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The Valuation of Callable Financial Options
with Regime Switches: A Discrete-time Model*

Kimitoshi Sato
Graduate School of Finance, Accounting and Law, Waseda University

Katsushige Sawaki
Graduate School of Business Administration, Nanzan University

1 Introduction

The purpose of this paper is to develop a dynamic valuation framework for callable financial
securities with general payoff function by explicitly incorporating the use of regime switches.
Such examples of the callable financial security may include game options (Kifer 2000, Kyprianou
2004), convertible bond (Yagi and Sawaki 2005, 2007), callable put and call options (Black and
Scholes 1973, Brennan and Schwartz 1976, Geske and Johnson 1984, McKean 1965). Most
studies on these securities have focused on the pricing of the derivatives when the underlying
asset price processes follow a Brownian motion defined on a single probability space. In other
words the realizations of the price process come from the same source of the uncertainty over
the planning horizon.

The Markov regime switching model make it possible to capture the structural changes of
the underlying asset prices based on the macro-economic environment, fundamentals of the
real economy and financial policies including international monetary cooperation. Such regime
switching can be presented by the transition of the states of the economy, which follows a Markov
chain. Recently, there is a growing interest in the regime switching model. Naik (1993), Guo
(2001), Elliott et al. (2005) address the European call option price formula. Guo and Zhang
(2004) presents a valuation model for perpetual American put options. Le and Wang (2010)
study the optimal stopping time for the finite time horizon, and derive the optimal stopping
strategy and properties of the solution. They also derive the technique for computing the solution
and show some numerical examples for the American put option.

In this paper we show that there exists a pair of optimal stopping rules for the issuer and of
the investor and derive the value of the coupled game. Should the payoff functions be specified
like options, some analytical properties of the optimal stopping rules and their values can be
explored under the several assumptions. In particular, we are interested in the cases of callable
American put and call options in which we may derive the optimal stopping boundaries of the
both of the issuer and the investor, depending on the state of the economy. Numerical examples
are also presented to illustrate these properties.

The organization of our paper is as follows: In section 2, we formulate a discrete time
valuation model for a callable contingent claim whose payoff functions are in general form. And
then we derive optimal policies and investigate their analytical properties by using contraction
mappings. Section 3 discusses two special cases of the payoff functions to derive the specific st$op$
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and continue regions for callable put and call, respectively. Finally, last section concludes the
paper with further comments. It summarize results of this paper and raises further directions

for future research.

2 A Genetic Model of Callable-Putable Financial Commodities

In this section we formulate the valuation of callable securities as an optimal stopping problem in

discrete time. Let $\mathcal{T}$ be the time index set $\{0,1, \cdots\}$ . We consider a complete probability space
$(\Omega, \mathcal{F}, \mathcal{P})$ , where $\mathcal{P}$ is a real-world probability. We suppose that the uncertainties of an asset
price depend on its fluctuation and the economic states which are described by the probability

space $(\Omega, \mathcal{F}, \mathcal{P})$ . Let $\{$ 1, 2, $\cdots,$ $N\}$ be the set of states of the economy and $i$ or $j$ denote one of
these states. We denote $Z$ $:=\{Z_{t}\}_{t\in \mathcal{T}}$ be the finite Markov chain with transition probability
$P_{ij}=Pr\{Z_{t+1}=j|Z_{t}=i\}.$ $A$ transition from $i$ to $j$ means a regime switch. Let $r$ be the

market interest rate of the bank account. We suppose that the price dynamics $B:=\{B_{t}\}_{t\in \mathcal{T}}$ of

the bank account is given by

$B_{t}=B_{t-1}e^{r}, B_{0}=1.$

Let $S$ $:=\{S_{t}\}_{t\in \mathcal{T}}$ be the asset price at time $t$ . We suppose that $\{X_{t}^{i}\}$ be a sequence of i.i. $d.$

random variable having mean $\mu_{i}$ with the probability distribution $F_{i}(\cdot)$ and its parameters

depend on the state of the economy modeled by $Z$ . Here, the sequence $\{X_{t}^{i}\}$ and $\{Z_{t}\}$ are
assumed to be independent. Then, the asset price is defined as

$S_{t+1}=S_{t}X_{t}^{i}$ . (2.1)

The Esscher transform is well-known tool to determine an equivalent martingale measure for

the valuation of options in an incomplete market (Elhott et al. 2005 and Ching et al. 2007).

Ching et al. (2007) define the regime-swiching Esscher transform in discrete time and apply it to
determine an equivalent martingale measure when the price dynamics is modeled by high-order

Markov chain.
We define $Y_{t}^{i}=\log X_{t}^{i}$ and $Y$ $:=\{Y_{t}\}_{t\in \mathcal{T}}$ . Let $\mathcal{F}_{t}^{Z}$ and $\mathcal{F}_{t}^{Y}$ denote the $\sigma$-algebras generated

by the values of $Z$ and $Y$ , respectively. We set $\mathcal{G}=\mathcal{F}_{t}^{Z}\vee \mathcal{F}_{t}^{Y}$ for $t\in \mathcal{T}$ . We assume that $\theta_{t}$ be a
$\mathcal{F}_{T}^{Z}$ -measurable random variable for each $t=1,2,$ $\cdots$ . It is interpreted as the regime-switching
Esscher parameter at time $t$ conditional on $\mathcal{F}_{T}^{Z}$ . Let $M_{Y}(t, \theta_{t})$ denote the moment generating
function of $Y_{t}^{i}$ given $\mathcal{F}_{T}^{Z}$ under $\mathcal{P}$ , that is, $M_{Y}(t, \theta_{t})$ $:=E[e^{\theta_{t}Y}i|\mathcal{F}_{T}^{Z}]$ . We define $\mathcal{P}^{\theta}$ as a
equivalent martingale measure for $\mathcal{P}$ on $\mathcal{G}\tau$ associated with $(\theta_{1}, \theta_{2}, \cdots, \theta_{T})$ .

The next proposition follows from Ching et al. (2007).

Proposition 1 The discounted pnce process $\{S_{t}/B_{t}\}_{t\in \mathcal{T}}$ is $a(\mathcal{G}, \mathcal{P}^{\theta})$ -martingale if and only if
$\theta_{t}$ satisfies

$\frac{M_{Y}(t+1,\theta_{t+1}+1)}{M_{Y}(t+1,\theta_{t+1})}=e^{r}$ . (2.2)
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A callable contingent claim is a contract between an issuer I and an investor II addressing
the asset with a maturity $T$ . The issuer can choose a stopping time $\sigma$ to call back the claim with
the payoff function $f_{\sigma}$ and the investor can also choose a stopping time $\tau$ to exercise his$/her$

right with the payoff function $g_{\mathcal{T}}$ at any time before the maturity. Should neither of them stop
before the maturity, the payoff is $h_{T}$ . The payoff always goes from the issuer to the investor.
Here, we assume

$0\leq g_{t}\leq h_{t}\leq f_{t}, 0\leq t<T$

and
$g_{T}=h_{T}$ . (2.3)

The investor wishes to exercise the right to maximize the expected payoff. On the other hand,
the issuer wants to call the contract to minimize the payment to the investor. Then, for any
pair of the stopping times $(\sigma, \tau)$ , define the payoff function by

$R(\sigma, \tau)=f_{\sigma}1_{\{\sigma<\tau\leq T\}}+g_{\tau}1_{\{\tau<\sigma\leq T\}}+h_{T}1_{\{\sigma\wedge\tau=T\}}$ . (2.4)

When the initial asset price $S_{0}=s$ , our stopping problem becomes the valuation of

$v_{0}(s, i)= \min_{\sigma\in \mathcal{J}_{0,T}}\max_{\tau\in \mathcal{J}_{0,T}}E_{s,i}^{\theta}[\beta^{\sigma\wedge\tau}R(\sigma, \tau)]$, (2.5)

where $\beta\equiv e^{-r},$ $0<\beta<1$ is the discount factor, $\mathcal{J}$ is the finite set of stopping times taking
values in $\{0,1, \cdots, T\}$ , and $E^{\theta}[\cdot]$ is an expectation under $\mathcal{P}^{\theta}$ . Since the asset price process
follows a random walk, the payoff processes of $g_{t}$ and $f_{t}$ are both Markov types. We consider
this optimal stopping problem as a Markov decision process. Let $v_{n}(s, i)$ be the price of the
callable contingent claim when the asset price is $s$ and the state is $i$ . Here, the trading period
moves backward in time indexed by $n=0,1,2,$ $\cdots,$

$T$ . It is easy to see that $v_{n}(s, i)$ satisfies

$v_{n+1}(s, i) \equiv (\mathcal{U}v_{n})(s, i)$

$\equiv \min\{f_{n+1}(s, i), \max(g_{n+1}(s, i), \beta\sum_{j=1}^{N}P_{ij}\int_{0}^{\infty}v_{n}(sx,j)dF_{i}(x))\}$ (2.6)

with the boundary conditions are $v_{0}(\mathcal{S}, i)=h_{0}(s, i)$ for any $s,$ $i$ and $v_{n}(s, 0)\equiv 0$ for any $n$ and
$s$ . Define the operator $\mathcal{A}$ as follows:

$( \mathcal{A}v_{n})(s, i)\equiv\beta\sum_{j=1}^{N}P_{ij}\int_{0}^{\infty}v_{n}(sx,j)dF_{i}(x)$ . (2.7)

Remark 1 The equation (2.6) can be reduced to the non-switching model when we set $P_{ii}=1$

for all $i$ , or $f_{n}(s, i)=f_{n}(s),$ $g_{n}(s, i)=g_{n}(s),$ $h_{0}(s, i)=h_{0}(s)$ and $\mu_{i}=\mu$ for all $i,$ $n$ and $s.$

Let $V$ be the set of all bounded measurable functions with the norm $\Vert v\Vert=\sup_{s\in(0,\infty)}|v(s, i)|$

for any $i$ . For $u,$ $v\in V$ , we write $u\leq v$ if $u(s, i)\leq v(s, i)$ for all $s\in(0, \infty)$ . $A$ mapping $\mathcal{U}$ is
called a contraction mapping if

$\Vert \mathcal{U}u-\mathcal{U}v\Vert\leq\beta\Vert u-v\Vert$

for some $\beta<1$ and for all $u,$ $v\in V.$
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Lemma 1 The mapping $u$ as defined by equation (2.6) is a contmction mapping.

Proof. For any $u_{n},$ $v_{n}\in V$ , we have

$( \mathcal{U}u_{n})(s, i)-(\mathcal{U}v_{n})(s, i) = \min\{f_{n+1}(s, i), \max(g_{n+1}(s, i), \mathcal{A}u_{n})\}$

$- \min\{f_{n+1}(s, i), \max(g_{n+1}(s, i), \mathcal{A}v_{n})\}$

$\leq \min(f_{n+1}(s, i), \mathcal{A}u_{n})-\max(g_{n+1}(s, i), \mathcal{A}v_{n})$

$\leq \mathcal{A}u_{n}-\mathcal{A}v_{n}$

$\leq \beta\sum_{j=1}^{N}P_{ij}\int_{0}^{\infty}\sup(u_{n}(sx,j)-v_{n}(sx,j))dF_{i}(x)$

$\leq \beta\Vert u_{n}-v_{n}\Vert.$

Hence, we obtain
$\sup\{(\mathcal{U}u)(s, i)-(\mathcal{U}v)(s, i)\}\leq\beta\Vert u-v\Vert$ . (2.8)

$s\in(0,\infty)$

By taking the roles of $u$ and $v$ reversely, we have

$\sup_{s\in(0,\infty)}\{(\mathcal{U}v)(s, i)-(\mathcal{U}u)(s, i)\}\leq\beta\Vert v-u\Vert$
. (2.9)

Putting equations (2.8) and (2.9) together, we obtain

$\Vert \mathcal{U}u-\mathcal{U}v\Vert\leq\beta\Vert u-v\Vert.$

$\square$

Corollary 1 There exists a unique function $v\in V$ such that

$(\mathcal{U}v)(s, i)=v(s, i)$ for all $s,$
$i$ . (2.10)

Furthermore, for all $u\in V,$

$(\mathcal{U}^{T}u)(s, i)arrow v(s, i)$ as $Tarrow\infty,$

where $v(s, i)w$ equal to the fixed point defined by equation (2.10), that is, $v(s, i)$ is a unique

solution to

$v(s, i)= \min\{f(s, i), \max(g(s, i), \mathcal{A}v)\}.$

Since $\mathcal{U}$ is a contraction mapping from Corollary 1, the optimal value function $v$ for the

perpetual contingent claim can be obtained as the limit by successively applying an operator $\mathcal{U}$

to any initial value function $v$ for a finite lived contingent claim.

To establish an optimal policy, we make some assumptions;

Assumption 1

(i) $F_{1}(x)\geq F_{2}(x)\geq\cdots\geq F_{N}(x)$ for all $x.$
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(ii) $f_{n}(s, i)\geq f_{n}(s,j),$ $g_{n}(s, i)\geq g_{n}(s,j)$ and $h_{n}(s, i)\geq h_{n}(s,j)$ for each $n$ and $s$ , and states $i,$

j $)$
$1\leq j<i\leq N.$

(iii) $f_{n}(s, i),$ $g_{n}(s, i)$ and $h_{n}(s, i)$ are monotone in $s$ for each $i$ and $n$ , and are non-decreasing in
$n$ for each $s$ and $i.$

(iv) For each $k\leq N,$ $\sum_{j=k}^{N}P_{ij}$ is non-decreasing in $i.$

Lemma 2 Suppose Assumption 1 holds.

(i) For each $i,$ $(\mathcal{U}^{n}v)(s, i)$ is monotone in $s$ for $v\in V.$

(ii) $v$ satisfying $v=\mathcal{U}v$ is monotone in $s.$

(iii) Suppose $v_{n}(\mathcal{S}, i)$ is monotone non-decreasing in $s$ , then $v_{n}(s, i)$ is non-decreasing in $i.$

(iv) $v_{n}(s, i)$ is non-decreasing in $n$ for each $s$ and $i.$

(v) For each $i$ , there exists a pair $(s_{n}^{*}(i), s_{n}^{**}(i)),$ $s_{n}^{**}(i)<s_{n}^{*}(i)$ , of the optimal boundaries such
that

$v_{n}(s, i)\equiv(\mathcal{U}v_{n-1})(s)=\{\begin{array}{l}f_{n}(s, i) , if s_{n}^{*}(i)\leq s,\mathcal{A}v_{n-1}, if s_{n}^{**}(i)<s<s_{n}^{*}(i), n=1,2, \cdots, T,g_{n}(s, i) , if s\leq s_{n}^{**}(i) ,\end{array}$

with $v_{0}(s, i)=h_{0}(s, i)$ .

Proof.
(i) The proof follows by induction on $n$ . For $n=1$ , we have

$( \mathcal{U}^{1}v)(s, i)=\min\{f_{1}(s, i), \max(g_{1}(s, i), \beta\sum_{j=1}^{N}P_{ij}\int_{0}^{\infty}h_{0}(sx,j)dF_{i}(x))\}$ (2.11)

which, since Assumption 1 (iii), implies that $(\mathcal{U}^{1}v)(s, i)$ is monotone in $s$ . Suppose that
$(\mathcal{U}^{n}v)(s, i)$ is monotone for $n>1$ . Then, we have

$( \mathcal{U}^{n+1}v)(s, i)=\min\{f_{n+1}(s, i),$ $\max(g_{n+1}(s, i),$ $\beta\sum_{i=1}^{n}P_{ij}\int_{0}^{\infty}(\mathcal{U}^{n}v)(sx,j)dF_{i}(x))\int 2\cdot 12)$

which is again monotone in $s.$

(ii) Since $\lim_{narrow\infty}(\mathcal{U}^{n}v)(s, i)$ point-wisely converges to the limit $v(s, i)$ from Corollary 1, the
limit function $v(s, i)$ is also monotone in $s.$

(iii) For $n=0$ , it follows from Assumption 1 (ii) that $v_{0}(s, i)=h_{0}(s, i)$ is non-decreasing in $i.$

Suppose (iii) holds for $n$ . If $v_{n}(s, i)$ is monotone non-decreasing in $s$ , then $v_{n}(sx, i)$ is also
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monotone non-decreasing in $x$ for each $s$ . Then, from Assumption 1 (i), we obtain

$\beta\sum_{j=1}^{N}P_{ij}\int_{0}^{\infty}v_{n}(sx,j)dF_{i}(x) \leq \beta\sum_{j=1}^{N}P_{ij}\int_{0}^{\infty}v_{n}(sx,j)dF_{i+1}(x)$

$= \beta\int_{0}^{\infty}\sum_{k=1}^{N}(v_{n}(sx, k)-v_{n}(sx, k-1))\sum_{j=k}^{N}P_{ij}dF_{i+1}(x)$

$\leq \beta\int_{0}^{\infty}\sum_{k=1}^{N}(v_{n}(sx, k)-v_{n}(sx, k-1))\sum_{j=k}^{N}P_{i+1j}dF_{i+1}(x)$

$= \beta\sum_{j=1}^{N}P_{i+1j}\int_{0}^{\infty}v_{n}(sx,j)dF_{i+1}(x)$ ,

where the second inequality follows from Assumption 1 (iv). Hence, we obtain

$v_{n+1}(s, i) = \min\{f_{n+1}(s, i), \max(g_{n+1}(s, i), \mathcal{A}v_{n}(s, i)\}$

$\leq \min\{f_{n+1}(s, i+1), \max(g_{n+1}(s, i+1), \mathcal{A}v_{n}(s, i+1)\}$

$= v_{n+1}(s, i+1)$ . (2.13)

(iv) For $n=1$ in equation (2.6), it follows from Assumption 1 (iii) that

$v_{1}(s, i) = \min\{f_{1}(s, i), \max(g_{1}(s, i), \mathcal{A}v_{0})\}$

$\geq \min\{f_{1}(s, i),g_{1}(s, i)\}=g_{1}(s, i)\geq g_{0}(s, i)=v_{0}(s, i)$ .

Suppose (iv) holds for $n$ . We obtain

$v_{n+1}(s, i) = \min\{f_{n+1}(s, i), \max(g_{n+1}(s, i), \mathcal{A}v_{n})\}$

$\geq \min\{f_{n}(s, i), \max(g_{n}(s, i), \mathcal{A}v_{n-1})\}$

$= v_{n}(s, i)$ .

(iv) Should $v_{n}(s, i)=(\mathcal{U}^{n-1}v)(s, i)$ be monotone in $s$ , then there exists at least one pair of
boundary values $s_{n}^{*}(i)$ and $s_{n}^{**}(i)$ such that

$v_{n}(s, i)=\{\begin{array}{ll}f_{n}(s, i) , if s\geq s_{n}^{*}(i) ,\max(g_{n}(s, i), \mathcal{A}v_{n-1}) , otherwise,\end{array}$

and

$\max(g_{n}(s, i), \mathcal{A}v_{n-1})=\{\begin{array}{l}g_{n}(s, i) , for s\leq s_{n}^{**}(i) ,\mathcal{A}v_{n-1}, otherwise.\end{array}$

$\square$

Corollary 2 The relationship between $g_{n},$ $f_{n}$ and $v_{n}(s, i)$ is given by

$g_{n}(s, i)\leq v_{n}(s, i)\leq f_{n}(s, i)$ .
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Proof. The proof directly follows from equation (2.6). $\square$

We define the stopping regions $S^{I}$ for the issuer and $S^{II}$ for the investor as

$S_{n}^{I}(i) = \{(s, n, i)|v_{n}(s, i)\geq f_{n}(s, i)\}$ , (2.14)
$S_{n}^{II}(i) = \{(s, n, i)|v_{n}(s, i)\leq g_{n}(s, i)\}$ . (2.15)

Moreover, the optimal exercise boundaries for the issuer and the investor are defined as

$s_{n}^{*}(i) = \inf\{s\in S_{n}^{I}(i)\}$ , (2.16)

$s_{n}^{**}(i) = \inf\{s\in S_{n}^{II}(i)\}$ . (2.17)

3 A Simple Callable American Option with Regime Switching

Interesting results can be obtained for the special cases when the payoff functions are specified.
In this section we consider callable American options whose payoff functions are specified as
a special case of callable contingent claim. If the issuer call back the claim in period $n$ , the
issuer must pay to the investor $g_{n}(s, i)+\delta_{n}^{i}$ . Note that $\delta_{n}^{i}$ is the compensate for the contract
cancellation, and varies depending on the state and the time period. If the investor exercises
his/her right at any time before the maturity, the investor receives the amount $g_{n}(s, i)$ . In the
following subsections, we discuss the optimal cancel and exercise policies both for the issuer and
investor and show the analytical properties under some conditions.

3.1 Callable Call Option

We consider the case of a callable call option where $g_{n}(s, i)=(s-K^{i})^{+}$ and $f_{n}(s, i)=g_{n}(s, i)+\delta_{n}^{i},$

$0<\delta_{n}^{i}<K^{i}$ . Here, $K^{i}$ is the strike price on the state $i$ . We set out the assumptions to show
the analytical properties of the optimal exercise policies.

Assumption 2

(i) $\beta\mu_{N}\leq 1$

(ii) $K^{1}\geq K^{2}\geq\cdots\geq K^{N}\geq 0.$

(iii) $0\leq\delta_{n}^{1}\leq\delta_{n}^{2}\leq\cdots\leq\delta_{n}^{N}$ for each $n.$

(iv) $\delta_{0}^{i}=0$ and $\delta_{n}^{i}$ is non-decreasing and concave in $n>0$ for each $i.$

Remark 2 For example, $\delta_{n}^{i}=\delta^{i}e^{-r(T-n)}=\neg_{\overline{-n}}(1+r)\delta^{i}$ satisfies Assumption 2(iv).

By the form of payoff function, the value fUnction $v_{n}$ is not bounded. To apply the result of
Corollary 1, we assume that the issuer has to call back the claim when the payoff value exceeds
a value $M>K^{1}$ . Define $\tilde{s}_{n}^{i}\equiv\inf\{s|f_{n}(s, i)\geq M\}$ . Since $f_{n}(s, i)$ is increasing in $s$ and $i$ for
any $n$ , we have $\tilde{s}_{n}^{1}>\tilde{s}_{n}^{i}$ for any $i,$ $n$ and $\tilde{s}_{n}^{1}=M+K^{1}-\delta_{n}^{1}$ for any $n.$
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The stopping regions for the issuer $S_{n}^{I}(i)$ and investor $S_{n}^{II}(i)$ with respect to the callable call

option are given by

$\{\begin{array}{ll}S_{n}^{I}(i)=\{s|v_{n}(s, i)\geq(s-K^{i})^{+}+\delta_{n}^{i}\}\cup\{\tilde{s}_{n}^{1}\}, for n=1, \cdots, T,S_{n}^{I}(i)=\phi, for n=0,S_{n}^{II}(i)=\{s|v_{n}(s, i)\leq(s-K^{i})^{+}\}, for n=0,1, \cdots, T.\end{array}$

For each $i$ and $n$ , we define the thresholds for the callable call option as

$s_{n}^{*}(i) = \inf\{s|v_{n}(s, i)=(s-K^{i})^{+}+\delta_{n}^{i}\}\wedge\tilde{s}_{n}^{1},$

$s_{n}^{**}(i) = \inf\{s|v_{n}(s, i)=(s-K^{i})^{+}\}.$

The following lemma represents the well known result that American call options are identical

to the corresponding European call options.

Lemma 3 Callable call option with the maturity $T<\infty$ can be degenerated into callable Eum-

pean, that is $S_{n}^{II}(i)=\phi$ for $n>0$ and $S_{0}^{II}(i)=\{K^{i}\}$ for each $i.$

Proof. Since the discounted price process $\{S_{t}/B_{t}\}_{t\in \mathcal{T}}$ is $(\mathcal{G}, \mathcal{P}^{\theta})$ -martingale, $\beta^{\sigma\wedge\tau}g_{t}(S_{\sigma\wedge\tau}, i)=$

$\beta^{\sigma\wedge\tau}\max(S_{\sigma\wedge\tau}-K^{i}, 0)$ is $a(\mathcal{G}, \mathcal{P}^{\theta})$-submartingale. Applying the Optional Sampling Theorem,

we obtain that

$v_{t}(s, i)$ $=$ min max $E_{s}^{\theta}[\beta^{\sigma\wedge\tau}R(\sigma, \tau)]$

$\sigma\in J_{t,T}\tau\in \mathcal{J}_{t},\tau$

$=$ min max $E_{s}^{\theta}[\beta^{\sigma\wedge\tau}(f_{t}(S_{\sigma\wedge\tau}, i)1_{\{\sigma<\tau\}}+g_{t}(S_{\sigma\wedge\tau}, i)1_{\{\tau<\sigma\}}+h_{T}1_{\{\sigma\wedge\tau=T\}})]$

$\sigma\in \mathcal{J}_{t,T}\tau\in \mathcal{J}_{t,T}$

$=$ $\min_{\sigma\in \mathcal{J}_{t},\tau}E_{s}^{\theta}[\beta^{\sigma}f_{t}(S_{\sigma}, i)1_{\{\sigma<T\}}+\beta^{T}h_{T}1_{\{\sigma=T\}}]$ . (3.1)

This completes the proof. $\square$

It implies that it is optimal for the investor not to exercise his/her putable right before the

maturity. However, the issuer should choose an optimal call stopping time so as to minimize

the expected payoff function.

Lemma 4 If Assumption 2 (i) holds, then $v_{n}(s, i)-s$ is decreasing in $s$ for $s>K^{i}$ , and $v_{n}(s, i)$

is non-iecreasing in $s$ for $s\leq K^{i}$ for each $n,$ $i.$

Proof. We prove it by induction. For $n=0$ , the claim certainly holds. It is sufficient to prove
for the case of $s>K^{i}$ . Suppose the claim holds for $n$ , then we have

$v_{n+1}(s, i)-s$ $=$ $\min\{s-K^{i}+\delta_{n+1}^{i}, \max(s-K^{i}, \mathcal{A}v_{n})\}-s$

$= \min\{-K^{i}+\delta_{n+1}^{i}, \max(-K^{i}, \beta\sum_{j=1}^{N}P_{ij}\int_{0}^{\infty}(v_{n}(sx,j)-sx)dF_{i}(x)+(\beta\mu_{i}-1)s)\}.$

Since the statement is true for $n,$ $v_{n}(sx,j)-sx$ is decreasing in $s$ for $x>K^{i}$ . Assumption 1

(i) implies that $\mu_{1}\leq\mu_{2}\leq\cdots\leq\mu_{N}$ . If $\mu_{N}\leq\frac{1}{\beta}$ , then $(\beta\mu_{i}-1)s$ is non-increasing in $s$ . Hence,

$v_{n+1}(s, i)-s$ is decreasing in $s$ for $s>K^{i}.$ $\square$
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Lemma 5

(i) Suppose that $n_{i}^{*}= \inf\{n|\delta_{n}^{i}<v_{n}^{a}(K^{i}, i)\}$ , where $v_{n}^{a}(s, i)= \max\{(s-K^{i})^{+}, \mathcal{A}v_{n-1}(s, i)\}$

and $v_{0}^{a}(s, i)=(s-K^{i})^{+}$ . If $n_{i}^{*}\leq n\leq T$ , we have $S_{n}^{I}(i)=\{K^{i}\}$ . If $0\leq n<n_{i}^{*}$ , we have
$S_{n}^{I}(i)=\{\tilde{s}_{n}^{1}\}.$

(ii) $n_{i}^{*}$ is non-decreasing in $i.$

Proof.

(i) Let $\Psi_{n}^{I}(s, i)=v_{n}(s, i)-(s-K^{i})^{+}-\delta_{n}^{i}$. For $s=K^{i}$ , we have

$\Psi_{n}^{I}(K^{i}, i) = v_{n}(K^{i}, i)-\delta_{n}^{i}$

$=$ $\min\{O$ , max$\{0,$ $\mathcal{A}v_{n-1}(K^{i}, i)\}-\delta_{n}^{i}\}$

$= \min\{O, v_{n}^{a}(K^{i}, i)-\delta_{n}^{i}\}.$

If $v_{n}^{a}(K^{i}, i)>\delta_{n}^{i}$ , then $\Psi_{n}^{I}(K^{i}, i)=0$ for any $i$ and $n$ . Since $\delta_{n}^{i}$ is non-decreasing and
concave in $n$ by Assumption 1 (iv) and $v_{n}(s, i)$ is non-decreasing in $n$ by Assumption 2 (iv),
there exists at least one value $n_{i}^{*}$ such that $n_{i}^{*}= \inf\{n|\delta_{n}^{i}<v_{n}^{a}(K^{i}, i)\}.$

By Lemma 4, the function $\Psi_{n}^{I}(s, i)$ is non-decreasing for $s\leq K^{i}$ and is decreasing for
$K^{i}<s$ . It implies that it is unimodal function in $s$ , and $K^{i}$ is a maximizer of $\Psi_{n}^{I}(s, i)$ .
Thus, $v_{n}(s, i)<(s-K^{i})^{+}+\delta_{n}^{i}$ if $s\neq K^{i}$ . Moreover, $\tilde{s}_{n}^{1}=M+K^{1}-\delta_{n}^{1}>K^{i}$ for any $i.$

Therefore, $S_{n}^{I}(i)=\{K^{i}\}$ for $n_{i}^{*}\leq n\leq T.$ For $0\leq n<n_{i}^{*}$ , since $\delta_{n}^{i}>v_{n}^{a}(K^{i}, i)$ for each $i$

and $n$ , we have

$v_{n}(K^{i}, i)= \min\{O, v_{n}^{a}(K^{i}, i)-\delta_{n}^{i}\}+\delta_{n}^{i}=v_{n}^{a}(K^{i}, i)<\delta_{n}^{i}\leq(s-K^{i})^{+}+\delta_{n}^{i}.$

Hence, we have $\Psi_{n}^{I}(K^{i}, i)<0$, so $S_{n}^{I}(i)=\{\tilde{s}_{n}^{1}\}.$

(ii) For $n=0,$ $v_{0}^{a}(K^{i}, i)-\delta_{0}^{i}$ is non-increasing in $i$ . By induction, we can show that $v_{n}^{a}(K^{i}, i)-\delta_{n}^{i}$

is non-increasing in $i$ . Thus, since $v_{n}^{a}(K^{i}, i)-\delta_{n}^{i}$ is non-decreasing in $n$ , the value $n_{i}^{*}$ is
non-decreasing in $i.$

$\square$

Theorem 1 Suppose that Assumption 2 $(i)-(iv)$ holds. The stopping regions for the issuer and
investor can be obtained as follows;

(i) The optimal stopping region for the issuer:

$\{\begin{array}{ll}S_{n}^{I}(i)=\{K^{i}\}, if n_{i}^{*}\leq n\leq T,S_{n}^{I}(i)=\{\tilde{s}_{n}^{1}\}, if 0\leq n<n_{i}^{*},\end{array}$ (3.2)

where $K^{1}\geq K^{2}\geq\cdots\geq K^{N}\geq 0$ , and $n_{i}^{*} \equiv\inf\{n|\delta_{n}^{i}\leq v_{n}^{a}(K^{i}, i)\}$ which is non-decreasing
in $i$ . Here, $v_{n}^{a}(s, i)= \max\{(s-K^{i})^{+}, \mathcal{A}v_{n-1}(s, i)\}.$
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(ii) The optimal stopping region for the investor:

$\{\begin{array}{ll}S_{n}^{II}(i)=\phi, if n>0, (3.3)S_{0}^{II}(i)=\{K^{i}\}, ifn=0. \end{array}$

Moreover, the thresholds for the issuer and investor are $s_{n}^{*}(i)=K^{i}$ for $n_{i}^{*}\leq n\leq T$ and
$s_{0}^{**}(i)=K^{i}$ , respectively.

Proof. Part (i) follows from Lemma 5. Part (ii) is obtained from Lemma 3. In addition, since
$s_{n}^{**}(i)= \inf\{s|(s-K^{i})^{+}\leq s-K^{i}\}=K^{i}$ for $n=0$ , we obtain $S_{0}^{II}(i)=\{K^{i}\}.$ $\square$

3.2 Callable Put Option

We consider the case of a callable put option where $g_{n}(s, i)= \max\{K^{i}-s, 0\}$ and $f_{n}(s, i)=$

$g_{n}(s, i)+\delta_{n}^{i}$ . The stopping regions for the issuer $S_{n}^{I}(i)$ and the investor $S_{n}^{II}(i)$ with respect to

the callable put option are given by

$\{\begin{array}{ll}S_{n}^{I}(i)=\{s|v_{n}(s, i)\geq(K^{i}-s)^{+}+\delta_{n}^{i}\}, for n=1, \cdots, T,S_{n}^{I}(i)=\phi, for n=0,S_{n}^{II}(i)=\{s|v_{n}(s, i)\leq(K^{i}-s)^{+}\}, for n=0,1, \cdots, T.\end{array}$

For each $i$ and $n$ , we define the optimal exercise boundaries for the issuer $\tilde{s}_{n}^{*}(i)$ and the investor
$\tilde{s}_{n}^{**}(i)$ as

$\tilde{s}_{n}^{*}(i)$ $=$ $\inf\{s|v_{n}(s, i)=(K^{i}-s)^{+}+\delta_{n}^{i}\}$ , (3.4)

$\tilde{s}_{n}^{**}(i)$ $=$ $\inf\{s|v_{n}(s, i)=(K^{i}-s)^{+}\}$ . (3.5)

Assumption 3

(i) $\beta\mu_{N}\leq 1$

(ii) $0\leq K^{1}\leq K^{2}\leq\cdots\leq K^{N}.$

(iii) $0\leq\delta_{n}^{1}\leq\delta_{n}^{2}\leq\cdots\leq\delta_{n}^{N}$ for each $n.$

(iv) $\delta_{0}^{i}=0$ and $\delta_{n}^{i}$ is non-decreasing and concave in $n>0$ for each $i.$

(v) $\beta\sum_{j=1}^{N}P_{ij}K^{j}-K^{i}$ is non-decreasing in $i.$

Lemma 6 If Assumption 3 (i) holds, then $v_{n}(s, i)+s$ is increasing in $s$ for $s<K^{i}$ , and $v_{n}(s, i)$

is non-increasing in $s$ for $K^{i}\leq s.$

Proof. It is sufficient to prove for the case of $s<K^{i}$ . The claim holds for $n=0$ . Suppose the

assertion holds for $n$ . Then, we have

$v_{n+1}(s, i)+s$ $=$ $\min\{K^{i}-s+\delta_{n+1}^{i}, \max(K^{i}-s, \mathcal{A}v_{n})\}+s$

$= \min\{K^{i}+\delta_{n+1}^{i}, \max(K^{i}, \beta\sum_{j=1}^{N}P_{ij}\int_{0}^{\infty}(v_{n}(sx,j)+sx)dF_{i}(x)+(1-\beta\mu_{i})s)\}.$

Hence, from Assumption 3 (i), $v_{n+1}(s, i)+s$ is increaeing in $s$ for $s<K^{i}.$ $\square$
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Lemma 7 $v_{n}(s, i)-K^{i}$ is non-decreasing in $i$ for each $s<K^{i}$ and $n.$

Proof. When $n=0$ , the claim holds. For $K^{i}>s$ , we set $w_{n}(s, i)\equiv v_{n}(s, i)+s$ . Suppose (ii)
holds for $n$ . Then, we have

$w_{n+1}(s, i)-K^{i} = \min\{K^{i}-s+\delta_{n+1}^{i}, \max(K^{i}-s, \mathcal{A}w_{n}(s, i)\}-K^{i}$

$= \min\{-s+\delta_{n+1}^{i}, \max(-s, \mathcal{A}w_{n}(s, i)-K^{i})\}$

By Lemma 6, we have

$\mathcal{A}w_{n}(s, i) = \beta\sum_{j=1}^{N}P_{ij}\int_{0}^{\infty}w_{n}(sx,j)dF_{i}(x)$

$\leq \beta\sum_{j=1}^{N}P_{ij}\int_{0}^{\infty}w_{n}(sx,j)dF_{i+1}(x)$

$= \beta\sum_{j=1}^{N}P_{ij}\int_{0}^{\infty}(w_{n}(sx,j)-K^{j})dF_{i+1}(x)+\beta\sum_{j=1}^{N}P_{ij}K^{j}$

$\leq \mathcal{A}w_{n}(s, i+1)-\beta\sum_{j=1}^{N}(P_{i+1j}-P_{ij})K^{j}$

From Assumption 3 (v), we obtain $\mathcal{A}w_{n}(s, i)-K^{i}\leq \mathcal{A}w_{n}(s, i+1)-K^{i+1}$ . Hence, $w_{n+1}(s, i)-$

$K^{i}\leq w_{n+1}(s, i+1)-K^{i+1}$ , so $v_{n+1}(s, i)-K^{i}\leq v_{n+1}(s, i+1)-K^{i+1}.$ $\square$

Lemma 8

(i) There exists a time $n_{i}^{*}$ for each $i$ such that $n_{i}^{*} \equiv\inf\{n|\delta_{n}^{i}\leq v_{n}^{a}(K^{i}, i)\}$ , where $v_{n}^{a}(s, i)=$

$\max\{(K^{i}-s)^{+}, \mathcal{A}v_{n-1}(s, i)\}$ . Moreover, if $n_{i}^{*}\leq n\leq T$ , we have $S_{n}^{I}(i)=\{K^{i}\}$ . If $0\leq n<n_{i}^{*},$

we have $S_{n}^{I}(i)=\phi.$

(ii) $n_{i}^{*}$ is non-decreasing in $i.$

Proof. The proof can be done similarly as in the case of the call option in Lemma 5. $\square$

Lemma 9 Suppose Assumption 3 (i) holds. Then, there exists an optimal exercise policy for
the both players, and $\tilde{s}_{n}^{**}(i)<\tilde{s}_{n}^{*}(i)$ such that the investor exercises the option if $s\leq s_{n}^{**}(i)$ and
the issuer exercises the option if $s_{n}^{*}(i)\leq s.$

Proof. We first consider the optimal exercise policy for the investor. Let $\Psi_{n}^{II}(s, i)\equiv v_{n}(s, i)-$

$(K^{i}-s)^{+}$ . The investor does not exercise the option when $s>K^{i}$ because he$/she$ wishes to
exercise the right so as to maximize the expected payoff. For $s\leq K^{i},$ $\Psi_{n}^{II}(s, i)$ is increasing in
$s$ by Lemma 6. Since $v_{n}(K^{i}, i)\geq 0$ , there exists a value $\tilde{s}_{n}^{**}(i)$ satisfying (3.5). For $s\leq\tilde{s}_{n}^{**}(i)$ ,
$v_{n}(s, i)\leq(s-K^{i})^{+}$ . Hence, it is optimal for the investor to exercise the option when $s\leq s_{n}^{**}(i)$ .

It follows from Lemma 8 (i) that the optimal exercise policy for the issuer is $\tilde{s}_{n}^{*}(i)=K^{i}$ for
$n_{i}^{*}\leq n\leq T$ and $\tilde{s}_{n}^{*}(i)=\infty$ for $0\leq n<n_{i}^{*}$ . Since $\Psi_{n}^{II}(s, i)$ is increasing in $s$ for $s\leq K^{i}$ , we have
$\tilde{s}_{n}^{**}(i)<\tilde{s}_{n}^{*}(i)$ for each $i$ and $n\in[n_{i}^{*}, T].$ $\square$
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Lemma 10

(i) $\tilde{s}_{n}^{**}(i)$ is non-increasing in $i$ for each $n.$

(ii) $\tilde{\mathcal{S}}_{n}^{**}(i)$ is non-increasing in $n$ for each $i.$

Proof. We only consider the case of $K^{i}>s.$

(i) By Lemma 6, $v_{n}(s, i)+s$ is increasing in $s$ for $K^{i}>s$ . Therefore, from Lemma 7, we have

$\tilde{s}_{n}^{**}(i) = \inf\{s|v_{n}(s, i)+s=K^{i}\}$

$\geq \inf\{s|v_{n}(s, i+1)+s=K^{i+1}\}$

$= \tilde{s}_{n}^{**}(i+1)$ .

(ii) By Lemma 2 (iv), $v_{n}(s, i)$ is non-increasing in $n$ , so we have

$\tilde{s}_{n}^{**}(i) = \inf\{s|v_{n}(s, i)+s=K^{i}\}$

$\geq \inf\{s|v_{n+1}(s, i)+s=K^{i}\}$

$= \tilde{s}_{n+1}^{**}(i)$ .

$\square$

Theorem 2 Suppose that Assumption 3 $(i)-(v)$ holds. The stopping regions for the issuer and

investor can be obtained as follows;

(i) The optimal stopping region for the issuer:

$\{\begin{array}{ll}S_{n}^{I}(i)=\{K^{i}\}, if n_{i}^{*}\leq n\leq T,S_{n}^{I}(i)=\phi, if 0\leq n<n_{i}^{*},\end{array}$ (3.6)

where $0\leq K^{1}\leq K^{2}\leq\cdots\leq K^{N}$ , and $n_{i}^{*} \equiv\inf\{n|\delta_{n}^{i}\leq v_{n}^{a}(K^{i}, i)\}$ which is non-decreasing

in $i$ . Here, $v_{n}^{a}(s, i)= \max\{(K^{i}-s)^{+}, \mathcal{A}v_{n-1}(s, i)\}.$

(ii) The optimal stopping region for the investor:

$\{\begin{array}{ll}S_{n}^{II}(i)=[0,\tilde{s}_{n}^{**}(i)], if n>0,S_{0}^{II}(i)=\{K^{i}\}, if n=0,\end{array}$ (3.7)

where $\tilde{s}_{n}^{**}(i)$ is non-increasing in $n$ and $i$ . Moreover, $\tilde{s}_{n}^{**}(i)\leq\tilde{s}_{n}^{*}(i)$ for each $i$ and $n.$

Proof. Part (i) follows from Lemma 8. Part (ii) can be obtained by Lemma 9 and 10. For

$n=0$ , since $\tilde{s}_{n}^{**}(i)=\inf\{s|(s-K^{i})^{+}\leq s-K^{i}\}=K^{i}$, we have $S_{0}^{II}(i)=\{K^{i}\}.$ $\square$
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4 Concluding Remarks

In this paper we consider the discrete time valuation model for callable contingent claims in which
the asset price depends on a Markov environment process. The model explicitly incorporates
the use of the regime switching. It is shown that such valuation model with the Markov regime
switches can be formulated as a coupled optimal stopping problem of a two person game between
the issuer and the investor. In particular, we show under some assumptions that there exists a
simple optimal call policy for the issuer and optimal exercise policy for the investor which can
be described by the control limit values. If the distributions of the state of the economy are
stochastically ordered, then we investigate analytical properties of such optimal stopping rules
for the issuer and the investor, respectively, possessing a monotone property.
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