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This study aims to develop a three-dimensional (3D) numerical analysis code for the prediction of driftage
behavior during a tsunami. The main features of this code are as follows: (1) it can simulate the six degree-of-
freedom motion of driftage in a 3D flow field; (2) it can consider the interaction between fluid flow and driftage
motion; and (3) it can compute the impact of the collision with a wall based on the Lagrangian equation of
impulsive motion. In this code, we assume that the fluid pressure and viscosity cause driftage motion and that
driftage motion affects fluid flow through deformation of the boundary between the fluid and itself. The code
was applied to a hydraulic experiment carried out by subjecting a wooden body to an abrupt flow of water. The
obtained numerical solution of driftage motion agreed well with the experimental result. It is concluded that our
code can be used to successfully predict the behavior of driftage carried by a tsunami.
Key words: Three-dimensional numerical analysis, tsunami, driftage, six degree-of-freedom motion.

1. Introduction
During the Indian Ocean Tsunami in 2004, rubble, cars,

etc., drifted toward coastal areas with the receding waves
and destroyed buildings and structures. Rubble from de-
stroyed structures was also adrift, causing increased dam-
age. To reduce such damage, it is essential to predict the be-
havior and collision force of tsunami driftage. Ushijima et
al. (2006) and Kawasaki et al. (2006) proposed methods for
the three-dimensional (3D) simulation of tsunami driftage.
These methods can simulate driftage behavior accurately by
treating the driftage as a fluid; however, they also have to
simulate the air flow. In this study, we have developed a
numerical method that does not require the simulation of
the air flow to predict the driftage behavior across a wide
coastal area. Yoneyama et al. (2002) performed a numeri-
cal analysis of the locally high run-up caused by the 1993
Hokkaido-Nansei-Oki seismic tsunami. The wave height
calculated by them agreed well with the actual wave height.
We believe that the driftage behavior can be simulated with
a high degree of accuracy by appending a driftage simula-
tion function to their fluid analysis code. We had devel-
oped a vertical two-dimensional (2D) analysis code based
on this method, and had verified its validity (Nagashima et
al., 2008). In this study, we developed a new 3D numerical
analysis code that can simulate the six degree-of-freedom
motion of driftage. We verified the validity of this code by
comparing the obtained results with a numerical result and
with the results of hydraulics model test.
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2. Numerical Analysis Method
Our method treats the driftage as a rigid body that is set

in motion by the gravitational and fluid forces; these forces
are determined by a fluid analysis (see Fig. 1). Meanwhile,
the fluid analysis treats the driftage as a moving boundary
that is expressed in terms of the porosity ratio of the com-
putational cell γ v and the aperture ratio of the cell surface
γ a (see Fig. 2).

The movement of driftage causes a change in the porosity
ratio and in the aperture ratio of the computational cell. This
change affects the fluid flow; this effect can be expressed by
the following continuity equation.
2.1 Basic equations for fluid flow

The basic equations of fluid flow are shown below.
• Continuity equation

∂γ v

∂t
+ ∂γ a

j u j

∂x j
= 0 (1)

• Motion equation (i = 1, 2, 3)
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• Advection equation of fluid

∂γ v F

∂t
+ ∂γ a

j Fu j

∂x j
= 0 (3)

where ui is the component of flow velocity; gi , the compo-
nent of the external force per unit volume (vector represen-
tation is g); p, the pressure; ρ, the density of the fluid; ν, the
dynamic viscosity; F , the fluid-filling ratio of the void in a
cell; ¯ , the Reynolds averaging quantity; and ′, the fluctu-
ation in the Reynolds averaging quantity. We also used the
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Fig. 1. Drift motion.

Fig. 2. Drift treatment.

following k-ε model of turbulent flow to calculate Reynolds
stress −u′
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where k(≡u′
i u

′
i/2) is the turbulent energy, ε(≡νu′

i, j u
′
i, j ) is

the turbulent energy dissipation, and δi j is the Kronecker
delta. The constant numbers in Eqs. (4), (5), and (6) are
σk = 1.0, σε = 1.3, Cε1 = 1.45, Cε2 = 1.92, Cµ = 0.09.

Our method is based on the SIMPLE method (Patankar
and Spalding, 1972); we use discretized equations (Eqs. (1),
(2), and (3)) on the Cartesian coordinate system to represent

Fig. 3. Coordinate system for fluid flow and drift rotation.

Fig. 4. Segment and segment surface in a cell.

fluid flow. The definition points of the flow velocity and the
others were at the center of the boundary phase between
the cells and at the centers of the cells, respectively. The
discretizations of time, advective term, and others yielded
the forward difference, third-order upwind difference, and
centered difference, respectively. Moreover, we discretized
Eq. (3) using the volume of fluid (VOF) method (Hirt et al.,
1981). We also devised a few countermeasures to conserve
fluid volume (Yoneyama, 1998).
2.2 Basic equations of driftage motion

The driftage motion calculation is based on rigid motion
analysis. In addition to the Cartesian coordinate system
used in fluid analysis, an inertia principal-axis coordinate
system is used for the analysis of driftage motion. The
coordinate system moves with a driftage, and its origin is
the centroid (gravity center) of the driftage (see Fig. 3).

In this paper, the driftage contained in each calculation
cell is called a “segment,” and the surface of the driftage
contained in each cell is called the “segment surface” (see
Fig. 4). The basic equations of rigid motion are as follows.
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(a) In case of internal cell (b) In case of surface cell

Fig. 5. Pressure calculation.

• Equation of motion of the driftage centroid

m
dvg

dt
= mg +

∑
k

Fpr
k +

∑
k

Fvis
k (7)

• Equation of rotational motion about the driftage centroid

I dωωωωωωωω

dt
+ ωωωωωωωω × Iωωωωωωωω =

∑
k

{̃
rsk × (

Fpr
k + Fvis

k

)}
(8)

where m is the mass of the driftage, vg is the driftage cen-
troid velocity vector, and Fpr

k and Fvis
k are the vectors of the

fluid pressure and viscous force, respectively, acting on the
segment surface. ωωωωωωωω is an angular velocity vector on the in-
ertia principal-axis coordinate system. I is an inertia tensor
that consists of the inertia moment of driftage. r̃sk is the
position vector of the centroid of a segment surface on the
inertia principal-axis coordinate system.
2.3 Algorithm of fluid force that acts on driftage

2.3.1 Pressure Fpr As shown in Eq. (9), the pressure
that acts on a “segment surface” Ppr is estimated by using
the cell pressure Pc (see Fig. 5).

Ppr = Pc − ρgh = Pc − ρg (rs − rc)z (9)

where h is the vertical interval between the centroid of a
segment surface and the cell center; rs, the position vector
of the centroid of a segment; and rc, the position vector of
the cell center. In this estimation, a hydrostatic pressure
is assumed to be acting between the centroid of a segment
surface and the cell center. Therefore, the fluid pressure
acting on a segment surface is expressed by

Fpr = PprS (−n) . (10)

where S is the area of a segment surface and n, the normal
vector of the surface. In case of a cell including a water
surface, a centroid and an area of the submerged part of the
segment surface are used for estimation (see Fig. 5(b)).

2.3.2 Viscous force Fvis If U(r) is a velocity vector
at a position r, then the component of the velocity vector
parallel to a segment surface Up is expressed as follows.

Up = U − (n · U) n (11)

Fig. 6. Viscosity calculation.

If rs is the centroid of a segment surface, then the shear
stress on the surface, ττττττττ(rs) is expressed as follows (see
Fig. 6).

ττττττττ(rs) = µ
∂Up

∂η

∣∣∣∣
r=rs

(12)

where µ is the viscosity coefficient of the fluid and η, a
coordinate axis with origin rs that is directed along a normal
vector n.

Thus, the viscosity force acting on a segment surface Fvis

can be expressed as

Fvis = ττττττττ(rs) S = µS
∂Up

∂η

∣∣∣∣
r=rs

. (13)

2.4 Calculation related to collision
When the collision is predicted to occur before the fol-

lowing calculation step (between t and (t +�t)), the motion
of the driftage is calculated as follows.

i) Calculate the velocity of the driftage centroid, vg , and
the angular velocity of the inertia principal-axis, ωωωωωωωω,
using the basic equations of driftage motion.
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Fig. 7. Experimental apparatus used in Case 1.

ii) Calculate the time of the collision occurrence (t +
�tcol) and the position vector of the collision point on
the inertia principal-axis rcol using vg and ωωωωωωωω.

iii) Calculate the velocity of the driftage centroid vg
′ and

the angular velocity of the inertia principal-axis ωωωωωωωω′

immediately after collision using the following equa-
tions.

vg
′ = vg + J

m
ncol (14)

ωωωωωωωω′ = ωωωωωωωω + I−1 (rcol × Jncol) (15)

where ncol is the normal vector of the collision surface
(wall, bed etc); and J , the impulse force, given by the
following expression.

J = −(e + 1)
(
vg

′ + ωωωωωωωω′ × rcol
) · ncol

1/m + {[
I−1 (rcol × ncol)

] × rcol
} · ncol

(16)

where e is the reflection coefficient.
iv) Calculate the position of driftage centroid Xg and rota-

tion angle of inertia principal-axis θg at time of t + �t
by using vg , ωωωωωωωω, vg

′ and ωωωωωωωω′.

In this procedure, Fpr and Fvis is not changed before and
after the collision. Equations (14) and (15) are derived from
the Lagrangian equation of impulsive motion, which was
applied the Newton’s hypothesis.
2.5 Calculation procedure

The calculation procedure is as follows:

i) Read the input data.
ii) Set the boundary condition for flow velocity un

i and
pressure pn at time t .

iii) Calculate the turbulence energy kn+1, the turbulent en-
ergy dissipation εn+1 , and the eddy viscosity νn+1

t at
time t + �t .

iv) Calculate the flow velocity un+1
i at time t + �t using

the discretized form of Eq. (2).

v) Calculate the position and rotation angles of the drif-
tage, Xn+1

gi
and θn+1

g , respectively, at time t +�t using
the discretized forms of Eqs. (8) and (9).

vi) Calculate the void ratio and aperture ratio, γ vn+1 and
γ an+1

i , respectively, at time t + �t .
vii) Calculate the error in the continuity equation D using

the discretized form of Eq. (1). If D exceeds the limit
Dmax, then correct the pressure pn+1 on the basis of
the solution of the pressure error equation and return
to step iv). If not, then proceed to step viii).

viii) Calculate the fluid-filling ratio Fn+1 at time t + �t .
ix) If it is time to stop, then stop the calculation. If not,

increase the time and return to step ii).

3. Application and Discussion
3.1 Case 1: driftage in sea

Ikeno et al. (2001) conducted a hydraulic experiment to
determine the collision force of an object with a simple ge-
ometry drifted by a tsunami; they proposed a formula to de-
termine the approximate collision force. Their experimental
apparatus is shown in Fig. 7. The model scale is 1/100. The
gate was quickly opened, water from the reservoir flowed
toward the wall, and the object drifted. The driftage in this
case is a wooden object and its specific gravity is 0.5. One
side of the experimental flume is made of clear glass and
the motion of the driftage was recorded from the glass side
using a high-resolution video camera.

The experimental conditions for calculations using our
method were as follows: Water levels were H1 = 40 cm,
H2 = 5 cm. The driftage was a cylinder with a diameter
of 8 cm and a height of 20 cm. The initial position of the
centroid of this object was Y = 8.95 m. The computation
conditions are as follows: The grid spacing is 6.5 cm along
the direction across the flow, 6 cm along the flow direc-
tion, and 3 cm in the vertical direction. The computational
time interval �t is 1.0 × 10−3 s, The maximum permis-
sible error of the continuity equation Dmax is 1.0 × 10−5,
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Fig. 8. Comparison of the trajectory patterns of the driftage obtained in Case 1.

(a) t = 0.00 s

(b) t = 1.51 s (c) t = 2.01 s

(d) t = 2.23 s (e) t = 3.01 s

Fig. 9. Examples of computation results in Case 1.
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Fig. 10. Experimental apparatus used in Case 2.

fluid density ρ is 1.0 × 103 kg/m3, kinematic viscosity ν

is 1.0 × 10−6 m2/s, density of the driftage ρd is 0.5 × 103

kg/m3, and the reflection coefficient between the driftage
and vertical wall e is 0.5. For computational purposes, the
cylindrical driftage was modeled as an octagonal pillar with
cross-sectional area and volume equal to that of the actual
cylinder (driftage).

Figure 8 shows the results of a comparison between the
vertical 2D trajectory of the driftage obtained by the compu-
tation and that obtained in the experiment. In this figure, the
trajectories of the centroid of the front-end face (land side)
and the rear-end face (sea side) of the driftage are compared.
The circles denote the location of the centroid of the front-
and rear-end face of the driftage after every 0.5 s from the
start of its motion. “×” indicates the location where the
driftage collided with the vertical wall.

Figure 9 shows examples of the simulation results. The
time shown in this figure indicates the time elapsed since
the start of the experiment.

As shown in Fig. 8, the computed driftage trajectory,
time variation of the position, and point of collision are
in good agreement with the corresponding experimental re-
sults. Therefore, we concluded that our code can success-
fully predict the behavior of driftage in the sea.
3.2 Case 2: driftage on land

Ikeno and Tanaka (2003) conducted another hydraulic
experiment to determine the behavior of driftage on land.
The experimental apparatus is shown in Fig. 10. This ap-
paratus is the same as that in Case 1 with the exception of
a 10-cm-high ground segment in the front of the vertical
wall. The driftage is a square pillar with side 4.5 cm and
height 89 cm. The initial position of the driftage centroid
is Y = 9.02 m. The other experimental and computational
conditions are the same as those in Case 1. In the analysis,
the bottom surface of the driftage is raised by 0.005 m from
the surface of the ground segment. This was done so that
the water flowing through the 0.005-m gap would exert an

upward force on the driftage.
Figure 11 shows the results of a comparison between

the vertical 2D trajectory of the driftage obtained by the
computation and that obtained in the experiment. In this
figure, the trajectories of the driftage centroid are compared.
The circles and the “×” carry the same meaning as in Fig. 8.

Figure 12 shows examples of the simulation results.
As shown in Fig. 11, the computed trajectory elevation

of the driftage between the initial position and the vertical
wall was higher than the experimental result. Therefore, the
collisions that occurred at low elevations in the experiment
did not show in the computation results. This difference
might be caused by the initial gap between the driftage
and the ground surface. In future works, it is necessary to
understand the mechanism of initial movement and to find
a suitable initial condition.

However, in general, the computed drifting behavior
agrees well with the experimental results despite the initial
movement problem. Therefore, we concluded that our code
can successfully predict the behavior of driftage on land.

4. Conclusion
The results of our research are summarized as follows:

• A numerical analysis code has been developed to pre-
dict the behavior of driftage carried by a tsunami. The
main features of the code are as follows.

– It can simulate driftage motion with six degrees-
of-freedom in a 3D flow field.

– It can consider the interaction between a fluid
flow and a driftage motion.

– It can determine the impact of the collision of
driftage with a wall on the basis of the La-
grangian equation of impulsive motion.

• To verify the validity of the code, the obtained compu-
tational results were compared with the results of two
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Fig. 11. Comparison of the trajectory patterns of the driftage obtained in Case 2.

(a) t = 0.00 s

(b) t = 1.51 s (c) t = 2.04 s

(d) t = 2.50 s (e) t = 3.01 s

Fig. 12. Examples of computation results obtained in Case 2.
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hydraulic experiments. The behavior of driftage and
the time variation of its position as calculated using
our code were in good agreement with the experimen-
tal results.

• It can be concluded that our code can be used to suc-
cessfully predict the behavior of driftage carried by a
tsunami.

In the future, the code will be applied to various drifting
motions and it will be improved such that it can be used
to simultaneously predict the behavior of several drifting
objects. Furthermore, a method will be developed to de-
termine the collision force; this was not discussed in this
paper.
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