui(la 2

le] +o(1) > %IQUI(R*)

for all z € C(0) N [B(0, R, + d3) \ B(0, R.)] and all sufficiently large ¢. This implies that
(4.19) {z€C(0) : R <|z| <R« + 3} NH(t) =10

for all sufficiently large t. Therefore, since 6 and d3 are arbitrary, by (4.6), (4.18), and (4.19)
we have

tlim sup{|z — R.e1| : z € H(t)} =0,

—00

and obtain (1.20) for case (c). Therefore the proof of Theorem 1.2 (iii) is complete, and
Theorem 1.2 follows. O

5 Number of hot spots

In this section we study the number of hot spots by obtaining the large time behavior of
the Hesse matrix of the solution u near its hot spots, and prove Theorem 1.3. The proof of
Theorem 1.3 is divided into the following cases:

(a) R.=0 and V(0) # 0; (b) R, =0 and V(0)=0;
(c) Ry >0 and z* € B(0, Ry); (d) R.>0 and z* & B(0,R.).
Proof of Theorem 1.3 for case (a). By (2.4) we have

(5.1) U§(0) = lim %T(L) = %V(O)Uo(o) <0,

Then, for any sufficiently small § > O, there exists a positive constant C; such that
(5.2) £ (Valo)(@)E < -G <0,  gesM,
for all z € B(0,8). Therefore, by (3.9) with m = 1, (3.20), and (5.2) we have

(5.3) £ 13+90(V2u)(z, t)E
— co(Mo + 0(1))E - (V2Uo) ()¢ + o(1) < —%choC'l <0, £esN,

for all z € B(0,6) and all sufficiently large t. On the other hand, Theorem 1.2 implies that
H(t) C B(0,4) for all sufficiently large ¢t. Therefore, due to (5.3), any maximum point is
non-degenerate and we see that H(t) consists of only one point for all sufficiently large ¢.
Furthermore, by the implicit function theorem we see that there exist a constant 7' > 0 and
a curve z(t) € C!([T,o0) : RN) such that H(t) = {z(t)} for ¢ > T. Therefore the proof of
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Theorem 1.3 for case (a) is complete. O

Proof of Theorem 1.3 for case (b). By Theorem 1.2 we have |z*| = 0 = R,. Due to the
assumption of Theorem 1.3, —V(r) is monotone increasing in [0, 6] for some ¢ > 0. Then, by
(2.3) we have

VOO, e,
This together with (O) and the continuity of Uy implies

(55) Uy =

(5.4) 0< ~Up(r) < -

LU(r) + V() To(r)

U0) = Uo(r)] < L V(To(0) +0(0)) < 51V ()Vo(0) < 0

for all sufficiently small » > 0. On the other hand, by (O), (5.4), and (5.5) we can take a
sufficiently small § > 0 so that

/(| /(12 LT N
(5.6) ¢+ (Valo)(z)€ = Ul('ll)m2 [Ué’(lwl)—Uf’f'll)}s' [,xlg], 3
,5=1

-0 (35 (2 =

for all z € B(0,6) and & € SN, Furthermore, since
F[Uo)(0) =0, F[Us]'(0) =0,
FIU5]"(0) = lim r ™ FUG] (r) = %UO(O) >0

by the similar argument as in (5.6), taking a sufficiently small § if necessary, we have

(5.7) £ (V2ZF[Uo])(1z))¢

SLLOICINERS R L
= S PO (el - ](Zu@)zm%@

for all z € B(0,6) and &£ € S¥~1. On the other hand, by (2.4), (5.1), and V(0) = 0 we have
UN+2,0(0) = Up 49 (0) = 0. Then, since

L
Zi(z) = —U(lzl) = 2] 12lUN+20(120) = 2:Un+20(2]),

lwl
we have
(5.8) (V2Z:)(0) = 0.

Then, for any € > 0, since ap > a1 > a9 + 1 and ap > —N/2, by (3.9) with m = 2, (3.20),
(3.21), (5.6), and (5.8), taking a sufficiently small § if necessary, we have

(59) t%+ao+1€ 3 (V2U)(£L' t)€
< - (5 + a0 ) Mot (VFIUa) (2, 06 +of1) + e+, £ €87
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for all z € B(0,6) and all sufficiently large t. Therefore, taking a sufficiently small § if
necessary, by (5.7) and (5.9) we have
N Un(0
¥rootie. (V2u)a, 0 < Mo (3 + a0 ) o)
2 4N
for all z € B(0,6) and all sufficiently large t. Since 4 is arbitrary and =* = 0, by the same
argument as in the proof for case (a) we obtain the desired conclusion, and the proof of
Theorem 1.3 for case (b) is complete. O

Proof of Theorem 1.3 for case (c). Since (4.12) remains true in case (c), we have
Uo(0)
N

in B(0, R.), where Iy is the identity matrix on R". Therefore, since ap > a1 > ag + 1, by
(3.9) with m = 2, (3.20), (3.21), and (5.10) we have

<0, tesMN

(5.10) (Vilo)(@) =0,  (ViF[Uo))(z) = Iy, (ViZ)(z)=0

MyUs(0)
4

(5.11) @mw¥ﬂm“§mv@o@¢x=—A@%ﬂQKF+ou)S— , test,

for all z € B(0, R,) and all sufficiently large ¢t. Then, since H(t) C B(0, R,) for all sufficiently
large t, by the same argument as in the proof of case (a) we obtain the desired conclusion,
and the proof of Theorem 1.3 for case (c) is complete. O

Proof of Theorem 1.3 for case (d). By Theorem 1.2 we see w = 0. Due to the assumption
of Theorem 1.3, —V is a monotone increasing positive function in (R,, R, +§) for some § > 0.
Then, by (2.3) we have

(5.12)  0<-Uj(r) < _-leV(r)Uo(R*)G _ (%—)N_l R,,), r & (Ru, Ru +9).

By the similar argument as in (5.5), taking a sufficiently small § > 0 if necessary, we have
Uf(r) <0 for r € [R,, R, + 4). Then, by (5.12) we apply the same argument as in (5.6) to
obtain

(5.13) £ (Vilo)(leé <0,  gesN,

for all z € B(0, R.+6)\ B(0, R.). On the other hand, by (5.10) and the continuity of V2 F[Up]

and V2Z;, for any sufficiently small € > 0, taking a sufficiently small § if necessary, we have
Uos(0 _

610 & (VFUD@E2 DD e (V)@ <. gest,

for all z € B(0, R, + 6). Therefore, by (3.9) with m = 2, (3.20), (3.21), (5.13), and (5.14) we
can take a sufficiently small é so that

(515)  (4m)¥VE - (Vu)(a, )€ < — 5 (Mo + o(1))€ - VEF Uil (z)€
N
1036 Vi) +o(1) < RO g g

=1
for all z € B(0, R, + ) \ B(0, R,) and all sufficiently large t, where C is a constant. Then, by
(4.6), (5.11), and (5.15), taking a sufficiently small § again if necessary, we apply the same
argument as in the proof for case (a) to obtain the desired conclusion. Therefore the proof
of Theorem 1.3 for case (d) is complete, and Theorem 1.3 follows. O
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