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SUMMARY

We propose a forward wavefield simulation based on a particle continuum model to simulate
seismic waves travelling through a complex subsurface structure with arbitrary topography.
The inclusion of arbitrary topography in the numerical simulation is a key issue not only
for scientific interests but also for disaster prediction and mitigation purposes. In this study, a
Hamiltonian particle method (HPM) is employed. It is easy to introduce traction-free boundary
conditions in HPM and to refine the particle density in space. Any model with complex geome-
try and velocity structure can be simulated by HPM because the connectivity between particles
is easily calculated based on their relative positions and the free surfaces are automatically
introduced. In addition, the spatial resolution of the simulation could be refined in a simple
manner even in a relatively complex velocity structure with arbitrary surface topography. For
these reasons, the present method possesses great potential for the simulation of strong ground
motions.

In this paper, we first investigate the dispersion property of HPM through a plane wave
analysis. Next, we simulate surface wave propagation in an elastic half space, and compare the
numerical results with analytical solutions. HPM is more dispersive than FDM, however, our
local refinement technique shows accuracy improvements in a simple and effective manner.
Next, we introduce an earthquake double-couple source in HPM and compare a simulated
seismic waveform obtained with HPM with that computed with FDM to demonstrate the
performance of the method. Furthermore, we simulate the surface wave propagation in a
model with a surface of arbitrary topographical shape and compare with results computed
with FEM. In each simulation, HPM shows good agreement with the reference solutions.
Finally, we discuss the calculation costs of HPM including its accuracy.

Key words: Numerical solutions; Numerical approximations and analysis; Earthquake
ground motions; Computational seismology.

1 INTRODUCTION

The development of numerical schemes is of great importance in seismology to provide quantitative information for earthquake disaster
prevention and mitigation, such as the simulation of earthquake generation, the estimation of ground shaking, etc. The most popular and
widely used methods are those using the finite difference methods (FDM) with staggered grids (Madariaga 1976; Virieux 1986; Levander
1988; Graves 1996). Finite element methods (FEM) and spectral element methods (SEM), which are special kinds of FEM, have been also
used to simulate seismic wave propagation (Komatitsch & Tromp 1999; Koketsu et al. 2004). These methods have advantages over FDM in
the treatment of traction-free boundary conditions at the outer boundary of a medium. Furthermore, arbitrary mesh refinement adapted to the
internal and external boundaries of the medium is possible even when the velocity structure of the model is complex. Mercerat ez al. (2006)
conducted numerical simulations of elastic wave propagation in a model with arbitrary topography of the free surface and internal material
interfaces like a basin structure using SEM with a triangular mesh. Their results successfully reproduced a strong Rayleigh wave, a direct P
wave, converted waves and so on. Koketsu et al. (2004) calculated seismograms in models with sedimentary basins and mountain structure
using FEM with a voxel technique. They showed the effect of the sedimentary basin and mountain structure on ground velocity distributions
using a refinement technique of spatial resolution.
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Particle-based methods like the distinct element method (DEM; Cundall & Strack 1979) have been applied to the simulation of seismic
wave propagation as an alternative to traditional continuum-based simulators (Toomey & Bean 2000). Elastic lattice methods (ELM) have
also been applied to simulate seismic wave propagation, and the accuracy and dispersion analysis was conducted (Del Valle-Garcia &
Sanchez-Sesma 2003; O’Brien & Bean 2004; O’Brien et al. 2009). More recently, Mariotti (2007) applied their Mka3D code to elasticity
adapting their method based on the use of the microbeams between particles. The formulation can give a micro-macro relation for not only
regular but also irregular lattices, and can treat full domain of Poisson’s ratios and Young modulus. In Mariotti (2007), Voronoi diagrams were
used to identify neighbouring particles which interacted with each other. Chikazawa et al. (2001) developed a particle scheme named moving
particle semi-implicit (MPS) method for elastic and visco-plastic structures. Their scheme is also a mesh-less methods, and can simulate
failure phenomena and fluid-structure interactions easily. If we use regular lattices of particles, the MPS method needs only the distances
between particles to make connectivity between particles.

In this study, a Hamiltonian particle method (HPM) is applied to simulate seismic wave propagation. In HPM, the identification of
neighbouring particles is based only on the distances between each particle like in Chikazawa et al. (2001). Finally, particle motion equation
for each particle is derived such as DEM, ELM and MPS. In MPS and HPM, interaction between each pair of particles is weighted based
on distance of the two particles, although the concept of the derivation of particle motion equation is different. The particle motions are
formulated in the Hamiltonian framework and the deformation gradient tensor is approximated only at the particles. HPM was initially
developed to calculate incompressible fluid flow with a free surface (Suzuki et al. 2007). Recently, solid deformation problems were also
solved by HPM (Suzuki & Koshizuka 2008; Kondo ef al. 2010).

In this study, we focus our attention on the strong ground motion produced by earthquakes. First we investigate the dispersion properties
of HPM through a plane wave analysis. We, next, simulate surface wave propagation in an elastic half space and the scheme is compared
with the analytical solution for Lamb’s problem, and we apply a local refinement technique to improve its accuracy in a simple and effective
manner. Next, we introduce earthquake double—couple sources in HPM and compare the result obtained by HPM with that from FDM. Surface
wave propagation in a model, which has an arbitrary surface topography is calculated with HPM and is compared with the result from FEM.
Finally, we compare the calculation costs of HPM with those of FDM.

2 METHOD

2.1 Theory

Cundall & Strack (1979) developed a particle-based approach to model rock mechanics problems called DEM. In DEM, particles are
connected by virtual springs and interact with each other through both normal and shear forces at contact points. In HPM, on the other hand,
we calculate the particle motion based on the deformation gradient tensor estimated at each particle position.

In HPM, each particle interacts with the neighbouring particles, which are at a certain distance from it (Fig. 1). This domain, which
defines the interaction area is called the influence domain. The influence domain defines a circular area or a spherical volume in 2-D or 3-D
problems, respectively. The number of neighbouring particles is controlled by the radius of the influence domain. The effect of the radius on
seismogram will be discussed in the following chapter.

We consider a weighting function w(r) between particles to weight their interactions as follows.

wE)=r/r—1r <r,) or 0@ >r,), (1)

O O O O influence

Q & |domain

-
—_——

Figure 1. The particles in the influence domain. In this figure, the shaded particles are the selected ones.
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where r is the distance between particles and r, is the averaged radius of the influence domain. The weighting value at the considered particle
is infinite, and becomes zero outside the influence domain. r, is calculated as follows,

re=(ra +ry) /2, )
where r,; and r,; are the influence domains of particle i and j. The influence domain of each particle depends on their radius.
Fe = ad; 3)

d; is the radius of particle 7, « is the coefficient which controls the number of neighbouring particles.
In HPM, the deformation gradients at the position of particle i is evaluated by minimizing the error function e;,
0 2.0
e = Z!F;rij —r,-]-| wij, (4)

J

where F; is the deformation gradient tensor at the position of particle i, r?]. and r;; are the initial and current position of particle j relative
to particle i, respectively, w?j is the weighting function between particle i and j calculated by eq. (1). Minimizing the deformation gradient
tensor eq. (4), we get

de; /0F; =2 Z w?/. (r,-j — Fir?/) ® (—r?/)

Ly

J
=23 S wiry ® ) +2F, 3w, ®r)
J j

o (5)

F,' = Z r,~»,» ® r?/wlojAfl (6)
J

A = Zr?j @ rwy, @)
J

where a symbol ® means tensor product. We use eq. (6) anywhere in the analysis model. If the calculation model includes a discontinuous
surface (e.g. liquid—solid interface), the approximation of eq. (6) may include the error due to this assumption.
The total elastic strain energy is written using strain E and stress S, which can be calculated from the deformation gradient tensor.

V= Z(E,- :S;AB) /2 ®)
E=(F'F-1)/2 )
S = 2uE + Atr(E) 1, (10)

where V is the total elastic strain energy, A B; is the volume of particle 7, A and u are Lame’s coefficient. Eq. (10) indicates that we adopt
the Saint Venant-Kirchhoff (linear elastic) model for a constitutive law. When a regular particle arrangement is used, it is simple to calculate
the volume occupied by each particle. When irregular lattices, however, are used as in the following chapter, the volumes of divided particles
need to be allocated based on division number, and those of displaced particles are maintained. The medium coefficients are defined on each
particle.

The total kinetic energy is defined as follows,

K=Y (mvil’)/2, (11)

where v; is the velocity of particle 7, and m; is its mass. The mass is calculated as follows,

m; = p;AB;, (12)
where p; is the density of particle i. The total energy of the system H is the Hamiltonian H# = V' + K. Then we can calculate the equation of
motion of each particle using Hamilton’s equation;

piAB;dv; /0t = —0H /X,

> (FSiA'Y) AB +F;SA; 1) AB) w)) - (13)

J

We compute the behaviour of the elastic body using the following time stepping algorithm.
XA =x' ALV (14)
VA = v 4 At - (Bv/0t) (15)

This symplectic scheme is effective to conserve total energy in spite of its simplicity.
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free surface

Figure 2. The arrangement of particles in HPM.

2.2 Particle arrangement

In HPM, we can use an arbitrary arrangement of particles. To model non-flat free surface using HPM, several strategies can be used to define
the topography as shown in Fig. 2. In Fig. 2(a), particles whose positions are above the free surface are simply removed from regular lattice
arrangement. This simple method is unfortunately not very accurate. In Fig. 2(b), particles are displaced from their original positions to fit
the topology of the surface. Since the interaction model is constructed based only on the positions of particles in HPM, irregular arrangement
of particles is accepted without inhomogeneous and anisotropy. This arrangement can model more accurate topography than that of Fig. 2(a),
the volume is also calculated easily like in Fig. 2(a). In the following chapters, we use the arrangement of Fig. 2(b) to model non-flat free
surfaces.

3 DISPERSION ANALYSIS

Since wave speed is a function of wavelength in numerical methods (e.g. Mullen & Belytschko 1982; Marfurt 1984), we perform a plane
wave analysis to investigate the dispersion properties of HPM. In this section, we consider only a 2-D regular lattice alignment of particles
and P-wave propagating along the x-direction. Our model has a P-wave velocity of ¥, =4000 m s~', and a mass density of p = 2200kgm .
Particle spacing of regular lattice is 10 m, the coefficient of the influence domain in eq. (3) is set to 1.9.

We consider a plane wave of the form u = uge ' *** propagating along the x-direction with wavenumber k and frequency w. uy is the
amplitude of the plane wave. Inserting it into eq. (6) yields

1 ikAx __ a—ikAx —iwt+ikx
1+ 57 (e e A Y uge 0

F;, = 1
i 0 uE (16)

where Ax is the particle spacing. Inserting eq. (16) into eqgs (9) and (10), the stress tensor of particle i could be calculated.

+2wi{a+uy -1} 0
S = , 7
0 M{a+vuy -1}
where;
1 s ‘ .
U = e (elkA,\ _ e—lkAx) uoe—lwtﬂkx‘ (18)

The deformation gradient and the stress tensors of the surrounding particles can be calculated in the same manner. Inserting them into eq.
(13) yields
1

_pABwZuoefimtJrikx — 1AL ()\' + 2#) (eZikAx + 672ikAx _ 2) ABuoefia)Hrik,\‘

(}\ + 2:“’) {2 (efzikAx _ eZi/(Ax) + (e4ikAx _ e74ikAx)} ABugeZ(fiwarikx)

N
16Ax3

_’_32;]64 (}\ + ZM) {(em‘km + e—6ikAx) -3 (e4ikAx + e—4ikAx) +3 (eZikAx + e—ZikAx) _ 2} ABuéez(qmmk,\-). (19)

The second and third terms in the right-hand side of eq. (19) are higher-orders. Dividing eq. (19) by uge™*****, we obtain the following
expression.

1 1 i i
—,OABC()Z — Z <Ax2> (}‘+2/'L) (CZtl\Ax +e—211\Ax _2) AB

+ 3 (L03> (A 42w {2 (6721‘1\'Ax _ eZikAx) + (e4ikAx _ e—4ikAx)} A Be—iwttikx

16 \Ax
2
+$ <Aux04> ()L 4 2“) {(eéikAx 4 eféikAx) _ 3 (e4ikAx 4 e74ikAx) 4 3 (GZikAx + e72ikAX) _ 2} ABeZ(*in»ikx)' (20)
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Figure 3. Dispersion curve of HPM. Solid and dotted curves are for the theoretical non-dispersive and numerical cases, respectively.

Here, we assume that the particle spacing Ax is much larger than the amplitude of the incident wave. In this case, the relation between
the wavenumber and the frequency becomes very simple form as follows.

[(A4+2w) .
7pr2 sin (kAx) 1)

In the following models, the above assumption between the particle spacing and the amplitude of the incident wave is kept. Fig. 3 shows
the dispersion relation of eq. (21).

12

w

4 SEISMIC WAVE PROPAGATION

4.1 Surface wave propagation

We test HPM using the classic Lamb problem as shown in Fig. 4. In this section, we use uniform arrangement of particles to represent a flat
surface. The particle spacing is set to 10 m, and time spacing is 1 ms. The total calculation time is 3.5 s. Eight receivers are set at 0.1 km
depth at equal distances from compressional source from 1.0 to 3.8 km. The time history of the source is the first derivative of a Gaussian
with a central frequency of 4 Hz.

We studied two models A and B of an elastic homogeneous and isotropic medium. Model A has a P-wave velocity of ¥, = 2611ms™!,
an S-wave velocity of Vg = 1846 ms~!, and a mass density of p = 2200kgm—3. On the other hand, model B has a P-wave velocity of

! and a mass density of p = 2200 kgm~>. Models A and B have Poisson ratios of

V, =4522m s~!, an S-wave velocity of Vg = 1846 ms™
0.0 and 0.4, respectively. In our model, the higher frequency of the Gaussian is about 11 Hz, so that about 15 particles will be needed for the
minimum wavelength for particles of 10 m.
As described earlier, the solution of HPM depends on the radius of the influence domain. We study the effect of the influence domain
using three different values of «: 1.9, 2.1 and 2.3. The number of particles inside each influence domain is 8, 12 and 20 for these values of «.
We use analytical solution of Lamb’s problem as a reference to compare analytical and numerical solutions, and we compute the misfit
by
Misfit = ) ("™ (1) — S** 0)/ DSy, (22)
t t
where STPM(¢) is the HPM seismogram and SREF(¢) is the referential seismogram. The misfit is calculated over the whole seismogram.
Fig. 5 shows the displacement seismograms at receivers located in the horizontal and vertical directions for model A and B with different
influence domains. Solid and dashed lines are analytical and numerical seismograms, respectively. The dotted line represents the difference

1.0km 7 x 0.4km

> <
< > < >

free surface

.1k
Mmle 56000000

@ source

Q receiver

Figure 4. Geometry of the source and receivers in an elastic half-space.
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Figure 5. (a) Horizontal displacement at the receivers for model A with the coefficient of 1.9. (b) Horizontal displacement at the receivers for model A with
the coefficient of 2.1. (¢) Horizontal displacement at the receivers for model A with the coefficient of 2.3. (d) Vertical displacement at the receivers for model A
with the coefficient of 1.9. (e) Vertical displacement at the receivers for model A with the coefficient of 2.1. (f) Vertical displacement at the receivers for model
A with the coefficient of 2.3. (g) Horizontal displacement at the receivers for model B with the coefficient of 1.9. (h) Horizontal displacement at the receivers
for model B with the coefficient of 2.1. (i) Horizontal displacement at the receivers for model B with the coefficient of 2.3. (j) Vertical displacement at the
receivers for model B with the coefficient of 1.9. (k) Vertical displacement at the receivers for model B with the coefficient of 2.1. (1) Vertical displacement at
the receivers for model B with the coefficient of 2.3.
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@ source

O receivers

200m

Figure 6. The local and arbitrary refinement of spatial resolution. The refinement is conducted just by dividing particles.

between the seismograms but the amplitude is amplified by a factor of 5. The amplitudes of all seismograms are normalized. For both models,
the smaller radius of the influence domain produces smaller errors. This indicates that the influence domain with compact support is better
than that with a broad one. The accuracy of HPM depends on the linearity of the deformation inside the influence domain because the
deformation gradient tensor is approximated by eq. (6). This will cause larger misfits in larger influence domains. It is good that the smaller
domain has better accuracy, because the calculation costs can be reduced. We will use the coefficient of 1.9 in the following sections.

We also conduct finite difference simulations with fourth-order staggered-grid the same configuration of Fig. 4. We use 10, 20, 25 and
50 m for the grid spacing Ax. For grid 10, 20 and 25 m, the results from FDM are good agreement with the analytical solutions. The misfits
of FD simulations for 25 m are less than half of those from HPM in case of a grid of 10 m. For a grid of 50 m, dispersion becomes very large,
and we observe a significant increase in the misfits. This shows that the HPM is more dispersive than FDM with forth-order staggered-grid if
we use same grid or particle spacing.

We, next, apply a local refinement of the particle only near the ground surface as shown in Fig. 6. Refinement is conducted just by
dividing one particle into four particles. At the interface between two particles indicated by an arrow in Fig. 6, special treatment as in FDM
(Aoi & Fujiwara 1999) is not needed in HPM. So the refinement is implemented very easily. Source and receiver particles are not refined
to keep the same relative positions between source, receivers and free surface. The irregular refinement shown in Fig. 6 is also easy to
implement in HPM. Note that the time spacing should be changed depending on the minimum particle spacing for stable calculations. Again,
the coefficient « in eq. (3) is set to 1.9.

Fig. 7 shows the seismograms of the displacement at the receivers in the horizontal and vertical direction for model A and B, and
the misfits calculated by eq. (22). The local refinement of particles improves the accuracy. These results show that we can refine the spatial
resolution using irregular grids and local refinement of the number of particles. This technique provides effective improvement of the accuracy
in a simple and easy manner.

4.2 Introduction of a double—couple source in HPM

The earthquake double—couple source can be represented in HPM by a distribution of body-force couples centred at a certain particle location.
Let the x’ direction be defined as the direction along the plane of dislocation and let the y" and z’ direction be directions perpendicular to x'.

The particle located at the source location is defined as particle ‘i’. First, we have to decide to which particles body forces are to generate
the moment M. Here, we use particles in the influence domain of particle ‘i’. Next, we split the neighbouring particles in two parts along
the plane of the shear fault (upper and lower parts) and calculate the length of the arm of each particle ‘4;’. The upper and lower particles are
loaded by a body-forces directed in opposite directions and contribute to generate the required moment . Here, the following strength of
the body-force is added to each particle ;.

Sfvr; (8) = h; M, (¢) /H (upper part) (23)
S (t) = —h,; My (t) / H (lower part) (24)

h2

H=Y". (25)
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Figure 7. (a) Horizontal displacement at the receivers for model A with a coefficient of & 1.9 after the refinement. (b) Vertical displacement at the receivers
for model A with a coefficient of o 1.9 after the refinement. (c¢) Horizontal displacement at the receivers for model B with a coefficient of o 1.9 after the

refinement. (d) Vertical displacement at the receivers for model B with a coefficient of « 1.9 after the refinement.

The moment, which acts in the opposite direction, can be considered in a similar fashion. This concept can be expanded to 3-D problems
easily though this paper covers only 2-D problems.

We calculate the seismic response for a fundamental point source to demonstrate the effectiveness of our source description in HPM by
comparing with the results from FDM. Fig. 8(a) shows a test model for seismic wave propagation in a 2-D full-space. The model is discretized

10km

A

10km

O receiver

(@

@ source

Q

5

®
wysoxXy

®)

©

Figure 8. (a) Schematic model for the test of double—couple source description. (b) The snapshots of the velocity field in the vertical direction after 1.3 s

calculated by HPM. (c) The snapshots of the velocity field in the vertical direction after 1.3 s calculated by FDM.
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Figure 9. The seismogram of displacement in the horizontal direction.

by 1001 x 1001 particles and grids in HPM and FDM, respectively. The model is assumed to be a homogeneous medium and has a P-wave
velocity of ¥, = 4000ms~', S-wave velocity of Vs = 2310ms~', and mass density of p = 2700kgm™>. The particle distance Ax and
time spacing At are 10 m and 1 ms, respectively. The coefficient of the radius of the influence domain is set to 1.9. The source time function
is a Ricker wavelet with a central frequency of 4 Hz. The double couple source is located in centre of the model. The direction of shear
dislocation is set to be horizontal, and the maximum displacement is 0.01 m. Eight receivers are located along a vertical and a diagonal line
the numbering of each receiver is as shown in Fig. 8(a).

Figs 8(b) and (c) show the snapshots of the displacement velocity field in the vertical direction calculated with HPM and FDM after
1.3 s. The earthquake source description in FDM is based on that of Graves (1996). The results of both methods show the four-quadrant
distribution of the displacement velocity field and the result from HPM is in good agreement with that from FDM. Fig. 9 shows the time
histories of the displacement field at receiver points in the horizontal direction calculated by HPM and FDM. The differences between the
two simulations amplified by a factor 10 and the misfit calculated by eq. (22) are also shown in the same figure. In the receivers close to the
double—couple source (No.1 and 5), the misfits are larger than those observed at far receivers. This is caused by the difference in the definition
of the source. However, the misfits are less than 0.1 per cent in each receiver. Since FDM is widely used and has been shown to reproduce
seismic wavefield accurately, these results indicate that HPM can reproduce the seismic wavefield generated by a double—couple earthquake
source with sufficient accuracy.

4.3 Arbitrary surface topography

It is very important for earthquake disaster prediction and mitigation to simulate the propagation of surface waves, which propagate at shallow
depths and possess considerable energy. In HPM, the traction-free boundary condition can be implemented by ignoring the influence of the
outer surrounding particles by assuming that the density of the surrounding continuum is very small compared to that of the interior continuum
(Suzuki et al. 2007; Suzuki & Koshizuka 2008). Since the outer continuum is the air in the usual simulations of seismic ground motion, the
traction-free boundary condition can be implemented easily. We use the alignment method shown in Fig. 2(b) as the particle arrangement
strategy. In this paper, we deal with only two-dimensional problems; however this feature of HPM works well especially in 3-D analyses.

We conduct a numerical simulation of surface wave propagation on the model shown in Fig. 10, to test the effectiveness of HPM to
simulate a free surface. The simulation based on FEM with four-node rectangular elements is used as a reference. The model has a P-wave
velocity of 4000ms~!, and an S-wave velocity of 2310 m s™!, and a mass density of p = 2700 kgm . The particle distance Ax, time spacing
At and the source time function are the same as that of Section 4.2. The receivers are located on the free surface.

Figs 10(b)—(e) show the snapshots of the results of seismic wave propagation after 2.0, 2.5, 3.0 and 3.5 s. It can be seen that the body
waves and the surface wave run up the smooth slope. The waves are reproduced smoothly near the free surface. Fig. 11 shows the time
histories of the displacement in the vertical direction at the receiver points. FE solutions, differences between HPM and FEM amplified by a
factor 5, and the misfits calculated by eq. (22) are also shown in the figure. The seismograms simulated by HPM are in very good agreement
with those from FEM. The misfit at the farthest receiver is less than 1 per cent.

4.4 Calculation costs

It is important to compare the calculation costs of HPM with those of other methods. In this section, we compare the calculation costs in
terms of memory and computation time between HPM and FDM for the model of Section 4.2. The comparison with FEM can be analogized
by the comparison between FEM and FDM in the literatures (e.g. Koketsu ez al. 2004). The number of particles, time spacing, total time,
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Figure 10. (a) Geometry of the numerical model with an arbitrary free surface. (b) The snapshots of the displacement velocity field in the vertical direction
after 2.0 s. (c) The snapshots of the displacement velocity field in the vertical direction after 2.5 s. (d) The snapshots of the displacement velocity field in the
vertical direction after 3.0 s. (e) The snapshots of the displacement velocity field in the vertical direction after 3.5 s.
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Figure 11. (a) The seismogram of displacement in the vertical direction at the receiver 1. (b) The seismogram of displacement in the vertical direction at the
receiver 2. (c¢) The seismogram of displacement in the vertical direction at the receiver 3.

Table 1. The comparison between the calculation
costs of HPM and those of FDM.

Time (ms) Memory (Byte)
HPM 2282458 533 442 560
FDM 726 630 131432 448

particle spacing are the same as in Section 4.2. The calculation costs depend on the number of particles in the influence domain. As in the
previous simulations, the coefficient of the influence domain is set to 1.9.

Table 1 shows the result of the comparison of calculation costs with FDM. The calculation time and computational memory of HPM
are about triple and quadruple as much as those of FDM, respectively. Furthermore, the results in Section 4.1 showed that HPM is more
dispersive than FDM. If we obtain same accuracy as FDM, HPM needs less than half the particle spacing. From these results, it appears
that FDM has an advantage over HPM in the calculation costs because of the geometric regularity of the grids. In HPM, we need additional
calculations and storage areas for the grid- or mesh-free calculations such as the weighting function between particles. Conversely, this enables
us to operate irregular arrangement and refinement of particles. So, the data preparation time in pre-process will diminish using HPM. If
we simulate seismic wave propagation in a simple model without topography and velocity contrasts, FDM will be more efficient due to its
simpler calculations. However, if we need to consider topography like a mountain and velocity contrasts like in a sedimentary basin structure
for the prediction of ground motion, HPM has a clear advantage over FDM. Though it is difficult to make an easy comparison, we consider
that HPM can compete against other methods and has large potential.

5 CONCLUSIONS

In this study, we implemented HPM to simulate seismic wave propagation. We first investigated the dispersion properties of HPM through
a plane wave analysis. We, next, conducted surface wave propagation simulations to test HPM by comparing with analytical solutions. The
results show good agreement with the analytical ones and the irregular and local refinement of particles successfully improved the accuracy.
Furthermore, we included an earthquake source in HPM as initial conditions and calculated the seismic response for a fundamental double
couple point source. We compared the results from HPM with those from fourth-order staggered grid FDM. Results from our numerical
simulations showed good agreement with those from FDM. Finally, we calculated the surface wave propagation at a free surface with arbitrary
topography to demonstrate the advantage of HPM. Our simulation results showed accurate surface wave propagation on the complex ground
surface.

The advantages of HPM are the simplicity and flexibility to create numerical models containing arbitrary topography shapes and the
simplicity of its data structure. Furthermore, refinement of spatial resolution is possible in a simple manner because of the ability to use
different particle sizes. These will provide us with easy and simple procedure to obtain desirable accuracy. Our results suggest that the method
can be an alternative to existing numerical simulators of seismic wave propagation.
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