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We compute the probability distribution P (N) of the net-baryon number at finite temperature and 
quark-chemical potential, μ, at a physical value of the pion mass in the quark-meson model within the 
functional renormalization group scheme. For μ/T < 1, the model exhibits the chiral crossover transition 
which belongs to the universality class of the O (4) spin system in three dimensions. We explore the 
influence of the chiral crossover transition on the properties of the net baryon number probability 
distribution, P (N). By considering ratios of P (N) to the Skellam function, with the same mean and 
variance, we unravel the characteristic features of the distribution that are related to O (4) criticality 
at the chiral crossover transition. We explore the corresponding ratios for data obtained at RHIC by the 
STAR Collaboration and discuss their implications. We also examine O (4) criticality in the context of 
binomial and negative-binomial distributions for the net proton number.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Fluctuations of conserved charges are promising observables 
for exploring critical phenomena in relativistic heavy ion colli-
sions [1–4]. A particular role is attributed to higher order cumu-
lants of the net baryon number and electric charge fluctuations, 
which in a QCD medium can be negative near the chiral transi-
tion [5–7].

At physical values of quark masses, the phase transition in QCD 
is expected to change from a crossover transition at small values 
of the baryon chemical potential to a first-order transition at large 
net baryon densities. The first-order chiral phase transition, if it 
exists, then begins in a second-order critical point, the critical end 
point (CEP) [8]. Owing to the divergent correlation length at the 
CEP [7], and the spinodal phase separation in a non-equilibrium
first-order transition [9], one expects large fluctuations of the net-
baryon number in heavy ion collisions, at beam energies where the 
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system passes through the first-order phase boundary or close to 
the CEP.

The conjectured existence of a CEP in the QCD phase diagram 
has so far not been confirmed by lattice QCD calculations (LQCD) 
[10,11]. At small values of the quark chemical potential, μq/T < 1, 
LQCD exhibits a chiral crossover transition. There are indications 
that, in the chiral limit for light quarks, the QCD transition be-
longs to the universality class of 3-dimensional O (4) spin sys-
tems [12,13]. Thus, a promising approach for probing the phase 
boundary in heavy ion collisions, is to explore the fluctuations 
of the chiral phase transition, assuming O (4) criticality. Owing to 
the proximity of the chemical freeze-out to the chiral crossover at 
small values of the baryonic chemical potential, one may expect 
that the critical fluctuations are reflected in the data on conserved 
charges [14]. A baseline for the cumulants of charge fluctuations is 
provided by the hadron resonance gas (HRG) model, which repro-
duces the particle yields at chemical freeze-out in heavy ion col-
lisions [15], as well as the LQCD equation of state in the hadronic 
phase [16,17].

At the CEP, which is expected to belong to 3d Z(2) universality 
class, the second and higher order cumulants diverge. By con-
trast, at a chiral phase transition belonging to the O (4) universality 
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class, at vanishing baryon chemical potential, low-order cumulants 
remain finite, while the sixth and higher order cumulants diverge.1

For non-zero quark masses, the divergences are replaced by a rapid 
variation of the cumulants near the crossover temperature, includ-
ing changes of sign [18].

The fluctuations of the net-baryon number, more precisely of 
the net-proton number, were measured in heavy ion collisions by 
STAR Collaboration at RHIC [19–22]. Data on the mean (M), vari-
ance (σ ), skewness (S) and kurtosis (κ ) of the net-proton number 
were obtained in a broad energy range and for different central-
ities. These observables are linked to the cumulants χn of the 
net-baryon number, and are accordingly modified by the critical 
chiral dynamics.

The most recent STAR data show that, while the ratio σ 2/M =
χ2/χ1 is consistent with the HRG result in central collisions, dif-
ferences are found in the products Sσ = χ3/χ1 and κσ 2 = χ4/χ2. 
The deviations in the latter are small at the top RHIC energy, in-
crease with the order of the cumulants at fixed collision energy, 
and show a non-monotonic dependence on the energy with a 
maximum at 

√
sN N � 19 GeV. In the O (4) universality class one 

expects2 χ4/χ2 < 1, while in Z(2) this ratio is expected to be 
larger than unity [23]. Thus, the systematics of the ratios of cu-
mulants in central Au–Au collisions, as measured by STAR [22], 
indicate that the observed deviations of the net proton number 
fluctuations from the HRG values may be attributed to O (4) criti-
cality at the phase boundary, at least for 

√
sN N ≥ 19 GeV.

The cumulants of a conserved charge are given by appropriate 
combinations of moments of the corresponding probability distri-
bution. Thus, the behavior of cumulants near criticality must be 
reflected in the properties of the probability distribution. Moreover, 
it is expected that the critical behavior of the probability distribu-
tion depends on the universality class. Indeed, we have recently 
shown, that the structure of the probability distribution for the 
net baryon number depends on the properties of the critical chiral 
fluctuations [23,24]. In particular, we have argued, that at van-
ishing chemical potential, the residual O (4) critical fluctuation at 
physical pion mass leads to narrowing of the probability distribu-
tion relative to the Skellam function. This corresponds to a negative 
structure of the sixth order cumulant at the chiral crossover tran-
sition [24].

In this paper, we extend our previous studies to non-zero 
chemical potential and propose a method for identifying the char-
acteristic properties of the net baryon probability distribution, 
which are responsible for the critical behavior of the cumulants at 
the chiral transition. We apply this method to the net proton prob-
ability distributions obtained by the STAR Collaboration in central 
Au–Au collisions at 

√
sN N ≥ 19 GeV. We also critically examine 

the question whether O (4) criticality can be captured by assum-
ing that the baryon and antibaryon multiplicities are described by 
binomial or negative binomial distributions.

In this paper, we show that the (suitably rescaled) ratio of the 
net baryon probability distribution to the corresponding Skellam 
function reveals the critical narrowing of the probability distribu-
tion, which is characteristic for the O (4) scaling.

2. The net-baryon number probability distribution

In the grand canonical ensemble specified by temperature T , 
subvolume V and chemical potential μ, the probability distribu-
tion for the conserved charge N , is given by

1 For μ �= 0, diverging cumulants appear already at third order.
2 Although the results of [23] were obtained in the chiral limit, it is plausible that 

they remain valid also for physical values of the quark masses.

P (N; T , V ,μ) = Z(T , V , N)eμN/T

Z(T , V ,μ)
, (1)

where the canonical partition function Z(T , V , N) is obtained e.g. 
by a projection of the grand partition function Z(T , V , μ),

Z(T , V , N) = 1

2π

2π∫
0

d

(
μI

T

)
e−iN

μI
T Z(T , V ,μ = iμI ). (2)

In the HRG the probability distribution of the net-baryon num-
ber is, within the Boltzmann approximation, given by the Skellam 
function [21,25]

P S(N) =
(

b

b̄

)N/2

IN(2
√

bb̄ )e−(b+b̄) (3)

where b = 〈Nb〉 and b̄ = 〈Nb̄〉 are the thermal averages of the num-
ber of baryons and anti-baryons, respectively.

The HRG model reproduces the particle yields in heavy ion col-
lisions in a broad energy range from SIS to LHC. Furthermore, it 
describes the equation of state obtained in LQCD, as well as the 
first and second order cumulants of the net baryon number for 
temperatures below the chiral crossover temperature. On the other 
hand, as suggested in [18], the deviation of higher order cumulants 
and their ratios from the HRG results provides a potential signa-
ture for criticality at the phase boundary.

These considerations indicate, that the probability distribution 
of the HRG, the Skellam function, offers an appropriate baseline 
for P (N). Indeed, for small N , where the probability distribution is 
fixed by the non-critical lowest order cumulants the Skellam func-
tion provides a good approximation to P (N). On the other hand, 
for large N the two distributions differ, since the critical fluctua-
tions modify the tail of the distribution, which in turn determines 
the higher cumulants. Thus, it is natural to consider the Skellam 
function as a reference for identifying criticality in the probability 
distribution of the net-baryon number [21]. Specifically, we show 
that the ratio of P (N) to the Skellam function exposes the effect 
of critical fluctuations.

We extract the characteristic features of the probability distri-
bution near the chiral crossover transition within the O (4) uni-
versality class by applying the Functional Renormalization Group 
(FRG) approach to the quark-meson (QM) model [26–28]. The QM 
model exhibits the relevant chiral symmetry of QCD, and belongs 
to the same O (4) universality class [29,30].

The Lagrangian density in the QM model reads

L = q̄
[
iγμ∂μ − g(σ + iγ5 	τ · 	π)

]
q + 1

2
(∂μσ )2 + 1

2
(∂μ 	π)2

− 1

2
m2φ2 + λ

4
φ4 − hσ , (4)

where q and q̄ denote the quark and anti-quark fields coupled 
with the O (4) chiral meson multiplet φ = (σ , 	π). The last three 
terms in Eq. (4) constitute the mesonic potential with the symme-
try breaking term.

The thermodynamic potential is calculated in the QM model, 
within the FRG approach [26]. Applying the optimized regulator 
to the exact flow equation for the effective average action in the 
local potential approximation [26], the flow equation for the scale 
dependent thermodynamic potential density Ωk reads [5]

∂kΩk(ρ) = k4

12π2

[
3

Eπ

{
1 + 2nB(Eπ )

} + 1

Eσ

{
1 + 2nB(Eσ )

}

− 24

Eq

{
1 − nF

(
E+

q

) − nF
(

E−
q

)}]
, (5)
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Fig. 1. The ratio of the probability distribution obtained in the quark-meson model P FRG(N) and the Skellam distribution P S (N) with the same mean and variance as P FRG(N). 
The left panel (a) shows the ratio at μ = 0 for different temperatures T /Tpc , expressed in units of the pseudocritical temperature Tpc , while the right panel (b) shows the 
same ratio at μ = 50 MeV. The quantities δN and N6 are introduced in the text.

where ρ = (σ 2 + 	π2)/2 is the reduced field variable and nF and 
nB are the Fermi and Bose distribution functions, respectively. 
The single particle energies of π , σ and q are given by: Eπ =√

k2 + Ω̄ ′
k , Eσ =

√
k2 + Ω̄ ′

k + 2ρΩ̄ ′′
k , and E±

q = √
k2 + 2g2ρ ± μ, 

where Ω̄ ′
k and Ω̄ ′′

k denote the first and the second derivatives of 
Ω̄k = Ωk + h

√
2ρk , with respect to ρ .

The full thermodynamic potential is given by the minimum of 
Ωk→0(ρ). We solve the flow equation (5) numerically by mak-
ing use of the Taylor expansion method [5,31]. At the ultravi-
olet cutoff scale k = Λ = 1 GeV, the initial condition ΩΛ(ρ) is 
fixed so as to reproduce the physical pion mass mπ = 135 MeV, 
and the sigma mass mσ = 640 MeV. The strength of the Yukawa 
coupling is fixed to be g = 3.2 by the constituent quark mass 
Mq(T = μ = 0) = gσk=0(T = μ = 0) = 300 MeV, with σk=0(T =
μ = 0) = fπ = 93 MeV.

To avoid the unphysical behavior of thermodynamic quantities 
at high temperatures, we include the higher momentum contri-
butions, beyond the cutoff scale Λ, by accounting for the μ- and 
T -dependent thermodynamic potential obtained through the flow 
equation for a non-interacting gas of quarks and gluons [5,32]. 
The probability distribution P (N) is then obtained from Eqs. (1)
and (2), with Z = exp(−Ωk→0/T ).

In Ref. [24], the FRG approach was applied to compute P (N)

of the net-baryon number within the QM model at μ = 0. In the 
present paper, we extend these studies to finite chemical potential 
and identify the qualitative structures of the net baryon proba-
bility distribution which are due to O (4) criticality at the chiral 
crossover transition. We also evaluate the ratio of the data on the 
net proton probability distribution [22] to the Skellam function and 
discuss the results in the light of the theoretical considerations.

In general, the probability distribution P (N) depends on the 
volume parameter. However, as shown in [24], the volume de-
pendence of the re-scaled distribution 

√
V P (N/

√
V ) is strongly 

reduced. This approximate scaling is valid for both the Skellam 
function, and the P (N) calculated within the QM model for suf-
ficiently large V T 3, and is exact for a Gaussian distribution. Thus, 
in the ratios of P (N) and Skellam, the leading volume dependence 
is canceled. At finite density where M > 0, the scaling property 
holds for δN = N − M , after shifting the mean.

In order to compute the cumulants χn reliably, knowledge 
of the probability distribution P (N) for sufficiently large |δN| =
|N − M| is needed. For a given order n, it is sufficient to know 
the distribution P (N) for |δN| ≤ Nn , where Nn grows with n and 
with the volume of the system [24]. In the O (4) universality class 
and at μ = 0, χ6 is the first cumulant which exhibits criticality. 
Thus, to be able to identify criticality in the distribution, we need 

to know P (N) in the range needed to obtain a converged result 
for χ6, i.e. for |δN| < N6. For a given volume, N6 is determined 
by requiring that the sixth cumulant of the Skellam function is re-
produced. As expected, we find that N6 to a good approximation 
scales with

√
V . Thus, in a plot of the ratio of P (N) to the Skel-

lam function as a function of δN/N6, criticality is characterized by 
deviations from unity for |δN/N6| � 1.

In Fig. 1(a) we show the ratio of P FRG(N), computed in the 
quark-meson model at μ = 0 within the FRG approach [24], and 
the Skellam distribution P S(N), with the same variance, as a func-
tion of δN/N6. The results are shown for different temperatures 
T /Tpc , where Tpc is the chiral crossover or pseudocritical temper-
ature.

This ratio exhibits a characteristic dependence on tempera-
ture, as Tpc is approached from below. For T � Tpc , the ratio 
P FRG(N)/P S(N) is less than unity, indicating a narrowing of the 
probability distribution for larger |δN|, owing to O (4) critical-
ity. Indeed, the decrease of the probability ratio for δN/N6 � 1
near Tpc is responsible for the negative values of χ6, which are 
characteristic of the chiral crossover transition in the O (4) uni-
versality class [24]. We note, that the narrowing of P (FRG)(N) for 
smaller values of δN/N6, seen in Fig. 1(a), can be partly attributed 
to the non-critical reduction of χ4. However, the smoothly decreas-
ing tail of P (N), close to |δN/N6| � 1, is entirely due to O (4)

criticality, resulting in the characteristic shape and the negative 
structure of χ6. Consequently, shrinking probability distribution, 
relative to the Skellam one, can indeed be considered as a nec-
essary condition for O (4) criticality [24].

At finite chemical potential, the probability distribution P (N) of 
the net-baryon number is no longer symmetric around the mean. 
Thus, it is not a priori clear, how the distribution is modified by 
O (4) criticality.

The asymmetry of P (N) at μ �= 0 appears due to the fugac-
ity factor eμN/T in Eq. (1), which suppresses the contribution from 
N < 0 and enhances that from N > 0. Consequently, at finite chem-
ical potential, the tail of the probability distribution P (N) is en-
hanced, and criticality is expected to appear at smaller |δN|, and 
thus also in lower order cumulants.

Fig. 1(b) shows the ratio P FRG(N)/P S (N) obtained in the QM 
model at μ = 50 MeV. Below the pseudo critical temperature Tpc , 
the distribution is asymmetric, with an enhanced tail relative to 
the Skellam function for positive and a suppressed tail for negative 
values of δN . However, as Tpc is approached, there is a qualitative 
change of the properties of the distribution, resulting in a narrow-
ing for positive δN . Moreover, a comparison of Fig. 1(a) and (b) 
shows that at finite μ the narrowing of P (N) begins at smaller 
values of δN/N6. The stronger narrowing of the distribution is 
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Fig. 2. The probability ratio P FRG(N)/P S (N) in a set of points in the (T , μ) plane. 
The points lie on an approximate freeze-out line, specified in the text.

consistent with the fact that at finite μ, already the third cumu-
lant exhibits O (4) critical behavior [18]. On the other hand, for 
negative δN the ratio of the distributions exhibits the opposite be-
havior, reflecting the asymmetry of the probability distribution at 
non-zero net baryon density.

At finite chemical potential and at large |δN|, the calculations 
of P (N) are difficult due to the oscillating nature of the integrand 
in the projection on the canonical partition function (2). The nu-
merical integration yields reliable results only up to δN/N6 ≤ 0.6. 
Consequently, the complete χ6 cannot be reconstructed due to in-
sufficient information on the tail of the distribution. Nevertheless, 
the narrowing of the probability ratio shown in Fig. 1(b) clearly 
exhibits the characteristic features of P (N), which are due to O (4)

criticality. Evidently the deviation of P FRG(N)/P S(N) from unity 
near Tpc(μ) will grow with increasing |δN/N6| and μ.

3. O (4) criticality in heavy ion collisions

In heavy ion collisions, particle yields, charge densities and 
their variance are described consistently by the HRG model on the 
same chemical freeze-out line in the (T , μB )-plane [14,22,33]. For 
a given collision energy one can identify a unique point on the 
freeze-out line. If the freeze-out takes place sufficiently close to the 
chiral crossover transition, the critical fluctuations are expected to 
leave a characteristic imprint on the cumulants and on the corre-
sponding probability distribution.

In Fig. 2 we illustrate the expected structure of the probabil-
ity distribution at chemical freeze-out by showing the QM model 
results for P FRG(N)/P S (N) at a set of points in the (T , μ) plane. 
They lie on the approximate freeze-out line, defined by requiring 
the same variance per unit volume of the net baryon number as in 
the μ = 0 point. The μ dependence of the ratios, with a narrow-
ing of the distribution for positive and a broadening for negative 
δN with increasing μ is characteristic for the critical region. As 
shown in Fig. 1, the distribution in a non-critical system exhibits 
the opposite trend, with a broadening for positive and a narrowing 
for negative δN .

In general, the measurement of higher order cumulants, which 
are particularly sensitive to criticality, need high statistics owing to 
the increasing importance of the tail of the distribution. Further-
more, the experimental conditions, such as acceptance corrections, 
must be under control in order to make a meaningful comparison 
of the measured cumulants and their probability distribution with 
theoretical predictions [34–36].

Recently the STAR Collaboration has published extensive results 
on the probability distribution of the net-proton number �Np =

Fig. 3. Ratios of the efficiency uncorrected probability distributions of the net-proton 
number P (�Np) by STAR Collaboration [22] to the Skellam function P S (�N p) with 
the same mean and variance as P (�Np). The data are for the most central Au–Au 
collisions, with the number of events Nev > 100.

Np − Np̄ and the corresponding cumulants up to the fourth order, 
obtained in heavy ion collisions [22]. Also preliminary results on 
the sixth order cumulant have been presented by STAR for several 
collision energies and centralities [36].

While the cumulant ratios measured by STAR [22] were effi-
ciency corrected and tested against possible modifications due to 
volume fluctuations and accepted kinematical windows, the data 
on the probability distributions of the net proton number are un-
corrected. Furthermore, in the model calculations, the net baryon 
number rather than the net proton number measured by the STAR 
Collaboration is considered. We assume, that the criticality due 
to chiral symmetry restoration, which appears in the net baryon 
number is also reflected in fluctuations of the net proton number. 
However, as shown in Refs. [37] and [38], the quantitative differ-
ences between cumulants of the net baryon and the net proton 
number are not excluded. Therefore, the significance of a direct 
comparison of model predictions with the measured probability 
distribution is a priori not clear-cut. Here we assume the isospin 
invariance such that the net baryon number fluctuations are equiv-
alent to those of net proton number and invoke the generic prop-
erties of the probability distribution of the net baryon number due 
to O (4) criticality found in the QM model persist in the net proton 
number probability distribution.

Nevertheless, we have verified that the data on P (�Np) ob-
tained by STAR [22] are dominated by physics. The contribution of 
volume fluctuations to the data is small, as demonstrated by the 
approximate scaling of P (�Np) with the standard deviation σ in 
central and semi-central collisions, for 

√
sN N ≥ 19 GeV. This scal-

ing holds also for the Skellam and P (FRG)(N) distributions for suffi-
ciently large volumes. Moreover, the ratios of cumulants computed 
directly from the uncorrected P (�Np) data [22] exhibit similar 
systematics as the efficiency corrected ratios. These tests indicate 
that the data may yield at least a qualitative indication whether 
the measured distribution exhibits criticality or not.

In Fig. 3 we show the probability ratio P (�Np)/P S(�Np) ob-
tained from the uncorrected data [22] in the highest centrality bin, 
for 

√
sN N = 200, 62.4, 39, 27 and 19.6 GeV. The probability ratio is 

constructed using the same method as in Fig. 1. In order to avoid 
large uncertainties, we have restricted the data to those with more 
than 100 events. Consequently, the probability distributions are 
limited to |δN/N6| < 0.5. This implies, that the present statistics 
does not allow for a reliable estimate of the sixth order cumulant. 
Nonetheless, the ratios in Fig. 3 clearly exhibit a structure qualita-
tively similar to that shown in Figs. 1 and 2 which is a reflection 
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of the underlying O (4) criticality. In particular, the characteristic 
narrowing of the probability distribution relative to the Skellam 
function for positive δN , and early drop of the ratio below unity 
for 

√
s = 19.6 GeV, are characteristic signatures for O (4) criticality 

at non-zero chemical potential.
There are several potential contributions to the cumulants and 

the probability distribution from sources other than critical fluc-
tuations [37,39–41], as well as experimental issues e.g. regarding 
efficiency corrections [42]. Thus, a final conclusion on the critical-
ity of P (�Np) can be drawn only once the role of these effects has 
been sorted out.

In [22], the cumulant ratios Sσ and κσ 2 are analyzed with 
efficiency and centrality bin width corrections. By constructing 
Sσ and κσ 2 from the uncorrected P (N) data discussed above, 
we have found that the deviations from Skellam distribution are 
slightly smaller than that seen in the corrected ratios. However 
the systematics and the energy dependence are almost the same. 
Therefore, we regard the results shown in Fig. 3 as the lower limit 
for possible deviations from the Skellam function. We stress, that 
the present method provides a transparent framework, where such 
corrections can be included. If the narrowing of P (�Np) relative 
to the Skellam, as seen in Fig. 3, is still observed after these cor-
rections are included, then this will provide potential evidence for 
remnants of the chiral crossover transition in experimental data.

4. O (4) criticality and binomial distributions

In order to reveal the O (4) criticality in the net baryon num-
ber probability distribution and in the corresponding cumulants 
we have used the Skellam distribution as a reference. The Skellam 
function is the natural choice, since in heavy ion collisions data on 
particle yields, as well as the QCD thermodynamics, are well re-
produced by the hadron resonance gas partition function. In the 
HRG, baryons multiplicity is distributed according to Poisson and 
the net-charge distribution is then given by the Skellam function.

However, it has been shown that the lowest cumulants of the 
net proton fluctuations and the corresponding probability distribu-
tions obtained by the STAR Collaboration are consistent also with 
negative binomial (NBD) or binomial (BD) distributions [22,43]. 
Thus, it is of interest to verify to what extent these distributions 
can describe critical fluctuations at the chiral transition. This study 
can be done within the QM model, where the O (4) critical struc-
ture of the cumulants and the corresponding probability distribu-
tion are manifest.

In the case of NBD or BD, the net-baryon probability distribu-
tion is constructed assuming independent emission of baryons and 
antibaryons,

P NBD(n; r, p) = Γ (n + r)

n!Γ (r)
pn(1 − p)r, (6)

P BD(n; r, p) = Γ (r + 1)

n!Γ (r − n + 1)
pn(1 − p)r−n, (7)

with n being the number of baryons or antibaryons. For μ = 0, the 
property of the net-baryon P (N) is uniquely determined by two 
parameters (r, p), characterizing the NBD or BD. Using the additive 
property of the cumulants, one finds

χNBD
2 = 2rp

(1 − p)2
, (8)

χNBD
4 = 2rp(6p + (1 − p)2)

(1 − p)4
, (9)

χNBD
6 = 2rp(1 + 26p + 66p2 + 26p3 + p4)

(1 − p)6
, (10)

Fig. 4. Ratios of cumulants computed in the quark-meson model at μ = 0 within the 
FRG approach. Also shown is the χ6/χ2 ratio obtained from the binomial (BD) and 
negative binomial (NBD) distributions with parameters fixed so as to reproduce the 
model results for χ2 and χ4. The temperature is normalized to the pseudocritical 
temperature Tpc .

and

χBD
2 = 2rp(1 − p), (11)

χBD
4 = 2rp(1 − p)

(
1 − 6p + 6p2), (12)

χBD
6 = 2rp(1 − p)

(
1 − 30p + 150p2 − 240p3 + 120p4). (13)

We construct the reference NBD/BD, which has the same χ2
and χ4 as the O (4) distribution obtained in the QM model within 
the FRG method.3

From Eqs. (8)–(13), it is clear, that χ4/χ2 > 1 for NBD and 
χ4/χ2 < 1 for BD. For χ4/χ2 = 1, both distributions are reduced 
to the Skellam function for r → ∞ and p → 0. Therefore, we use 
NBD for temperatures where χ4/χ2 > 1 and BD for χ4/χ2 < 1. 
This implies, in particular, that NBD cannot describe fluctuations 
around Tpc , where χ4/χ2 < 1.

Fig. 4 shows the ratios χ4/χ2 and χ6/χ2 obtained in the QM 
model as functions of temperature near Tpc and at μ = 0. Also 
shown are the corresponding ratios obtained from the NBD/BD dis-
tributions, where the parameters (r, p) are fixed so as to reproduce 
χ2 and χ4. Clearly the ratio χ6/χ2, in particular the negative val-
ues near Tpc , is not reproduced by the binomial distribution. We 
therefore conclude that the NBD/BD distributions clearly fail to de-
scribe the critical fluctuations near the chiral transition.

At μ �= 0, the baryon and antibaryon distributions are differ-
ent, so that there are two sets of parameters (r, p) in the NBD/BD, 
one for protons and one for antiprotons. Thus, in principle, one 
may construct a reference distribution for the net baryon number, 
P (N), which reproduces the four leading cumulants,4 i.e. χn with 
n = 1, 2, 3, 4, ignoring the fact that at non-zero μ, χ3 and χ4 may 
be affected by criticality. We stress that it is unclear whether these 
parameters also yield a good description of the baryon and an-
tibaryon distributions. Moreover, also in this case, the NBD/BD dis-
tributions that reproduce the leading cumulants, cannot describe 
higher order ones, χn with n > 4, nor the tail of distribution, P (N). 
Thus, an unambiguous verification of critical fluctuations in heavy 
ion collisions requires knowledge of the tail of net proton distri-
bution P (N), so that the sixth order cumulant can be determined 

3 We assume that the NBD/BD distribution provides an optimal description of the 
non-critical observables, the baryon and antibaryon distributions as well as the first 
two non-zero cumulants. In general, the situation is less favorable [43].

4 Note, however, that −1/2 ≤ χ4/χ2 < 1 and −7/8 ≤ χ6/χ2 < 1 in BD.
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reliably, although at non-zero μ, an indication of criticality may be 
exposed in cumulants of lower order.

5. Concluding remarks

We have discussed the properties of the net-baryon number 
probability distribution P (N) near the chiral crossover transition at 
vanishing and at finite baryon chemical potential. The critical prop-
erties of P (N) in the quark-meson model were obtained within the 
functional renormalization group approach. In the chiral limit this 
model exhibits a second order phase transition belonging to O (4)

universality class in three dimensions.
At the physical value of the pion mass, the O (4) criticality is 

reflected in the tail of the distribution P (N). We have shown that 
the ratio of P (N) to the Skellam function P S (N), constructed with 
the same mean M and variance as P (N), clearly exhibits the influ-
ence of the O (4) criticality on the probability distribution.

We have shown that at vanishing chemical potential there is a 
characteristic reduction of this ratio below unity near the phase 
boundary. At finite chemical potential, the ratio P (N)/P S (N) ex-
hibits a characteristic asymmetry in δN = N − M . For δN < 0, the 
probability ratio is enhanced near the O (4) pseudocritical point, 
while for δN > 0 it is suppressed. The asymmetry of the distribu-
tion is enhanced with increasing μ along the freeze-out line.

The relevance of our results for heavy ion experiments was dis-
cussed. In particular, we have computed the corresponding prob-
ability ratios for the efficiency uncorrected net proton number 
obtained by the STAR Collaboration, and discussed their interpreta-
tion. We have also demonstrated that O (4) criticality, in particular 
its reflection in higher cumulants of the net baryon number, is not 
consistent with a description of the baryon and antibaryon multi-
plicities in terms of binomial or negative-binomial distributions.

Finally we stress that an unambiguous identification of O (4)

chiral criticality on the phase boundary requires high statistics data 
on the net proton probability distribution over a range in δN that 
allows a reliable determination of the sixth order cumulant.
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