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1. Introduction

Diffuse-porous wood shows a less distinct variation in 

vessel diameter than ring-porous wood does. While ring-

porous trees produce obviously large-diameter vessels in 

their initial period of annual growth, diffuse-porous trees 

produce vessels of similar size throughout a ring. 

However, on close examination, a variation in vessel 

diameter characterized by a decrease in the terminal 

period of annual growth can be found in diffuse-porous 

woods in temperate regions (Sass and Eckstein 1995, 

Schume et al. 2004). We also found annual cyclicity in 

vessel diameter, even in seasonal tropical climates 

(Ohashi et al. 2009a, 2009b) and humid tropical climates 

with less seasonality (Ohashi et al . 2011). These 

obser vations indicate that dif fuse-porous nature is 

primarily regulated by internal factors, but it can also be 

influenced by external factors.

Since most tropical trees lack distinct annual rings, the 

variation of vessel diameter is a useful indicator for 

detecting annual rings. However, factors that trigger this 

variation are not fully understood because research 
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focusing on the variation of vessel diameter in a diffuse-

porous wood is scarce. Understanding such factors is 

important for the validation and improvement of annual 

ring detection methods for tropical trees. Additionally, 

revealing the factors and timing that contribute to vessel 

variation is helpful in understanding the phenology and 

water relations of trees because vessels transport water 

and vessel diameters determine potential hydraulic 

conductivity.

Water status is one of the factors that af fect vessel 

diameter. Since turgor pressure is a driving force for cell 

enlargement (Ray et al. 1972) and the subsequent process 

is extension with water uptake, less water availability 

would result in the formation of smaller sized vessels. 

Doley and Leyton (1968) found that even a slight 

reduction of water potential in Fraxinus had a depressing 

effect on cell division and expansion. In addition, water-

control experiments have shown that low water 

availability causes a reduction in vessel diameter and a 

simultaneous increase in vessel density (Schume et al. 

2004, Searson et al. 2004, Stevenson and Mauseth 2004, 
Arend and Fromm 2007, Fichot et al. 2009). Since these 

changes increase conductive safety (Mauseth and 

Stevenson 2004), it is reasonable to consider these 

changes as reactions that decrease embolism risk. Thus, 

tree water status is related to turgor maintenance and 

conductive safety, both of which affect vessel diameter.

Another factor affecting vessel characteristics is the 

status of phytohormones such as indole-3-acetic acid 

(IAA), which induces vessel differentiation (Digby and 

Wareing 1966, Zakrzewski 1983). Since IAA is mainly 

produced by young leaves (Hess and Sachs 1972), 

f lushing and maturing of leaves causes seasonal 

variations in IAA concentration and results in the 

variation of vessel diameter. However, studies have shown 

contrasting results on the ef fect of IAA on vessel 

formation. While some studies show that higher IAA 

concentrations induce the production of wider vessels 

(Digby and Wareing 1966, Doley and Leyton 1968), others 

show that higher IAA concentrations induce the 

production of narrower vessels (Aloni and Zimmermann 

1983, Tuominen et al. 1997). In addition, Zakrzewski 

(1991) found that there is an optimal IAA concentration 

for inducing the production of wide vessels, and 

concentrations higher or lower than the optimal 

concentration result in narrower vessel diameters. Thus, 

it seems difficult to formulate a hypothesis on the effect 

of phytohormones on seasonal variation of vessel 

diameter, but leaf phenology and shoot elongation could 

be factors af fecting the seasonal variation of vessel 

diameters through phytohormone production. 

In this study, we aimed to investigate the factors that 

cause periodic variations of vessel size in diffuse-porous 

species. Although our f inal goal is to reveal the 

contributing factors in tropical areas, temperate trees 

were selected in the case study because they experience 

distinct seasons and have clear annual rings. Since Sass 

and Eckstein (1995) pointed out the influence of rainfall 

amount on the variation of vessel lumen size, we focused 

especially on tree water status variation. Sass and 

Eckstein (1995) have also indicated that phytohormone 

concentration and leaf and shoot elongation influence 

vessel size, and hence, we also considered these factors. 

In this study, our objectives were to (1) investigate 

seasonal variation of vessel size in diffuse-porous woods, 

(2) examine whether species-specific variation is 

obser ved, and (3) investigate how tree water status 

affects vessel size.

2. Materials and methods

2.1. Research site and sample selection
Research was conducted at the Yoshida North Campus 

of Kyoto University (Kyoto, Japan, 35°01′N, 135°47′E). 

The site has a temperate humid climate with high 

precipitation, more than 100 mm per month from March 

to October and more than 200 mm per month in June, 

July, and September. The weather in 2009, when the 

research was carried out, was characterized by very high 

precipitation (more than 300 mm) in July and low 

precipitation (around 50 mm) in September (Fig. 1).

Cercidiphyllum japonicum (CJ), Liriodendron tulipifera 

(LT), and Quercus glauca (QG) planted for ornamental 

purposes were chosen for this study. C. japonicum and Q. 

glauca are indigenous species widely distributed in 

natural forests of Japan, whereas L. tulipifera is an 

introduced species from North America. C. japonicum 

and L. tulipifera are deciduous trees and Q. glauca is an 

evergreen tree. Vessel porosity of all species is diffuse-

porous, and vessel ar rangement of Q . glauca , in 

particular, is usually described as radial-porous (Fig. 2). 

All species have distinct annual rings, which are 
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demarcated by bands of flattened wood fibers in the 

terminal part of a ring for C. japonicum and Q. glauca and 

by bands of axial parenchyma for L. tulipifera. Formation 

of reaction wood, which affects vessel size and number, 

was examined by checking the G-layer of wood fibers 

under a microscope. Reaction wood was not observed in 

this study.

Three trees for each species were selected for this 

study. Core samples were collected from breast height 

with an increment borer (5 mm in diameter) about every 

4 weeks from late May to late September of 2009 to 

estimate periodical growth during each sampling period. 

Sampling positions were selected to be ver tically or 

horizontally 2–3 cm apart from the first sampling site. In 

the last sampling, the cores that were used for vessel 

analysis were collected from approximately 5 cm below 

the fifth sampling site to reduce the influence of wound 

reactions caused by the previous samplings. 

2.2. Vessel analysis
Cross sections of each sample were cut using a sliding 

microtome and stained with safranine. The sections were 

scanned at 4000 dpi resolution to digitize the image by 

using POLASCAN 4000 (Polaroid Corp., Waltham, MA, 

USA). Images of vessels that were broken during 

sectioning were restored, and color of the whole image 

was binarized using Adobe Photoshop 5.5 (Adobe 

Systems, San Jose, CA, USA). The lumen area and the 

distance between the cambium and the centroid of each 

vessel were measured using Image J (National Institutes 

of Health, Bethesda, MD, USA). 

Mean vessel lumen area (MVLA) and vessel frequency 

(VF) were calculated at 0.2-mm intervals along the radius 

to examine radial variation. Tangential length of the 

analysis area was determined on the basis of the mean 

vessel frequency of each species as follows: 0.4 mm for C. 

japonicum (225 mm－2), 1.0 mm for L. tulipifera (76 mm－

2), and 2.5–3.0 mm for Q. glauca (5 mm－2). The vessels 

around the edge of the analysis area were excluded if 

their centroids were outside of the area. Weighted moving 

average (WMA) was applied to reduce the noise and 

smooth out radial variations. The number of points (filter 

length) used for the smoothing was dif ferent among 

samples because the optimum number depends on the 

annual growth width. In our previous paper (Ohashi et al. 

2011), we have suggested that the optimum filter length 

for the detection of annual variation is approximately 50% 

of the annual growth width. The filter length, however, 

seemed to be a little too long for detecting the variations 

in one growing season. We, therefore, tested the filter 

length of 25% of annual growth width.

2.3. Estimation of tree water status
Leaf water potential (ψleaf) of each tree was measured 

using a pressure chamber (PC–40; Daiki Rika Kogyo Co., 

Saitama, Japan) every week from May 27 to September 

30, 2009. Predawn ψleaf was measured within 1 h of dawn 

to estimate the water availability of the trees, and midday 
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Fig. 1 Mean monthly precipitation (bar) and mean monthly 

temperature (line) in Kyoto city in 2009. Data were provided by 

Japan Meteorological Agency (http://www.jma.go.jp).

Fig. 2 Cross section from each species. Each arrow points to a 

distinct annual ring boundary. CJ: Cercidiphyllum japonicum; LT: 

Liriodendron tulipifera; QG: Quercus glauca.
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ψleaf was measured between 1:00 PM and 2:00 PM to 

estimate the intensity of drought stress during the 

daytime. 

Since there was a strong negative correlation between 

the midday ψleaf and midday vapor pressure deficit (VPD) 

of atmosphere in all species (r = －0.849 to －0.720, P < 

0.001), the midday ψleaf on all days during the research 

period was estimated from VPD and smoothed with a 

15-point WMA to emphasize the seasonal variation.

3. Results and discussion

3.1. Cercidiphyllum japonicum
MVLA of al l samples showed distinct seasonal 

variation, whereas VF did not show such a pattern (Fig. 

3). MVLA initially increased, but eventually decreased in 

late May. The rapid decrease in MVLA was most 

pronounced f rom la te May to la te June, wi th a 

simultaneous increase in VF. Since predawn ψleaf of C. 

japonicum in that period was lower than that of the other 

2 species, it seems that low water availability prompted 

the decrease in MVLA and the increase in VF. These 

simultaneous variations in MVLA and VF are similar to 

the reaction to reduce embolism risk, as indicated by 

Stevenson and Mauseth (2004). Moreover, after June, 

MVLA continued to decrease as well as the predawn ψleaf. 

Estimated midday ψleaf had a tendency to be low in late 

June and mid-August; similar tendency and values of ψleaf 

were also found in L. tulipifera and Q. glauca (Figs. 4 and 

5), because their midday ψleaf was estimated from VPD. 

Moreover, in these periods, MVLA decreased and VF 

increased. Thus, MVLA in C. japonicum is considered to 

be linked with water availability and drought stress at 

midday. 

3.2. Liriodendron tulipifera
MVLA in L. tulipifera sample 1 (LT1) increased initially 

then decreased in early July and continued to decrease 

until the end of the study period (Fig. 4). Since predawn 

ψleaf in LT1 was high for nearly the entire growth period, 

the variation of MVLA in LT1 was not caused by water 

availability. However, we cannot exclude the possibility 

that midday drought stress in late June triggered the 

MVLA decrease. Although the variation of MVLA in L. 

tulipifera sample 2 (LT2) was similar to that in LT1, water 

availability seemed to affect vessel formation in LT2. The 
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Fig. 3 Variation in mean vessel lumen area (MVLA), vessel 

frequency (VF) and leaf water potential in Cercidiphyllum 

japonicum (CJ). (a) MVLA and VF smoothed by 3-point weighted 

moving average (WMA) in CJ1, (b) CJ2, and (c) CJ3; (d) predawn 

leaf water potential of each sample; (e) estimated midday leaf 

water potential. The dotted lines in (a), (b), and (c) are estimated 

growth width between each sampling.



森林研究 78  2012 93

decrease in MVLA was slower in July, when predawn ψleaf 

recovered, and the decrease in MVLA was rapid in 

August, when predawn ψleaf decreased; these variations 

are attributable to changes in water availability. The 

decrease in MVLA started earlier (in June) in L. tulipifera 

sample 3 (LT3) than in LT1 and LT2, and predawn ψleaf 

was lower in LT3 than in LT1 and LT2. Consequently, 

there is a possibility that low water availability triggered 

the decrease in MVLA. The decrease in MVLA in LT3 
was slower in July; this also implies the effect of water 

availability; however, MVLA did not decrease when 

predawn ψleaf became low again in August. VF also did 

not show a common pattern in L. tulipifera; only the 

increases in the initial period were common but they 

would not be influenced by water availability. Therefore, 

overall trends of MVLA in L. tulipifera seem to be formed 

independently of water status, but the trends could be 

modified by water availability.

3.3. Quercus glauca
MVLA of all samples showed seasonal variation, 

decreasing toward the end of the ring, but it was more 

variable in Q. glauca than in the other 2 species (Fig. 5). 

Since predawn ψleaf was almost always high until late 

August and midday ψleaf also did not correlate with the 

decrease in MVLA or the increase in VF, the variations of 

both MVLA and VF were not affected by water status. 

Since Q . glauca is repor ted to be tolerant to dr y 

conditions (Yoshikawa et al. 1996), vessel formation was 

unlikely to be affected by the soil moisture conditions in 

the observation year. The variable pattern of MVLA may 

be caused by statistical errors. The low vessel frequency 

(range, 1 to 12 mm－2) and small sample size can produce 

statistical noise.

3.4. Factors affecting vessel size
We observed a general pattern of vessel size; it first 

increases then decreases after a period, except in the case 

of LT3. Sass and Eckstein (1995) have suggested that 

vessel formation at the beginning of cambial activity is 

mainly controlled by internal factors; therefore, the initial 

increase should not be affected by water availability. The 

timing of the decrease and the variation in shape pattern 

were similar within each species, except LT, but were 

different among species. This species-specific variation 

means that the seasonal variation of vessel size is 
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Fig. 4 Variations in mean vessel lumen area (MVLA), vessel 

frequency (VF) and leaf water potential in Liriodendron tulipifera 

(LT). (a) MVLA and VF smoothed by 3-point weighted moving 

average (WMA) in LT1, (b) smoothed by 5-point WMA in LT2 and 

(c) LT3; (d) predawn leaf water potential of each sample; (e) 

estimated midday leaf water potential. The dotted lines in (a), (b), 

and (c) are estimated growth width between each sampling. Predawn 

leaf water potential data of LT1 is lacking on and after September 16.
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genetically determined. Differences in shoot elongation 

patterns among species would promote species specificity 

because flushing and maturing of leaves causes changes 

in phytohormone concentrations (Hess and Sachs 1972). 

Leaf emergence in the 3 species is as follows. C . 

japonicum flushes 2 leaves on each spur, then continues 

adding leaves on the elongating shoots (heterophyllous 

subtype of the intermediate type described by Kikuzawa 

(1983)). L. tulipifera flushes leaves simultaneously and 

continues adding small leaves with elongating shoots 

(flush and succeeding subtype of the intermediate type 

described by Kikuzawa (1983)). Q. glauca flushes all the 

leaves at once (flush type described by Kikuzawa (1983)). 

The 2 former species continue adding leaves even in 

August, i.e., production of phytohormones is extended for 

some time. This observation seems consistent with the 

monotonous decrease in vessel size of Q. glauca, unlike in 

the other 2 species. The relationship between leafing 

phenology and vessel formation is one of the topics to be 

investigated in future studies. Low water availability 

would prompt vessel sizes to become smaller and vessel 

numbers to become larger, as seen in C. japonicum. 

However, intensity of the effect depends on sensitivity to 

environmental changes and plasticity of vessel formation, 

which also vary among species. In terms of sensitivity to 

water availability, C. japonicum was most sensitive, Q. 

glauca was least sensit ive, and L . tulipi fera had 

intermediate sensitivity. This observation is consistent 

with the riparian nature of C. japonicum (Kubo et al. 2000) 

and drought tolerant characteristics of Q . glauca 

(Yoshikawa et al. 1996). Our results imply that tree water 

status is one of the factors that cause seasonal variations 

in vessel size. We, therefore, conclude that each tree 

species has a species-specific seasonal variation pattern of 

vessel size, and the pattern is modified by environmental 

factors such as water availability.
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