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Abstract 

This paper develops a new numerical scheme for flash floods based on the one-dimensional 

shallow water equations in channel networks, referred to as the dual finite volume method 

(DFVM) scheme. The scheme uses an upwind spatial discretization based on staggered 

meshes so that the flows in multiply connected channel networks are consistently handled 

without complicated treatment at junctions. The scheme is firstly examined with a series of 

test cases including idealized and experimental dam break problems to demonstrate its 

accuracy and versatility. The scheme is then applied to numerical simulation of a flash flood 

resulting from an earthquake-induced complete dam failure in Japan. Channels from a 

reservoir to the downstream rivers are modelled as a multiply connected channel network 

with non-prismatic cross-sections, steep slopes, and bends. The computational results agree 

well with the field observations and eyewitness reports. Numerical simulation of alternative 

scenarios as possible cases is also performed to analyze potential risks of the downstream area. 

 

Keywords: Channel network; dam failure; finite volume method; flash floods; shallow water 

equations. 

 

1. Introduction 

Dams play a central role in basic human activities, such as agriculture and fishery. However, 
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there are always potential failure risks associated with dams. The consequences of a dam 

failure can be catastrophic, potentially involving the loss of human life. A huge number of 

dam failures and resulting flash flood events have occurred throughout history. Singh [1] 

summarized more than 60 major historical dam failures throughout the world, including the 

Malpasset Dam failure in France [2] and the St. Francis Dam failure in the United States of 

America [3], both of which resulted in numerous deaths. Numerical simulation is an essential 

tool for effective flood risk analysis. Three-dimensional description of flash floods requires 

the use of a hydrodynamic model such as the Navier–Stokes equations [4, 5]. Although 

hydrodynamic models exhibit high reproducibility for experimental water flows, such models 

are computationally very demanding and are still difficult to apply to numerical analysis of 

flows on natural topography. The most reasonable and efficient alternatives to the 

hydrodynamic models are the cross-sectionally averaged 1-D and the depth-averaged 2-D 

shallow water equations (SWEs) with the hydrostatic pressure assumption. Aleixo et al. [6] 

experimentally verified the relevance of the hydrostatic assumption for dam break problems. 

The SWEs are highly nonlinear and their closed-form solutions are only applicable to a 

limited number of cases, such as flows in prismatic and frictionless channels [7, 8]. Therefore, 

numerical methods have generally been used to solve the SWEs in engineering applications. 

 

Shallow water modeling of flash flooding involves a number of difficulties, such as unsteady 

transcritical flows, irregular bed topography, and wet and dry interfaces. Development of 

accurate and robust numerical methods capable of solving the SWEs under such severe 

conditions is a challenging task. Most existing numerical schemes for the SWEs are classified 

as finite volume method (FVM) schemes with approximate Riemann solvers [9, 10], which 

use analytical solutions to local Riemann problems in evaluating numerical fluxes on cell 

interfaces. Toro and Garcia-Navarro [11] extensively reviewed Godunov-type schemes as 

Riemann solvers and summarized future trends and recommendations for these schemes. 

Since the conventional Godunov-type scheme is, in general, too diffusive for capturing 

sudden flow transitions, high-resolution algorithms such as total-variation-diminishing (TVD) 

reconstruction based on slope limiters [12, 13] and adaptive remeshing [14, 15] must be 

incorporated. Other high-resolution schemes such as the discontinuous Galerkin finite 

element method (FEM) scheme [16], the essentially non-oscillatory (ENO) scheme [17], the 

weighted ENO (WENO) scheme [18], and multi-moment FVM schemes [19] have also been 

applied to the SWEs. On the other hand, researchers have developed sufficiently accurate 

numerical schemes without using approximate Riemann solvers or high-resolution 

algorithms. Sabbagh-Yazdi and Zounemat-Kermani [20] applied a Galerkin FVM scheme to 

the 2-D SWEs, adding a fourth-order artificial dissipation term as a stabilization technique. 

Ying et al. [21] developed an FVM scheme for dam break problems in non-prismatic and 
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non-rectangular channels with a weighted average-based water surface treatment. Unami et al. 

[22] developed a cell-centered FVM scheme with a Froude number-based upwind method to 

predict dam break events in Ghanaian inland valleys, which actually occurred at a later date 

[23]. A 1-D counterpart of the scheme has also been developed [24]. 

For rapidly varied flows in steep and narrow channels in the presence of flow bifurcations and 

conversions in particular, such as river networks and mountainous valleys, the 1-D SWEs are 

more effective and computationally efficient than the 2-D SWEs [25, 26]. In such cases, the 

domain of the flow is approximated as a locally one-dimensional open-channel network 

extending over the horizontally two-dimensional plane. Due to the singularity of the 1-D 

SWEs at junctions in the domains, appropriate internal boundary conditions are required in 

order to determine local flow behaviors around the junctions, causing difficulties in 

implementing high-resolution algorithms. Sanders et al. [27] simulated contaminant transport 

in tidal river networks by nesting a 2D model at junctions, so that the converging and 

diverging behaviors of the flows are accurately resolved. Capart et al. [28] developed a 

characteristic-based FVM scheme for the 1-D SWEs in natural channels and applied the 

scheme to flow routing of a typhoon-induced flood event in an existing river network. 

Kesserwani et al. [29] investigated several nonlinear internal boundary condition models for 

subcritical flows at junctions and compared them with a series of experimental data. 

Kesserwani et al. [30] carried out numerical analysis of free surface water flows at a T-shaped 

junction in the context of the 1-D SWEs with source terms for discharge and momentum 

losses by flow divisions. Trancoso et al. [31] developed a staggered FVM scheme for open-

channel network flows and coupled this scheme with distributed hydrological models. Van 

Tsang et al. [32] applied a lattice Boltzmann method to shallow water flows in a complicated 

irrigation canal network equipped with hydraulic structures. Zhu et al. [33] established an 

efficient numerical method to deal with backwater effects at junctions based on the method of 

characteristics. Until now, only a limited number of studies have investigated flows in 

multiply connected (looped) channel networks with steep, non-rectangular, and non-prismatic 

channels. Since natural channels are typically irregular and have the above characteristics 

[34], an appropriate numerical scheme that can consistently deal with junctions and handles 

rapidly varying flows under severe computational conditions is strongly desired for reliable 

flash flood simulations. 

 

Recently, Unami and Alam [35] proposed a versatile numerical scheme for rapidly varying 

flows in multiply connected channel networks, here referred to as the Finite Element/Volume 

Method (FEVM) scheme. The FEVM scheme applies the standard Galerkin FEM with linear 

basis and an upwind cell-centered FVM to the continuity equation and to the momentum 

equation, respectively, so that the flows at junctions are handled consistently. The FEVM 
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scheme is explicit in time; however, it requires iterative matrix inversions at each time step. 

Ishida et al. [36] have developed a similar numerical scheme that has the same drawback. 

This study develops a more computationally efficient numerical scheme, referred to as the 

Dual-FVM (DFVM) scheme, which works effective in preserving monotonic water surface 

profiles in some transient flows. The continuity equation is defined as a local integral in 

which junctions are dealt with as the implicit internal boundary conditions. Spatial 

discretization in the DFVM scheme is based on the concept of Voronoi diagram [37], which 

has been used to design staggered schemes for different transport equations, such as the 1-D 

SWEs in single channels [38], the 2-D SWEs [39], the governing equations of three-

dimensional hydrostatic free surface water flows [40], and the advection-dispersion equations 

[41]. Application of the Voronoi diagram to the 1-D SWEs in channel networks has not been 

presented in the literature. In the DFVM scheme, water surface elevation and discharge are 

taken as the unknowns arranged in a staggered manner. A non-upwind, vertex-centered FVM 

and a cell-centered FVM employed in the FEVM scheme with a semi-implicit treatment of 

the friction slope term are applied to the continuity equation and to the momentum equation, 

respectively. The DFVM scheme is verified with a number of numerical tests in order to 

determine its accuracy. Finally, the DFVM scheme is applied to numerical simulation of 

catastrophic flash flooding that results from a recent earthquake-induced dam failure in Japan. 

 

The remainder of the present paper is organized as follows. In Section 2, a brief introduction 

of locally one-dimensional open-channel networks and 1-D SWEs is provided. In Section 3, 

numerical formulation for the DFVM scheme is presented. In Section 4, the DFVM scheme is 

verified through a number of test problems. In Section 5, the scheme is applied to the 

numerical simulation of a recent flash flood caused by an earthquake-induced complete dam 

failure in Japan. Section 6 concludes this study. 

 

2. Mathematical model 

2.1 Definition of locally one-dimensional open-channel network 

In analyzing free surface water flows propagating along channels, a one-dimensional shallow 

water approximation has practically been applied to the flow fields [42]. In such a case, a 

locally one-dimensional open-channel network extending over the horizontal two-

dimensional plane gives the domain of flow. A locally one-dimensional open-channel network 

is a connected graph consisting of a collection of a finite number of reaches linked via a set of 

vertices. Hydraulic properties, such as the wetted cross-sectional area, water surface 

elevation, and discharge are distributed on the graph. A finite line gives the reach, and an 

arbitrary position in the domain is uniquely determined from a local abscissa taken along the 

reaches. A vertex is called a boundary vertex if it is connected to exactly one reach and is 
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referred to as a bending point if it is connected to exactly two reaches. Otherwise, the vertex 

is referred to as a junction. A channel network is said to be multiply connected if it contains at 

least one loop, and is otherwise said to be simply connected [43]. Partial differential 

equations, such as the 1-D SWEs defined in locally one-dimensional open-channel networks, 

generally associate internal boundary conditions at junctions to determine local solution 

behaviors [44]. 

 

2.2 One-dimensional shallow water equations 

The 1-D SWEs for free surface water flows along single channels with arbitrary cross-

sectional shapes consist of the continuity equation [45] 

 
 A Q

q
t x

 
 

 
 (1) 

and the momentum equation 
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where t  is the time, x  indicates the abscissa, A  is the wetted cross-sectional area as a 

function of the water surface elevation  , Q  is the discharge, q  is the lateral inflow per unit 

length of the channel,   is the momentum flux coefficient, g  is the gravitational 

acceleration, and fS  is the friction slope given by Manning’s formula 

 

2 4/3
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where n  is Manning’s coefficient and P  is the wetted perimeter. The channel bed elevation 

z  is assumed to be fixed. The conventional SWEs, (1) and (2), can be applied to arbitrary 

single channels. However, for the flows in channel networks, the continuity equation (1) shall 

be understood as the integral form 

 
   , B
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where   represents the domain of the flow as a locally one-dimensional open-channel 

network, 
A

T






 is the top width of the water surface,  ,B y r  is the horizontally two-

dimensional r -neighborhood of a point y  with 0r   such that no vertex falls on the 

boundary of  ,B y r ,   is the total number of intersections of the reaches and the boundary 

of  ,B y r , ,r jQ  is the discharge at the j th intersection, BQ  represents the sum of the 

discharges specified at the boundary vertices in  ,B y r , and j  is the sign parameter 

defining the direction of the abscissa in the j th reach. Here, j  is equal to 1  when the 



6 

 

abscissa in the jth reach is facing outward to the boundary of  ,B y r  and is otherwise equal 

to 1 . A schematic diagram of  ,B y r  is shown in Fig. 1. Note that  ,B y r  in (4) can be 

replaced by a sufficiently small compact two-dimensional set contained in  ,B y r
 
for 

arbitrary 0 r r  . Application of the integral form (4) in single channels recovers the 

conventional form (1). The new continuity equation (4) is still conservative and valid for 

arbitrary locally one-dimensional open-channel networks. 

 

3. Finite volume formulation 

3.1 Computational mesh 

The 1-D SWEs comprising the continuity equation (4) and the momentum equation (2) are 

numerically solved using the DFVM scheme, with the water surface elevation   and the 

discharge Q  as unknowns. A couple of staggered computational meshes, which are a regular 

mesh and a dual mesh, are used in the scheme. The continuity equation (4) is solved on the 

dual mesh, while the momentum equation (2) is solved on the regular mesh, so as to avoid 

conflicting numbers of equations and unknowns. The domain   is first divided into a regular 

mesh consisting of regular cells bounded by two nodes, so that any vertex, such as a junction, 

falls on one of the nodes. The regular cells and the nodes are indexed with the natural 

numbers. The total numbers of regular cells and nodes are denoted by cN  and nN , 

respectively. The kth regular cell is denoted by k . The length of k  is represented by kl . 

The two nodes bounding both sides of k  are denoted by the  ,1k th node and the  ,2k

th node. The abscissa in k  is directed to the  ,2k th node. The number of regular cells 

connected to a generic ith node is denoted by  i . The jth regular cell connected to the ith 

node is referred to as the  ,i j th regular cell  ,i j
 . There are two nodes that bound 

 ,i j
 . One is the ith node, and the other is referred to as the  ,i j th node. In  ,i j

 , the 

direction of the abscissa is identified with the parameter ,i j , which is equal to 1  when x  is 

directed to the  ,i j th node, and is otherwise equal to 1 . A dual mesh is generated from 

the regular mesh. Following the multi-dimensional analogue [37], the ith dual cell iS  is 

defined as 

   ,
 <   for  1 ( )  i i i j

S x x x x x j i


      (5) 

where ix  and  ,i j
x


 represent x  at the ith node and at the  ,i j th node, respectively. The 

dual mesh consists of nN
 
dual cells. The cell interface between iS  and  ,i j

S
  

is denoted by 
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,i j . Fig. 2 shows a schematic diagram of the computational mesh. The water surface 

elevation   is attributed to the dual cells, and the discharge Q  is attributed to the regular 

cells. The discretized   in 
iS  is denoted as i , and the discretized Q  in 

k  is denoted as 

kQ . The model parameters n  and   are attributed to the regular cells, and model parameters 

in 
k  are denoted as 

kn  and 
k . 

 

3.2 Continuity equation 

The continuity equation (4) is discretized on a dual mesh. Replacing  ,B y r  with iS  yields 

the cell-vertex finite volume formulation of the continuity equation in iS , as follows: 
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Substituting 
 , ,i j i j

Q Q
   into (6) yields 

 
 

 

, ,
1

d d
i i

i

i j i jS S
j

T x Q q x
t











 


  . (7) 

Assuming a linear variation of the top width T  in 
 ,i j


 
yields 
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where , ,0i jT  and , ,1i jT  are the values of T  at the ith node and at the  ,i j th node in 
 ,i j

 , 

respectively. According to (8), the first term on the left-hand side of (7) is evaluated as 

follows: 
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Thus, each 
d

d

i

t


 is computed as 
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where q  represents the discharge contributed from the lateral inflows and the boundary 

conditions. 
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3.3 Momentum equation 

The upwind cell-centered FVM [35] is applied to the momentum equation (2). Then, a semi-

implicit discretization method is used to evaluate the friction slope term in order to avoid the 

numerical instability due to the extremely shallow water depth. The cell-centered finite 

volume formulation of the momentum equation in the kth regular cell 
k  leads to 

   f

d
d

d k k

k
k

Q
l F gA S x

t x


 

 
    

 
  (11) 

where 
k  is the interface of 

k  and 
2Q

F
A


  is the flux evaluated on 

k . Each term of 

(11) is discretized in the following subsections. 

 

Flux evaluation in the momentum equation (11) is carried out by a simple upwind 

discretization. For each generic regular cell 
k  at any time t , the node, of the two nodes 

bounding 
k , to which the flow is directed is referred to as the downstream node, and the 

other is referred to as the upstream node. The vector starting from the upstream node and 

ending at the downstream node is denoted by kχ . The cell flux kF  for the regular cell k  is 

determined using the local Froude number as a weight. When the downstream node in k  is 

wet, ,DSkA   for a small threshold value  , and the cell cross-sectional area kA  and the cell 

cross-sectionally averaged velocity kV  are calculated as  

   ,DS ,US1k k k k kA A A     (12) 

and 

 k
k

k

Q
V

A
  (13) 

with the weight 

 
2

1
max 1 ,0k

kFr


 
  

 
 (14) 

where 2

kFr  is the square of local Froude number defined as 

 

2

,DS2

3

,DS

k k k

k

k

T Q
Fr

gA


  (15) 

and the subscripts US and DS indicate values at the upstream node and the downstream node, 

respectively, in k . The cell velocity kV
 
is taken to be 0 when ,DSkA  . Then, 

 
is taken to 

be sufficiently small because of its influence on wet and dry interfaces, as discussed in Xia et 

al. [46]. Finally, the cell flux kF  is determined as follows: 

 k k k kF Q V . (16) 
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The flux on the cell interface 
k  is evaluated following Unami and Alam [35]. The set of 

indices of the regular cells, the downstream nodes of which fall on the upstream node of 
k , 

is denoted as 
kU . The flux at the upstream cell interface ,USk k    is prescribed as 

  
,US

,max cos ,0
k

k

k

U

F F 







   (17) 

where ,k   is the angle between 
kχ  and χ . On the other hand, the flux at the downstream 

cell interface ,DSk k    is identical to the cell flux 

 
,DSk kF F   (18) 

with the exception that 

  
,DS ,min cos ,0

k k kF F F     (19) 

when the downstream node is connected to exactly two regular cells. Finally, the second term 

of the left-hand side of (11) is evaluated based on 
,USk

F  and 
,DSk

F  while considering the 

directions of the flows as well as that of the x  abscissa. The above flux evaluation method 

has been verified with experimental dam breaks in bend channels [47] and numerical 

simulations of very shallow surface water flows in an existing open channel network [35] 

having a number of loops and bends. 

 

The source terms (on the right-hand side of (11)) are discretized using an upwind method. The 

first term of the right-hand side of (11) is evaluated as 
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where 
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Next, the friction slope term  is discretized in a semi-implicit manner [48] as 
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where 
f ,S kJ

 

is the Jacobean of f,kS  with respect to 
kQ  

defined as 
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However, 
fS
 
is taken as 0 when kA  . Finally, each 

d

d

kQ

t
 is explicitly computed as 
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3.4 Temporal integration 

Application of the DFVM scheme to the 1-D SWEs finally yields a system of ordinary 

differential equations (ODEs) for the water surface elevation   attributed to the dual cells 

and the discharge Q  attributed to the regular cells. Boundary conditions are specified at the 

boundary vertices when necessary, and the system of ODEs is temporally integrated from a 

prescribed initial condition using the fourth-order Runge–Kutta method. The time increment 

t  is chosen to be sufficiently small, so that the Courant–Friedrichs–Lewy condition [49] is 

satisfied.  

 

3.5 Some remarks 

The DFVM scheme is fully explicit in time and does not necessitate matrix inversion 

algorithm, which on the other hand is required in the FEVM scheme. Therefore, the scheme is 

considered to be superior to the FEVM scheme in terms of computational efficiency. Indeed, 

preliminary computations for transient problems showed that the DFVM scheme is two to 

three times faster than the FEVM scheme. Much faster computation time can be achieved if a 

lower order time integration method, such as the forward Euler method and the second-order 

Runge-Kutta method, is employed. Moreover, the DFVM scheme is simpler than the 

conventional ones because it has a compact stencil in spatial discretization and does not 

depend on any high-resolution algorithms. Note that the DFVM scheme exactly preserves the 

water at rest level because it does not involve water surface reconstruction. 

 

4. Numerical tests 

Numerical tests containing a tidal wave problem and a series of dam break problems, which 

have served as important benchmarks [50, 51, 52], are carried out to determine accuracy of 
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the DFVM scheme. Throughout this section, the momentum flux coefficient   is fixed to 1.0 

in every cross-section, and the threshold vale   is set to be 61.0 10  (m
2
).  

 

4.1 Tidal wave problem in an irregular channel 

The DFVM scheme is firstly applied to a tidal wave problem to examine its capability of 

handling flows with complex bathymetry. A 1,500 (m) long non-prismatic rectangular, 

frictionless channel is considered as the domain  0,1500  (m). Width and bed elevation 

of the channel is taken from Vázquez-Cendón [51], both of which are continuous but highly 

irregular. Initial conditions are set as 11   (m) and 0Q   (m
3
/s) in the entire domain. Both 

the upstream and downstream ends are solid walls, but the water surface elevation at the 

upstream end is specified directly as 

  
4 1

,0 15 4sin
86,400 2

t
t 

  
    

  
. (27) 

Asymptotic solution in the limit of zero Froude number is available in the literature [53, 54]. 

The domain is divided into 300 uniform regular cells. The time increment is 0.5t   (s) and 

computational period is 10,800 (s). Comparison of the computed and analytical discharges per 

unit width at the time 10,800 (s) is shown in Fig. 3. Maximum absolute error between the 

computed and analytical water surface elevations at the time is 0.03 (%). Therefore, plots for 

the water surface elevations are not provided. 

 

4.2 Dam break problems in a flat, frictionless rectangular channel 

Dam break problems in a flat, frictionless channel are considered. A 2,000 (m) length channel 

is considered as the domain  0,2000  (m). The initial water surface elevation   (m) is 

 
 

 

U

D

  1000

  1000

h x

h x


 
 



 (28) 

where Uh  and Dh
 
denote the initial upstream and downstream water depths, respectively, 

with U D 0h h  . The initial discharge is 0Q   (m
3
/s) for the entire domain. The initial 

upstream water depth Uh  is fixed to 1.0 (m), while the initial downstream water depths Dh  of 

0.1 (m) (Case DB-A) and of 0.0 (m) (Case DB-B) are examined. The boundaries are treated 

as solid walls. Solution to Case DB-B involves a wet and dry interface, which is difficult to 

accurately capture even if high-resolutions algorithms are employed [55, 56]. Here, the two 

cases of 10x   (m) and 1x   (m) are investigated. The time increment t  is fixed to 

0.001 (s). The analytical and computed water surface profiles and velocity distributions at 

50t   (s) are illustrated in Figs. 4 through 7 for each case. The computational results are 

shown to be sufficiently accurate, and the numerical solutions are shown to approach the 
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exact solutions as the mesh is refined. Computational results do not contain spurious 

oscillations as found in those using the FEVM scheme, and are not inferior to recently 

published ones slightly underestimating the velocity of the wet and dry interface. 

 

4.3 Dam break problem in a flat, frictionless triangular channel 

A dam break problem in a triangular channel is considered in order to determine the accuracy 

of the DFVM scheme for rapidly varying flows in non-rectangular channels. Sanders [57] 

investigated dam break problems in non-rectangular channels including triangular channels, 

and his research was followed up on by several researchers [58, 59]. Shallow water flows in 

triangular channels are generally difficult to compute compared to flows in rectangular 

channels since the top width of the cross-section varies in direct proportion to the water depth, 

which significantly reduces the accuracy of the wave speed of the flows on a dry bed. The test 

problem here is carried out in the same setting as the previous dam break problem on a dry 

bed (Case DB-B) except that each cross-section is triangular and has a side gradient of 1:1 

and 
Uh  is set to 10 (m). The FEVM scheme has been preliminarily applied to this problem 

under the same computational conditions; however, positivity of the water depth is violated 

near the wet and dry interface due to spurious oscillations, which do not disappear even if 

more fine computational mesh and time increments are used. This indicates limited 

applicability of the FEVM scheme to transient flows in non-rectangular channels with wet 

and dry interfaces. Figs. 8 and 9 show the computational results for the water surface profile 

and the velocity distribution for this test problem. Convergence of the computed solutions are 

slower than those of the high-resolution schemes, but preserve monotonicity and positivity of 

water surface profiles. Here dependence of the computed solutions on the upstream Courant 

number [57] 
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U

U

Cr
A h t

g
T h x





 (29) 

is also investigated. In this test case, 4

UCr 7 10   for the coarse mesh ( 10x   (m)) and 

3

UCr 7 10   for the fine mesh ( 1x   (m)). Sanders [57] reported that accuracy of 

computed solutions increases as UCr  approaches the order of  110O   , which is consistent 

with the results presented in Figs 8 and 9. 

 

4.4 Thacker’s test case 

The DFVM scheme is verified with the Thacker’s test case where the analytical solution is 

available [58, 59]. This problem is a severe test case that involves both advancing and 

receding wet and dry interfaces on non-flat channel bed. The computational domain   is a 
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frictionless rectangular channel  4,000,4,000  (m)  in which the bottom elevation z  is 

distributed as 

 
2

0 2
1  (m)

x
z h

a

 
  

 
 (30) 

with 0 10h   (m) and 2,500a   (m). The channel width is set as 1 (m). The initial condition 

of the water surface elevation   is set as 

   max 0, 0,z Z x z     (m) (31) 

where  ,Z Z t x  is given by 

       2 21
, cos 2 4 cos

4
Z t x B B t B x t

g
       (m) (32) 

with the parameters 5B   (m/s) and 0.0056   (1/s). The initial condition of the discharge 

Q  is set as 0 (m
3
/s) in the entire  . The analytical solutions of   and Q  for 0t   (s) are 

given by 

  max 0,z Z z     (m) (33) 

and 

    max 0, sinQ B Z z t   (m
3
/s), (34) 

respectively. The two cases of 10x   (m) and 5x   (m) are examined to see convergence 

of the scheme. The time increment t  is set as T/4,000 (s) in the former case and as T/8,000 

(s) in the latter where 1,121T   (s). The minimum nodal water depth is set as 0.001 (m) to 

avoid negative water depth encountered at the receding wet and dry interfaces. 

 

Figs. 10(a) through 10(d) show comparisons of the exact and computed water surface profiles 

at each time step. Similarly, Figs 11(a) through 11(d) show comparisons of the exact and 

computed discharges. The computed solutions agree well with the analytical ones, accurately 

resolving the wet and dry interfaces. The computed   and Q  converge to the analytical ones 

as the mesh is refined.  

 

4.5 Dam break problem in a non-prismatic rectangular channel 

Here, the DFVM scheme is validated using a dam break problem in an experimental non-

prismatic rectangular channel with a flat and wet bed. Bellos et al. [60] conducted a series of 

experimental dam break problems in a converging and diverging rectangular channel. The 

experimental channel is shown in Fig. 12. Detailed drawings of the channel are summarized 

in Bellos et al. [61]. The channel width of the upstream part of the channel is 1.40 (m). The 

channel width gradually decreases from 1.40 (m) to 0.60 (m) toward the contraction at 
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8.5x   (m), where a vertical wall serving as a dam is installed, and gradually increases to 

1.40 (m) toward the downstream end, at which a weir is located. The initial upstream and 

downstream water depths of the dam are set to 0.250 (m) and 0.101 (m). The dam is 

instantaneously removed at the initial time 0t   (s). As shown in Fig. 12, the channel has an 

asymmetrical shape and the resulting water flow may exhibit a horizontally two-dimensional 

nature. Nevertheless, as shown in and cross-sectionally averaged modeling has found to be 

successful in simulating experimental results with satisfactory precision. Tseng et al. [48] and 

Tseng and Yen [62] verified several high-resolution schemes with this test problem. 

Manning’s coefficient n  of the channel has been set as 0.012 (s/m
1/3

), as in previous studies 

[63]. Since the dimensions of the downstream weir are not available, the channel is increased 

by 9.3 (m), as in Hicks et al. [64], and a critical flow condition is specified at the new 

downstream end. Therefore, reflection waves at the original downstream end cannot be 

produced. The channel is divided into regular cells of length 0.1x   (m). The time 

increment t  is set to be 0.01 (s). Fig. 13 illustrates the comparison of computed and 

measured water depths at the observation stations at 4.5x   (m), 8.5x   (m), and 13.5x   

(m). Computational results adequately capture water depth variations due to a moving shock 

and a depression wave, and do not show significant differences with those of the high-

resolution schemes. 

 

4.6 Dam break problem with a triangular bump 

The DFVM scheme is verified with the laboratory dam break experiment conducted by 

Alcrudo and Fazãro [65]. The experimental setting is shown in Fig. 14. The channel has a 

rectangular cross-section of 1.75 (m) wide, and is composed of an upstream reservoir filled 

with water with the depth of 0.75 (m), and a dry downstream channel with a symmetrical 

triangular bump with the height of 0.40 (m). The vertical wall installed at 15.5x   (m) is 

assumed to be instantaneously removed at 0t   (s). The Manning’s coefficient n  is set to be 

0.0125 (s/m
1/3

) as adopted in Liang and Marche [66]. The upstream end is taken as a solid 

wall and a free outflow condition is specified at the downstream end. This problem involves 

wet and dry interfaces and receding bores that occur when the discharged water from the 

reservoir hits the bump. The domain is divided into 190 uniform regular cells. The time 

increment is 0.01t   (s). Fig. 15 shows comparisons of the computed and measured water 

depths at 19.5x   (m), 25.5x   (m), and 28.5x   (m). Sudden changes of the water depths 

are well resolved, though with slight overestimations. The computed water depths in Figs. 

15(a) and 15(b) involve numerical oscillations, which attenuate in time and therefore do not 

limit applicability of the present scheme. High-resolution algorithms will suppress these 

oscillations, but forfeiting the simplicity of the scheme. Computational results are 
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quantitatively consistent with those using the high-resolution schemes of Liang and Marche 

[66], Singh et al. [67], and Bollermann et al. [68], in which the channel is divided into 760, 

3,800, and 200 uniform cells along the flow direction, respectively.  

 

4.7 Dam break problems in a non-prismatic and non-flat channel 

Hydraulic experiments with a rectangular flume were carried out to examine capability of the 

DFVM scheme handling dam break problems in non-prismatic and non-flat channels. These 

experiments are more severe than the preceding two cases because the latter involve only 

either non-prismatic cross-section or non-flat channel bed. The experimental settings of the 

presented cases are shown in Fig. 16. Length and width of the flume were 20.0 (m) and 0.60 

(m), respectively. The channel consisted of an upstream reservoir, an upstream reach, a 

symmetrical broad crested weir, and a downstream reach with a free outfall. A couple of 

blocks with a thin gate installed just upstream of them served as a dam to fill up water in the 

reservoir. A trapezoidal obstacle was installed on the weir to create a 1.20 (m)–long non-

prismatic reach having a gradual contraction with the angle of 54.3 (deg) and a 0.25 (m)–wide 

sudden expansion. Distance between the downstream sides of the obstacle and the top of the 

weir was 0.06 (m). Height of the obstacle was sufficiently high to serve as a sidewall creating 

a channel construction on the weir. The two cases of the flume slopes 0S   and 0.01S   

were examined. Initially the downstream reach and the top of the weir were dry and the 

reservoir was filled with still water such that the water depth just upstream of the blocks 

equals to 0.37 (m). The upstream reach was also filled with still water to serve as a pool 

whose water surface elevation equals to the elevation of the upstream-side of the top of the 

weir. The gate was suddenly removed to create a 0.30 (m)–wide partial dam breach. The 

opening of the gate created a flash flood propagating on the pool before flowing over the weir. 

The flows downstream of the weir involved a series of oblique hydraulic jumps in both of the 

test cases due to the sudden expansion of the channel cross-section.  

 

Water depths in the channel were measured with hydrostatic head level gauges with the 

resolution of 1 (s) (HOBO U-20) at the three stations as shown in Fig. 16 whose locations 

were 8.0x   (m) (in the upstream reach), 16.0x   (m) (in the downstream reach), and 

20.0x   (m) (at the downstream end), respectively. Traveling time of the flows to the 

downstream end of the channel were estimated from the measured data and video images as 

9.0 (s) with 0S   and 8.0 (s) with 0.01S  , respectively. The Manning’s coefficient n  of 

the channel has been estimated as 0.01 (s/m
1/3

). The gate is assumed to be instantaneously 

removed at the initial time 0t   (s). The entire channel is uniformly divided into 1,000 

regular cells with the length of 0.02 (m). The time increment t  is set as 0.005 (s). Response 
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characteristics of the head level gauges as a convolution operator between the true (from 

video images; input data) and measured water depths (output data) was preliminary estimated 

with the inverse analysis method using Tikhonov regularization [69]. The computed water 

depths at the observation stations with the DFVM scheme were then emulated with the 

estimated convolution operator to create another set of water depths data (emulated data) 

accounting for the response characteristics of the gauges, which are more appropriate to be 

compared with the measured results. 

 

Figs. 17(a) through 17(c) and Figs. 18(a) through 18(c) show comparisons of the computed, 

emulated, and measured water depths at the three observation stations with the slope 0S   

and 0.01S  , respectively. These figures show that both the computed and emulated 

solutions have reasonable phase and amplitude accuracy. They well capture the gradual 

decreasing of the water depths at all the stations in both of the computational cases. The 

emulated ones present superior accuracy at the station 8.0x   (m) in particular, 

demonstrating potential validity of the 1-D SWEs to the dam break problems which cannot be 

assessed without the emulation technique. Traveling time of the wet and dry interface to the 

downstream end of the channel with the emulated solutions were 8.7 (s) with 0S   and 7.2 

(s) with 0.01S  , respectively, reproducing the observed values with slight underestimations. 

Discrepancies between the numerical and measured results are considered due to the 

inherently 2-D natures of the flows created by the concrete blocks and the obstacle in the 

channel. Another possible cause of the discrepancies is the dispersivity of the flows resulting 

from non-hydrostatic effects, which is not appropriately handled by the SWEs. Despite these 

limitations of the 1-D SWEs, the computational results with the DFVM scheme are 

satisfactory accurate, indicating its applicability to dam break problems both with non-

prismatic cross-section and non-flat channel bed. 

 

4.8 Dam break problem in a multiply connected channel network with a rectangular 

cross-section 

In this and the next subsections, additional numerical test cases are performed to assess 

convergence and robustness of the DFVM scheme through the application of dam break 

problems in multiply connected channel networks. These test problems are challenging 

because they require a stable discretization method for unsteady transcritical flows of 

extremely shallow depth as well as a consistent junction treatment technique. Only a few 

attempts at cross-sectionally averaged modeling have been made for dam break problems in 

multiply connected channel networks with bends. Fig. 19 illustrates a plane view of the 

channel network as the computational domain with key nodes labeled alphabetically from A 
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to F. The key nodes are referred to as the upstream end (A), the downstream end (E), the 

bifurcation point (B), the converging point (D), and the bending points (C and F). The reaches 

have a rectangular cross-sectional shape and are equal in terms of length, Manning’s 

coefficient, and bed slope, which are 10 (m), 0.03 (s/m
1/3

), and 0.01, respectively. The channel 

width is set to 0.25 (m) in reaches B-F-D, and 0.5 (m) in the other reaches. A vertical wall 

serving as a dam is installed at the middle of reach A-B, dividing the computational domain 

into an upstream reservoir and a downstream channel network. The water depth just upstream 

of the dam is 2.0 (m) and the channel network downstream of the dam is initially dry. Both 

the upstream and downstream ends are solid walls. The dam is instantaneously removed at the 

initial time 0t   (s). Each reach is divided into regular cells of length 0.25x   (m), and the 

time increment t  is fixed to 0.001 (s). The numerical solution with 0.05x   (m) and 

0.00025t   (s) is regarded as the reference solution because no analytical solution is 

available. Fig. 20 compares the computed and reference water surface profiles in reaches A-

B-C-D-E and B-F-D at each time step. The surge from the reservoir is divided at junction B, 

taking the local minimum water depth at that point. These divided flows converge at junction 

D and hit the downstream wall, generating a receding bore. There are also other receding 

bores starting at bending points C and F, as observed in the experimental dam break problems 

in bend channels [70]. The flood arrival time at downstream end E is 24.0t   (s). The 

computed solution is slightly diffusive but exhibits only minor numerical oscillations and is 

sufficiently close to the reference solution, despite the fact that a coarse computational mesh 

was used. 

 

4.9 Dam break problem in a multiply connected channel network with a triangular 

cross-section 

Numerical simulation of a dam break problem in a multiply connected channel network with 

a triangular cross-section is carried out in order to further validate the DFVM scheme. The 

computational conditions are identical to those of the previous dam break problem, except 

that each cross-section is triangular and the water depth upstream of the dam is 1.0 (m). The 

side gradient of the cross-section is 1: 3  in reaches B-F-D and is 1:1 in the other reaches. 

Fig. 21 compares the computed and reference water surface profiles in reaches A-B-C-D-E 

and B-F-D at each time step. The flood arrival time at downstream end E is 24.5t   (s). As in 

the previous test problem, the computed water surface profiles are reasonably close to the 

reference profiles with respect to resolving the receding bores. The computational results of 

this and the previous test problems show a sufficiently high capability of the DFVM scheme 

to handle dam break problems in multiply connected channel networks. 
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5. Application to a recent flash flood caused by a dam failure 

The verified DFVM scheme is now applied to the numerical simulation of a recent flash flood 

event caused by the failure of Fujinuma Dam in Japan. 

 

5.1 Study area 

Fujinuma Dam was an earth fill dam that formed Fujinuma Reservoir, in Sukagawa City, 

Fukushima Prefecture, Japan (N37.302, E140.195; WGS84). Fujinuma Reservoir was used as 

an irrigation tank for a downstream command area of 850 (ha). The maximum storage 

capacity of the reservoir was 1,500,000 (m
3
). Fig. 22 shows a map of the study area. Taki 

Village is northeast of the reservoir, and a paddy field area and Naganuma Village are located 

southeast of the reservoir. At present, no details on the design and construction history of 

Fujinuma Dam are available, except for very limited information provided in several recent 

reports [71, 72]. According to these reports, the construction of Fujinuma Dam began in 1937 

and was completed in 1949. Fig. 23 shows the main and auxiliary embankments of Fujinuma 

Dam. The dimensions of the main and auxiliary embankments are summarized in Table 1. As 

shown in Figs. 22 and 23, Taki Village was located just downstream of the main embankment. 

According to Kokusyou [73], Fujinuma Dam was built after the settlement of Taki Village 

regardless of the potential risk of dam failure. Fujinuma Dam was probably not well 

compacted because modern compaction machines were not available during its construction. 

Fujinuma Dam was repaired from 1977 to 1999, but the safety factor of the dam at that time 

has been estimated to be 1.15, which was still less than the required value of 1.20 [74].  

 

Fujinuma Reservoir was significantly damaged by the Great East Japanese Earthquake that 

occurred on March 11, 2011, which had a maximum magnitude of 9.0. The epicenter of this 

earthquake was approximately 240 km from the reservoir [75]. The seismic intensity observed 

at Sukagawa City was reported to be 5 to 6 [76]. The return period of the earthquake was 

estimated to be 1,000 years [77]. In anticipation of the upcoming irrigation season, Fujinuma 

Reservoir was filled almost to capacity at the time of the earthquake. The main embankment 

completely failed due to the earthquake, which resulted in the uncontrolled release of the 

entire content of the reservoir, and Taki Village was critically struck by the surge from the 

reservoir. According to a local media report, the surge had a water depth of at least several 

meters when it struck the village. Consequently, 19 houses were washed away or destroyed, 

155 houses were flooded below floor level, and eight people were killed [78]. Kokusyou [73] 

reported that the flooding in Taki Village lasted at least an hour. EERI (2012) concluded that 

the main embankment begun breaching within 20 minutes after the earthquake, and complete 

overtopping of the dam occurred several minutes later. Both Harder et al. [79] and Pradel et 

al. [80] inferred that an immediate cause of the complete failure of the main embankment was 
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a large drop in the crest elevation due to an earthquake-induced landslide. Harder et al. [79] 

also conjectured that the surge from the reservoir traveled downstream along the valley to the 

northeast until flowing into the Sunoko River and struck Taki Village, before turning 90 

degrees to the southeast along the river channel. Kyokawa et al. [81] carried out a field survey 

in the valley downstream of the main embankment and estimated the surge speed to be 

approximately 10 (m/s). The auxiliary embankment had not failed at the time of the 

earthquake, but a small arc-shaped deformation of the slope immediately adjacent to the 

embankment has been reported [72, 82, 83]. 

 

5.2 Computational Cases 

As described in the previous subsection, in actuality, only the main embankment failed due to 

the earthquake. However, a significant portion of the paddy field area could have been 

affected by the flood in the case in which the auxiliary embankment failed. In fact, several 

observation results [72, 82, 83] have indicated that there was a risk of failure of the auxiliary 

embankment. Therefore, it is worth considering such alternative scenarios as possible cases of 

more significant damages to the area downstream of the reservoir than that which actually 

occurred. Hence, the present study considers three possible scenarios: 

 

Case FDB-A: only the main embankment failed. 

Case FDB-B: only the auxiliary embankment failed. 

Case FDB-C: both the main and auxiliary embankments failed simultaneously. 

 

In Cases FDB-A and FDB-B, the reservoir water is discharged from the main and auxiliary 

embankments, respectively. On the other hand, in Case FDB-C, the reservoir water is 

discharged separately from both of the embankments. Case FDB-A corresponds to the event 

that actually occurred, and the other cases are hypothetical scenarios. 

 

5.3 Computational mesh 

The computational mesh for the flood simulation is determined from a 1:25,000 scale map, 

aerial view of the flood flow path [88] and satellite image data and digital elevation data 

obtained from Google Earth (Google Inc., Mountain View, Calif.). Fig. 24 illustrates the 

computational mesh with key nodes alphabetically labeled A through K. The total numbers of 

regular cells and dual cells of the computational mesh are c 327N   and n 327N  , 

respectively. The channel network consists of Fujinuma Reservoir (A-B-C and B-G), the 

valley downstream of the main embankment (C-D), the valley downstream of the auxiliary 

embankment (G-H), Sunoko River (J-D-E), Kouka River (K-I-E-F), and the paddy field area 
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(H-I). Nodes A, J, and K are upstream ends and node F is the downstream end. Node E is the 

conversion point at which the Sunoko River joins the Kouka River. Node D is considered to 

serve as the representative point of Taki Village, at which the surge from the main 

embankment hit the village. Node H is the upstream end of the paddy field area. The main 

and auxiliary embankments, respectively, fall on nodes C and G. Reach H-I is determined so 

that the flow channel partially varies in accordance with the drainage canals running in the 

paddy field area. The computational mesh is highly non-uniform, and the maximum and 

minimum lengths of the regular cells are 201 (m) and 6 (m), respectively. The maximum bed 

slope of the channel is 0.23 in valley G-H. Each channel cross-section is approximated as a 

compound shape, as shown in Fig. 25, where B  is the channel bed width, cH  is the channel 

height, 0M  is the side slope of the channel, and 
lM  and 

rM  are the parameters that account 

for flooding of the channels. The cross-sections of the dam and the valleys in particular are 

given as rectangular ( 0 0M   and cH   ) and triangular shapes ( 0B   and cH   ), 

respectively. 

 

5.4 Model parameters 

The 1-D SWEs have two model parameters, which are Manning’s coefficient n  and the 

momentum flux coefficient  . These model parameters are considered to vary depending on 

local flow structures, and their estimation is a particularly difficult problem for natural 

channels with compound cross-sections [84]. Therefore, the present study regards them as 

global constants rather than local variables. Thus, Manning’s coefficient n  is set as a 

moderate constant value everywhere in the domain. Preliminary computations for several 

values of n  within the range of 0.030 to 0.050 (s/m
1/3

) revealed that the computed flow fields 

have a qualitatively similar nature, except for the differences in flood attenuation and delay. 

Since the main focus of the numerical simulation here is the verification of the DFVM 

scheme, Manning’s coefficient n  is fixed to 0.040  (s/m
1/3

). The momentum flux coefficient 

  is set to 1.1 because the cross-sectional shape has little complexity. The threshold value   

is chosen as 61.0 10  (m
2
). 

 

5.5 Initial and boundary conditions 

Initial and boundary conditions are determined empirically because of the lack of available 

hydrological data. The paddy field area is assumed to be dry initially because the actual dam 

failure occurred during the pre-irrigation period in Japan. The valleys are also assumed to be 

dry initially. The rivers are initially assumed to be in a steady state, such that the water depth 

does not exceed cH  and remains moderate. Thus, the inflow discharge 10 (m
3
/s) is prescribed 
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at upstream ends J and K. The reservoir is initially assumed to be at full capacity, with a 

maximum water depth of 18.5 (m). The main and auxiliary embankments are instantaneously 

and completely removed at the initial time 0t   (s) in each case. Although instantaneous and 

complete dam removal is not a realistic assumption, it serves as the worst-case failure and 

allows the earliest bound of the flood arrival time to be assessed [85]. Upstream end A is 

treated as a solid wall. A critical flow condition is specified at downstream end D, where a 

hydraulic drop is installed. The time increment t  is fixed to 0.001 (s). Flow computation for 

each case is continued until 10,800t   (s). 

 

5.6 Computational results 

Fig. 26 shows hydrographs at nodes D, F, and H for each case. The immediate, sharp rise in 

the hydrograph at D in this case implies that the people in Taki Village did not have sufficient 

time to evacuate before the flooding. The computed flood arrival time at node D in Case 

FDB-A is 95 (s), and the average surge velocity in valley C-D is calculated to be 12 (m/s), 

which is close to the estimated result [81]. The maximum water depth at node D is more than 

9 (m) in Case FDB-A, which exceeds the channel depth by more than 4 (m), which also 

agrees well with eyewitness reports and field survey results [78]. Only slight differences are 

found between the hydrographs at node D for Cases FDB-A and FDB-C, despite the reservoir 

water being discharged separately from the two embankments in the latter case. In Case FDB-

C, the ratio of the total discharged water volume from the main embankment to that 

discharged from the auxiliary embankment is 2.5:1.0. The maximum water depth at node H is 

approximately 8 (m) for both Cases FDB-B and FDB-C. Hydrograph attenuation due to the 

divided discharge of the reservoir water in Case FDB-C is remarkable at node H, compared to 

that at node D. These computational results indicate that a reduction in flood damage is 

actually expected in Case FDB-C. However, the maximum water depth at Taki Village (node 

D) and the paddy field area (node H) do not significantly decrease, even when both of the 

embankments failed simultaneously. 

 

Figs. 27(a) through 27(d) show the water surface profiles for Case FDB-C at the peak 

discharge from the reservoir ( 28t   (s)), the peak water depth at nodes H ( 108t   (s)), D 

( 228t   (s)), and F ( 1915t   (s)), respectively, where the channel bottom elevation at node F 

is taken as 0. Flood propagation in the channel network is reasonably simulated without 

numerical failure, which demonstrates the robustness of the developed numerical scheme. 

 

Figs. 28(a) through 28(c) show the distributions of the inundation time, which is defined as 

the total time that the water depth exceeds the channel depth cH , for the rivers and the paddy 
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field area for each case. The inundation time along the Sunoko River is approximately an hour 

for Cases FDB-A, which is compatible with the observed facts. The inundation time for the 

paddy field area in Case FDB-B is more than two hours. In Case FDB-C, the inundation time 

along the Sunoko River and in the paddy field area is at least half an hour. In this case, the 

paddy field area suffers from flooding for more than an hour. Figs. 29(a) through 29(c) show 

inundation maps for each case. The inundation areas for Cases FDB-A, FDB-B, and FDB-C 

are 3.03 (km
2
), 2.15 (km

2
), and 3.94 (km

2
), respectively. Figs. 23 and 24 show that partially 

non-flooded channels exist in the Kouka River in Case FDB-C, whereas the river is 

completely flooded in Case FDB-B. The Sunoko River is completely flooded in Cases FDB-A 

and FDB-C, and a large portion of the paddy field area is inundated in Cases FDB-B and 

FDB-C. 

 

Overall, the computational results are compatible to the actual flood event. The computational 

results for Case FDB-C in particular indicate a potential risk of serious flooding in the 

downstream area, even when the reservoir water is released separately from two 

embankments. 

 

At present, Fujinuma Reservoir remains damaged. Restoration of the reservoir will be 

necessary in order to secure an irrigation water supply for rice farming in the study area. 

However, the computational results clearly show flood risks for the dam downstream area and 

indicate that extensive discussion is necessary so as to carefully manage Fujinuma Reservoir 

in order to minimize hazard and failure risk. 

 

6. Conclusions 

The present study developed a new numerical scheme for flash floods in channel networks. 

The DFVM scheme was first presented for efficient numerical resolution of the 1-D SWEs in 

locally one-dimensional open-channel networks. The continuity equation was formulated in 

an integral form so that flows around junctions could be handled consistently. The DFVM 

scheme uses a novel staggered discretization method, in which a vertex-centered FVM is 

applied to the continuity equation, while an upwind cell-centered FVM is applied to the 

momentum equation, thereby avoiding conflicting numbers of equations and unknowns. A 

semi-implicit discretization is employed in the evaluation of the friction slope term in order to 

cope with flows of extremely shallow water depth. Accuracy of the scheme was verified using 

a series of test problems. The scheme successfully produced numerical solutions for the dam 

break problems in multiply connected channel networks, which were challenging problems. 

Finally, the DFVM scheme was applied to the numerical simulation of the flash flood 

resulting from the Fujinuma Dam failure considering three scenarios, in which only the main 
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embankment failed, only the auxiliary embankment failed, and both the main and auxiliary 

embankments failed simultaneously. Flow channels from Fujinuma Reservoir to the 

downstream rivers were modeled as a computational domain, which involves non-prismatic 

and compound channel cross-sections, steep slopes, channel bifurcations and conversions, and 

sharp bends. The DFVM scheme computed flood propagations in the domain reasonably well. 

The computational results indicated a high potential flood risk of the reservoir downstream 

area and suggested the necessity of careful planning with respect to the restoration of 

Fujinuma Dam. 

 

The numerical scheme presented in the present study is simple, robust, and computationally 

efficient. Rapidly varying flows in channel networks are consistently dealt with and are 

adequately simulated without numerical failure. The proposed scheme is considered to serve 

as an effective tool for numerical simulation and risk analysis of flash floods caused by dam 

failures. 
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Table 1: Dimensions of the main and auxiliary embankments. 

Dam dimension Main embankment Auxiliary embankment 

Crest height (m) 18.5 15.0 

Crest length (m) 133 60 

Crest width (m) 6 n.a. 

Slope gradient on the upstream side 1:2.8 n.a. 

Slope gradient on the downstream side 1:2.5 n.a. 

n.a. Not available 

 

 

Figure 1: Schematic diagram of  ,B y r  for the continuity equation (4). 
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Figure 2: Schematic diagrams of a regular mesh and a dual mesh. 

 

Figure 3: Comparison of the analytical and computed discharges per unit width solving the 

tidal wave problem solving the complex bathymetry. 

 

Figure 4: Comparison of the exact and computed water surface profiles of the dam break 

problems in a rectangular channel (Case DB-A). 
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Figure 5: Comparison of the exact and computed velocity distributions of the dam break 

problems in a rectangular channel (Case DB-A). 

 

 

Figure 6: Comparison of the exact and computed water surface profiles of the dam break 

problems in a rectangular channel (Case DB-B). 
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Figure 7: Comparison of the exact and computed velocity distributions of the dam break 

problems in a rectangular channel (Case DB-B). 

 

 

Figure 8: Comparison of the exact and computed water surface profiles of the dam break 

problem in a triangular channel. 
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Figure 9: Comparison of the exact and computed velocity distributions of the dam break 

problem in a triangular channel. 

 

 

Figure 10: Comparisons of the exact and computed water surface profiles for the Thacker’s 

test case. 
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Figure 11: Comparisons of the exact and computed discharges for the Thacker’s test case. 

 

 

Figure 12: Schematic diagram of the dam break problem in a non-prismatic experimental 

channel. 
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Figure 13: Comparisons of the computed and measured water depths at each observation 

point for the dam break problem in a non-prismatic experimental channel. 

 

 

Figure 14: Schematic diagram of the dam break problem with a triangular bump. 
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Figure 15: Comparisons of the computed and measured water depths at each observation 

point for the dam break problem with a triangular bump. 
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Figure 16: Schematic sketch of the experimental channel for the dam beak problems in a 

non-prismatic and non-flat channel. 
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Figure 17: Comparisons of the computed, emulated, and measured water depths at each 

station with the slope 0S  . 

 



39 

 

 

Figure 18: Comparisons of the computed, emulated, and measured water depths at each 

station with the slope 0.01S  . 



40 

 

 

 

Figure 19: Schematic diagram of the hypothetical multiply connected channel network with 

key nodes. 

 

 

Figure 20: Comparisons of the computed and reference water surface profiles in reaches A-

B-C-D-E and B-F-D at each time step for the dam break problem in a multiply connected 

channel network with a rectangular cross-section. 
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Figure 21: Comparisons of the computed and reference water surface profiles in reaches A-

B-C-D-E and B-F-D at each time step for the dam break problem in a multiply connected 

channel network with a triangular cross-section. 

 

 

Figure 22: Map of the study area. 
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Figure 23: Sketch of Fujinuma Dam. 

 

 

Figure 24: Schematic diagram of the computational domain with key nodes for the flood 

caused by the Fujinuma Dam failure. 

 

 

Figure 25: Schematic diagram of each ch annel cross-section in the study area. 
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Figure 26: Hydrographs at nodes D, F, and H for each case. 
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Figure 27: Water surface profiles in the channel network at each time step for Case FDB-C. 
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Figure 28: Inundation time distribution in the channel network for each case. 
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Figure 29: Inundation map for each case. 


