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ABSTRACT 

A novel automated off-line preconcentration system for trace metals (Al, Mn, Fe, Co, Ni, Cu, 

Zn, Cd, and Pb) in seawater was developed by improving a commercially available 

solid-phase extraction system SPE-100 (Hiranuma Sangyo). The utilized chelating resin was 

NOBIAS Chelate-PA1 (Hitachi High-Technologies) with ethylenediaminetriacetic acid and 

iminodiacetic acid functional groups. Parts of an 8-way valve made of alumina and zirconia in 

the original SPE-100 system were replaced with parts made of polychlorotrifluoroethylene in 

order to reduce contamination of trace metals. The eluent pass was altered for the back flush 

elution of trace metals. We optimized the cleaning procedures for the chelating resin column 

and flow lines of the preconcentration system, and developed a preconcentration procedure, 

which required less labor and led to a superior performance compared to manual 

preconcentration (Sohrin et al., 2008). The nine trace metals were simultaneously and 

quantitatively preconcentrated from ~120 g of seawater, eluted with ~15 g of 1 M HNO3, and 

determined by HR-ICP-MS using the calibration curve method. The single-step 

preconcentration removed more than 99.998% of Na, K, Mg, Ca, and Sr from seawater. The 

procedural blanks and detection limits were lower than the lowest concentrations in seawater 

for Mn, Ni, Cu, and Pb, while they were as low as the lowest concentrations in seawater for 

Al, Fe, Co, Zn, and Cd. The accuracy and precision of this method were confirmed by the 

analysis of reference seawater samples (CASS-5, NASS-5, GEOTRACES GS, and GD) and 

seawater samples for vertical distribution in the western North Pacific Ocean. 
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1. Introduction 

Trace elements and their isotopes (TEIs) in the ocean are important as tracers in 

oceanography, micronutrients and/or toxins in biogeochemistry, and proxies in 

paleoceanography [1]. Recently, an international research program of the marine 

biogeochemical cycles of TEIs, referred to as GEOTRACES, was commenced to determine 

the distributions of key TEIs (such as Al, Mn, Fe, Cu, Zn, Cd, and Pb) and to clarify their 

sensitivity toward changing environmental conditions [2, 3]. While high-resolution 

inductively coupled plasma mass spectrometry (HR-ICP-MS) is a powerful technique in the 

multi-elemental determination of trace metals, major constituents of seawater interfere with 

the precise determination [4]. In a previous paper, we reported a single-step and quantitative 

preconcentration of Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb from open-ocean water, based on 

solid-phase extraction using a NOBIAS Chelate-PA1 resin (Hitachi High-Technologies) [5]. 

This resin consists of hydrophilic polyhydroxymethacrylate beads functionalized with 

ethylenediaminetriacetic acid and iminodiacetic acid [6]. Ethylenediaminetriacetate is an 
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analogue of ethylenediaminetetraacetate and a strong ligand for trace metals. In addition, 

NOBIAS Chelate-PA1 has certain advantages, including the effective removal of alkali and 

alkaline earth metals, low blanks of trace metals, and chemical and physical stability. We 

applied this method for oceanographic studies of trace metals in the Indian Ocean [7], the 

Bering Sea [8], and the Arctic Ocean [9]. The utilization of NOBIAS Chelate-PA1 is growing 

worldwide, not only for GEOTRACES key trace metals [10-13] but also for rare earth 

elements [13-17], Bi [18], Th [19], U [20], and isotopic ratios of trace metals [21-23]. Our 

original method was based on a manual manifold, which required skillful and uninterrupted 

operation. Here, we report a new automated preconcentration system with NOBIAS 

Chelate-PA1 for the quantitative recovery of nine trace metals (Al, Mn, Fe, Co, Ni, Cu, Zn, 

Cd, and Pb). Three methods using automated preconcentration systems with NOBIAS 

Chelate-PA1 have been reported thus far. One method was based on a seaFAST system 

(Elemental Scientific) for the on-line flow-injection ICP-MS determination of Mn, Fe, Co, Ni, 

Cu, and Zn [11]. Another method utilized a house-made, off-line preconcentration system for 

Mn, Co, Ni, Cu, Cd, and Pb [12]. The final method was based on a Dionex ICS3000 

chromatograph for the off-line preconcentration of Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Cd, 

Ag, Pb, and rare earth elements [13]. While these methods utilized small volumes of seawater 

(9–38 mL), our system can handle a larger sample volume and can reduce the relative 

concentrations of blanks and interferents. In addition, while the reported methods adopted 

in-line pH adjustments, the sample pH in this method was adjusted off-line for a precise pH 

control. We utilized ~120 g of seawater, quantitatively recovered the nine metals, and realized 
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the lowest levels of blanks, concentrations of interferents, and detection limits. 

  

2. Materials and methods 

2.1. Reagents and materials 

Deionized water (MQW) purified with a Milli-Q Integral 5 system (Millipore) was 

used to prepare all solutions. Ultra-high purity reagents, including HCｌ, HNO3, acetic acid 

(HOAc), and NH3 (Optima Acids, Fisher Scientific or TAMAPURE AA-10, Tama chemicals), 

were used for the solution preparation and analysis. Standard solutions of trace metals were 

prepared from 1000 mg L–1 standard solutions (Wako Pure Chemical). All solutions were 

prepared on a weight basis in a clean room (class 1000). 

Low-density polyethylene (LDPE) bottles (Nalge Nunc) were used for sample 

storage and solution preparation. The bottles were cleaned in a clean hood and the operator 

wore polyethylene gloves (Saniment, AS ONE) to avoid contamination. The bottles and caps 

were soaked overnight in an alkaline detergent (5% Scat 20-X, Nacalai Tesque), rinsed with 

tap water, soaked overnight in 4 M HCl (reagent grade, Wako), and rinsed with MQW. The 

bottles were then filled with 1 M HF (Ultrapur-100, Kanto Chemical), loosely caped, sealed 

in a polyethylene bag, heated to ~80°C in a microwave oven, and left to stand on a bench 

overnight. The bottles were heated again, tightly capped, placed upside down on a bench 

overnight, and subsequently rinsed with MQW. Because the polypropylene caps contain some 

Al, it is essential to clean the inside of the caps with HF to reduce Al contamination. 

Subsequently, the bottles and caps were similarly cleaned with hot 1 M HNO3 (Ultrapur-100), 
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and finally rinsed thoroughly with MQW in a clean room. Micropipette tips were cleaned in a 

similar fashion as the LDPE bottles. 

The chelating resin column used in this study was Nobias Chelate-PA1 L (Hitachi 

High-Technologies). The resin of 300 mg was sandwiched with frits of high-density 

polyethylene (FILDUS Type F, Mitsubishi Plastics), and was sealed in a cartridge of 

polypropylene (NOVATEC-PP, Japan Polypropylene). Prior to use, the column was 

successively cleaned with 25 mL each of acetone (reagent grade), methanol (reagent grade), 

MQW, 1 M HCl-0.01 M H2O2 (reagent grade), 1 M HF (Ultrapur-100), MQW, 0.5 M NH3 

(Ultrapur-100), and MQW by sending the solutions through the column at a flow rate of ~5 

mL/min using a polypropylene syringe. 

 

2.2. Automated preconcentration system 

An automated solid-phase extraction system (SPE-100, Hiranuma Sangyo) was 

modified for the application to open ocean seawater majorly in the following two points. The 

schematic configuration of the modified system is shown in Fig. 1. (1) The original system 

utilized alumina and zirconia parts in the 8-way valve, which led to the contamination of trace 

metals in preliminary experiments. According to our request, Hiranuma Sangyo prepared new 

parts made of polychlorotrifluoroethylene. These parts were initially cleaned with an alkaline 

detergent and 4 M HCl and were installed in the system. (2) The flow line of the eluent was 

also modified for the back flush elution of the trace metals, which effectively reduced the 

amount and concentration of the eluent. 
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The flow line was primarily composed of polytetrafluoroethylene-based materials, 

while a potential source of contamination was the sending unit, which has a double plunger 

pump composed of glass and a 4-way valve composed of alumina and zirconia (Fig. 1). Only 

waste solutions flowed through the sending unit during conditioning and sample loading 

(Table 1). The solution must not remain in the line between the column and the 4-way valve 

in order to avoid contamination from the sending unit. The eluent and eluate never reached 

the sending unit, because the eluent was sucked into a coil tube made of 

polytetrafluoroethylene and flowed backward through the column by sending air with the 

double plunger pump. The Nobias Chelate-PA1 L column was attached to the line with the 

TYGON SE-200 tubing (Saint-Gobain). The system was installed in a clean hood with a 

HEPA filtration unit (Class 100, Pure Space 01, Hokuto Soken). 

The flow line was initially cleaned without attaching the column using 25 mL of 

each of the following reagents: (1) methanol (reagent grade) at 5 mL min–1 successively from 

the six ports of the 8-way valve and from the eluent port; (2) air from the six ports and eluent 

port; (3) 1 M HCl-0.01 M H2O2 (reagent grade) from the six ports; (4) air from the six ports; 

(5) 1 M HCl-0.01 M H2O2 (reagent grade) from the eluent port, with which the line was filed 

overnight; (6) air from the eluent port; (7) 1 M HNO3 (Ultrapur-100) from the six ports; (8) 

air from the six ports; (9) 1 M HNO3 (Ultrapur-100) from the eluent port, with which the line 

was filed overnight; and (10) air from the eluent port. After attaching the precleaned column, 

the flow line was cleaned using the following reagents: (1) 25 mL 0.1 M HCl（TAMAPURE 

AA-10 or Optima Acids）at 1 mL min–1 successively from the six ports of the 8-way valve; 
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(2) 25 mL of MQW at 5 mL min–1 from the six ports; (3) 25 mL of air from the six ports; (4) 

80 mL of 1 M HNO3 (TAMAPURE AA-10 or Optima Acids) at 1 mL min–1 from the eluent 

port; (5) 25 mL of air from the eluent port. The elution blank was examined by determining 

the concentrations of trace metals in the eluent and eluate. The procedural blank was 

examined by using 120 g of MQW as a sample (Supplementary data). When the measured 

values of the blanks were not low enough, the cleaning procedure was repeated. 

 

2.3. Preconcentration procedure 

In order to simultaneously preconcentrate the nine metals, the sample pH must be 

adjusted to 6.00±0.05. Although previous studies using automated systems adopted in-line 

mixing of the buffer and pH adjustments [11-13], it was not optimal because a slight variation 

in the concentration of the added acid for sample preservation causes a significant change in 

the pH. Therefore, we adjusted the sample pH off-line in a clean room. The HAcO-NH4AcO 

buffer (3.6 M) was prepared by mixing 30 g of glacial acetic acid （Optima Acids）, 70 g of 

MQW, and 50 g of 20% NH3 （TAMAPURE AA-10 or Optima Acids）. A 2 g aliquot of the 

buffer was added to 120 g seawater containing HCl or HNO3. The total concentration of 

acetic acid after mixing was ~0.06 M. The sample pH was carefully adjusted to 6.00±0.05 

with 5 M NH3 and 1 M HCl. The pH-adjusted sample was used for the preconcentration as 

soon as possible. The sample should not be transferred into another bottle to prevent 

contamination and the adsorption of trace metals on the bottle wall. 

The optimized preconcentration procedure is shown in Table 1. The sample loading 
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volume was set to 140 mL to load ~120 g of sample and to clean up the line by following ~20 

mL of air. During the elution process, the eluent volume was set to 18 mL, which resulted in 

~15 g of eluate owing to dead space in the elution line. Thus, the concentration factor was ~8. 

The exact concentration factor was calculated based on the weights of the loaded sample and 

eluate. When a preconcentration cycle was carried out, the system was ready for another cycle. 

When a series of preconcentrations were finished, cleaning and 1–3 steps of the conditioning 

process were carried out to clean the line and empty it for suspension. To resume 

preconcentration after the suspension, the program was started from the cleaning process and 

MQW was used as a sample to validate the procedural blank. While some contamination was 

often observed in the first run, the blank became sufficiently low and stable since the second 

run. 

 

2.4. ICP-MS measurements 

A high-resolution ICP mass spectrometer equipped with a magnetic sector mass 

spectrometer (ELEMENT2, Thermo Fisher Scientific) was used for the determination of trace 

metals in the eluate. The measurement conditions are shown in Table 2. Isotopes typically 

used for the determination were 27Al, 55Mn, 56Fe, 59Co, 60Ni, 63Cu, 66Zn, 111Cd, and 208Pb. 

Other isotopes were measured for cross checking, with the exception of mono-isotopes. Al, 

Mn, Fe, Co, Ni, Cu, and Zn were measured in the medium-resolution mode, while Co, Cd, 

and Pb were measured in the low-resolution mode. Polyatomic interferences such as those by 

40Ca16O for 56Fe were negligible in this method. Significant interference was observed for 
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both 111Cd and 114Cd owing to MoO, which cannot be dissolved even at medium resolution. 

This interference was corrected by calculation based on the measured intensities of Mo in 

sample solution and those of MoO and Mo in the Mo standard solution [10, 24]. Also there is 

a potential interference for 114Cd by 114Sn. However, significant difference was not observed 

in data determined with 111Cd and 114Cd. We observed a small peak, possibly of 43Ca16O, near 

the peak of 59Co. Although the interference was not obvious for the measurement of 59Co at 

low resolution in this work, it may be better to use medium resolution for 59Co. The 

concentrations of trace metals were calibrated using external standard solutions prepared with 

1 M HNO3 (TAMAPURE AA-10 or Optima Acids). Further matrix matching was not 

necessary. The standard solutions were measured before and after every few samples to 

correct drifts of the background and the slope of the calibration curve. 

The concentrations of alkali and alkaline earth metals in eluate were determined 

using an ICP-atomic emission spectrometer (ICP-AES, SPECTROBLUE, SPECTRO 

Analytical Instruments) and a quadrupole ICP-MS (Q-ICP-MS, ELAN DRC II, Perkin Elmer) 

by the calibration curve method. 

 

2.5. Seawater samples 

Certified reference materials of nearshore seawater for trace metals, CASS-5 and 

NASS-6, were obtained from the National Research Council, Canada. CASS-5 was collected 

from Halifax Harbor and NASS-6 was collected from Sandy Cove, Nova Scotia. The 

seawater was filtered through a 0.45-µm filter, acidified to pH ~1.6 with HNO3, refiltered 
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through a 0.2-µm filter, and gamma irradiated. Certified values for Mn, Fe, Ni, Cu, Zn, Cd, 

and Pb exist, while only an information value is reported for Co and no data is available for 

Al. 

GEOTRACES open-ocean water reference materials were obtained from US 

GEOTRACES. The used samples were collected at the Bermuda Atlantic Time-Series Study 

station (64.05°W, 31.46°N) in the western North Atlantic Ocean. GEOTRACES GS was 

surface water, while GEOTRACES GD was collected at a depth of 2000 m. These samples 

were filtered through a 0.2-μm filter and acidified with HCl to pH ~1.8 onboard the ship. 

Consensus values for the nine elements are open to the public 

(http://www.geotraces.org/science/intercalibration/322-standards-and-reference-materials). 

Seawater samples for a vertical profile were collected from station TR 16 (160.05°E, 

47.01°N; bottom depth 5224 m) in the North Pacific Ocean during R/V Hakuho Maru 

KH-11-7 cruises using the GEOTRACES Japan clean sampling system [4]. Each seawater 

sample was filtered through a 0.2-μm pore Nuclepore filter (Whatman), acidified with HCl to 

pH ~2.2, and stored in an LDPE bottle at room temperature. 

 

3. Results and discussion 

3.1. Optimization of preconcentration procedure 

The basic properties of Nobias Chelate-PA1 and its application in a manual 

preconcentration system were reported previously [5]. Because the adsorption capacity of 

Nobias Chelate-PA1 for Cu(II) is 0.16±0.01 mmol g–1, the capacity of the Nobias 
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Chelate-PA1 L column is 48 µmol. This value is a measure of the amount of available ligands, 

since Cu has the strongest affinity to these ligands among divalent metal ions. For the target 

metals, namely Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb, the total concentration is less than 

100 nmol kg–1 in seawater, and the total amount is less than 12 nmol in a seawater sample of 

120 g. Thus the capacity of the column is four thousands times larger than the amount of the 

target metals. 

In the previous study, we examined the retention percentage in a pH range of 1–9 

using 20 mL of MQW sample solutions added with a single element or plural elements of ~20 

µmol kg–1 [5]. All the target metals were quantitatively collected at pH values between 6 and 

7. The retention percentage of Al sharply decreased when pH became lower than 6, while the 

collection percentage of alkaline earth metals increased with pH particularly above pH6. In 

this study, we examined the effect of pH on the retention percentage, using 120 g of MQW 

sample solutions that have been added with the target metals as much as the highest 

concentration in seawater (90 pmol kg–1–14 nmol kg–1) and adjusted at pH 5.5–6.6. The 

results are shown in Fig. 2. The nine trace metals were quantitatively collected at pH values 

between 5.5 and 6.2. The collection percentage of Fe decreased above pH 6.2. While these 

results appear to be inconsistent with the previous results, it is likely that the decrease in 

retention of Al under the high concentration and low pH condition is caused by kinetic 

limitation in chelate formation, and the decrease in retention of Fe under the low 

concentration and high pH condition is caused by adsorption of Fe onto surfaces of the bottle 

and concentration system. Thus, we selected an optimum pH of 6.00±0.05 for the quantitative 
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recovery of the nine trace metals and the effective removal of the major cations. Quéroué et al. 

[12] selected pH 6.2 for the preconcentration of trace metals to minimize the recovery of Mo 

that causes interference of MoO on Cd. In this work, the interference of MoO was corrected 

by calculation (Section 2.4.). 

To reduce the concentrations of the major cations in the eluate, it was necessary to 

clean the column with 0.05 M HAcO-NH4AcO buffer (pH 6.00±0.05) after sample loading 

(Step 2, Sample loading process, Table 1). We found that the concentrations of the major 

cations were substantially reduced with the flow of the first 7 mL of buffer, and gradually 

decreased as the amount of the buffer was increased to 40 mL. Because the buffer could be a 

source of contamination of trace metals, we determined the optimum setting as 30 mL at 3 

mL min–1. 

In addition, we examined the effect of the amount of eluent (1 M HNO3) on the 

recovery of the target metals. Al and Fe were quantitatively eluted with 12 g of eluent, while 

other trace metals were quantitatively eluted with 6 g of the eluent at a flow rate of 1 mL min–

1. Therefore, the optimum parameter for the elution process was set as 18 mL at 1 mL min–1 

(Table 1), which resulted in ~15 g of eluate. After the elution was repeated more than 100 

cycles, the performance of Nobias Chelate-PA1 resin did not change significantly. 

 

3.2. Removal of major cations in seawater 

Table 3 summarizes the concentrations of major cations in the eluate for the 

eightfold preconcentration of the trace metals from seawater. The concentrations were less 
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than 30 μmol kg–1. The percentages of the remaining amount of major cations in the eluate 

against the amount in seawater were calculated by a following equation. 

% remaining = {(Celuate × Veluate)/(Cseawater × Vseawater)} × 100 

where Cseawater and Celuate represent concentrations in seawater and eluate, and Vseawater and 

Veluate represent volumes of seawater passed through the column and of eluate, respectively. 

Calculated values were ~1 × 10–3 %. These results indicate that Nobias Chelate-PA1 is highly 

effective in separating trace metals from major cations. The remaining concentrations of 

major cations in this work are less than 17% of those in the manual method [5]. This 

improvement is probably due to the lower dead volume in the automated system. 

Wang et al. [13] reported effects of Mg and Ca on the determination of trace metals 

by HR-ICP-MS. According to their data, Cu was the most sensitive and the signal decreased 

by 60–76% at Mg and Ca concentrations above 0.0025 mM. This effect was not observed 

with our eluate. The interference of CaO on Fe was also not significant in this work. 

 

3.3. Blanks, detection limits, and recoveries 

In order to reduce the blank values of Al and Fe, it was essential to clean the Nobias 

Chelate-PA1 column initially with HF and HCl-H2O2. The latter solution probably reduces 

Fe3+ to Fe2+ resulting in the effective removal of Fe from the column. Previously, a solution of 

HCl-ascorbic acid was used for this purpose. However, we found that some ascorbic acid 

remained in the column after cleaning and caused a decrease in the collection percentage, 

especially for Fe. 
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The procedural blank values were estimated using 120 g of MQW initially acidified 

with hydrochloric acid to achieve a final concentration of 1 × 10–2 mol kg–1 and then adjusted 

to pH 6.00±0.05 by adding buffer according to the optimized procedure. Relatively large 

blanks of ~0.1 nmol kg–1 were found for Al and Zn (Table 4 and Supplementary data). The 

procedural blanks were generally less than the lowest concentration in open-ocean water, with 

the exception of Fe and Zn. The procedural blank of Cd was less than the detection limit of 

HR-ICP-MS. The detection limit of this method was defined as 3 SD for the procedural blank, 

except for Cd. The detection limit of Cd was limited to ~0.002 nmol kg–1 owing to 

interference by MoO. The detection limits were lower than the lowest seawater concentrations 

for Mn, Ni, Cu, and Pb, while they were comparable or higher for Al, Fe, Co, Zn, and Cd. 

The blanks and detection limits are compared with those of previous studies using Nobias 

Chelate-PA1 in Table 4. The data suggest that the blanks and detection limits of this study are 

at the lowest level for all the nine metals. 

The recoveries of spiked metals from seawater were 93–107%, with SDs less than 

9% (Supplementary data). The recoveries usually did not change following the 

preconcentration of ~100 samples. However, the recoveries decreased particularly for Fe, 

when organic matter such as ascorbic acid and other natural organic acids were adsorbed on 

the resin. Researchers from Hitachi High-Technologies found that citric acid substantially 

decreased the recoveries of Fe and Mn (private communication). Although some organic 

matter was removed by passing ethanol and aqueous NH3 through the column, thorough 

cleaning was difficult. 
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3.4. Analysis of reference materials of seawater 

This method was applied to seawater reference materials for trace metals. The 

results are summarized in Table 5. For Mn, Fe, Ni, Cu, Zn, Cd, and Pb in the nearshore 

seawater reference materials of CASS-5 and NASS-6, our results agreed with the certified 

values within 2 SD. Our concentrations for Co were slightly lower than the information 

values. For reference materials of open-ocean water of GEOTRACES GS and GD, our results 

agreed with the consensus values within 2 SD for the most part. For Co and Cu in both 

samples, our results were significantly lower than the consensus values. This was probably 

because UV irradiated samples were used for the determination of the consensus values. It has 

been explained that UV oxidation decomposes natural organic ligands, permitting the 

complete recovery of dissolved Co and Cu [10, 12]. The average concentration for Al in GS 

was also significantly lower than the consensus values. The reason behind this is unclear at 

the moment. The RSDs in this study were generally less than 6%. The concentrations 

measured by plural nuclides (Table 2) were consistent within analytical errors. The Fe 

concentrations based on 54Fe were slightly higher than those based on 56Fe and 57Fe, which 

was probably due to an isobar of 54Cr. These results suggested that our method had sufficient 

accuracy and precision to study trace metals in seawater in a concentration range varying 

from 25 nmol kg–1 to 2 pmol kg–1
. 

 

3.5. Application to vertical distributions in the ocean 
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Observation of the vertical profiles in the ocean is the best way to evaluate the 

performance of analytical methods for marine geochemistry of trace metals. Using this 

method, the vertical profiles of dissolved trace metals were observed at a station in the 

western North Pacific Ocean (160.05°E, 47.01°N; bottom depth 5224 m). Each sample was 

analyzed in duplicate. The results are shown in Fig. 3. The average RSDs were less than 4% 

for Mn, Ni, Cu, Zn, Cd, and Pb; 5.8% for Fe; 7.4% for Co; and 11.5% for Al. This represents 

the first full-depth and simultaneous profiles of the nine metals in the Pacific Ocean. These 

profiles are oceanographically consistent. Also, fine structures seemed to be well detected. 

For example, both Mn and Pb showed surface maxima, subsurface minima at 100-m depth, 

and broad maxima at ~300-m depth. Both Al and Fe showed maxima at 500- and 790-m 

depths, probably owing to advection of the North Pacific Intermediate Water. 

 

4. Conclusions 

A simple and precise determination method of GEOTRACES key trace metals in 

seawater was developed using a new automated preconcentration system with NOBIAS 

Chelate-PA1 chelating resin. The automated system substantially relieved operators’ load. 

The remaining concentrations of major seawater cations in the eluate were decreased 

compared with the manual system [5], leading to reduction of interferences in the 

determination by HR-ICP-MS. The blank and detection limits were as low as those with the 

manual system. This method was successfully applied to the determination of trace metals in 

reference seawater and vertical samples from the western North Pacific. The RSD was 
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typically less than 6%. Because this preconcentration system is suited to handle a large 

amount of sample, it can be used in further studies for determining not only the 

concentrations of ultra-trace metals but also the isotopic ratios of stable trace metal isotopes. 
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Figure captions 

Fig. 1. Manifold schematic of the modified automated concentration system. The sending unit, 

a possible source of contamination, is shown in the box with the broken line. 

Fig. 2. Effect of pH on the retention percentage of trace metals. The error bars show ±SD. 

Fig. 3. Vertical profiles of dissolved trace metals in the western North Pacific Ocean 

(160.05°E, 47.01°N). The error bars show ±SD. 
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Time

mL mL min–1 mL mL min–1 mL mL min–1 mL mL min–1 mL mL min–1 mL mL min–1 min
Cleaning 1 30 1 30

1  30 3 10
2 30 3 10
3 30 6 5
4 30 3 10
1 140 3 47
2 30 3 10
3 30 6 5

Elution 1 18 1 18

Total time
(min) 145

Port 7

Table 1
Optimized preconcentration program for eightfold preconcentration.

Conditioning

Sample loading

Process Step

Eluent port

Sample
0.05 M HAcO-
NH4AcO (pH6) MQW 0.1 M HCl Air 1 M HNO3

Port 1 Port 2 Port 3 Port 4



RF power 1200 W
Sampler cone Ni
Skimmer cone Ni
Nebulizer PFA MicroFlow PFA-100
Sample take-up rate 100 μL min–1

Spray chamber PFA Teflon
Plasma gas flow rate 16 L min–1

Auxiliary gas flow rate 0.8 L min–1

Nebulizer gas flow rate Daily optimized for 7Li, 115In, and 238U
Touch position Daily optimized for 7Li, 115In, and 238U
Lenses Daily optimized for 7Li, 115In, and 238U
Isotopes

27Al Medium resolution, R ~ 4000
55Mn Medium resolution, R ~ 4000

56Fe, 57Fe Medium resolution, R ~ 4000
59Co Low resolution, R ~ 600

60Ni, 62Ni Medium resolution, R ~ 4000
63Cu, 65Cu Medium resolution, R ~ 4000
66Zn, 68Zn Medium resolution, R ~ 4000

111Cd, 114Cd Low resolution, R ~ 600
206Pb, 208Pb Low resolution, R ~ 600

Search window 150 % (Low resolution), 50 % (Medium resolution)
Integration window 60 % (Low resolution), 60 % (Medium resolution)
Take-up time 50 s
Sample time 0.01 s
Sample per peak 10 (Low resolution), 20 (Medium resolution)
Pass 3
Run 3

Scan (Pass × Run) 3 × 3 = 9

Table 2
Measurement conditions of HR-ICP-MS.



n AVE SD AVE SD n AVE SD
Na 6 30.3 ± 7.5 7.6E-04 ± 1.9E-04 6 186 ± 29

K 6 0.86 ± 0.22 1.0E-03 ± 2.7E-04 6 7.9 ± 1.3

Mg 6 4.38 ± 0.75 9.7E-04 ± 1.7E-04 6 26.1 ± 3.3

Ca 6 0.69 ± 0.18 7.9E-04 ± 2.2E-04 6 6.5 ± 0.7

Sr 6 0.008 ± 0.002 1.1E-03 ± 2.2E-04
a Data taken from ref 7.
b The percentage of the remaining amount of elements in the eluate against the amount in seawater.

Table 3
Remaining major cations in eluate for eightfold preconcentration of trace metals from seawater.

Automated system method

–

Manual system methoda

% remainingbConcentration (µmol kg–1) Concentration (µmol kg–1)Element



This study Sohrin et al.
(2008)

Lagerström et
al. (2013)

Quéroué et
al. (2014)

Wang et al.
(2014)

This study Sohrin et al.
(2008)

Lagerström et
al. (2013)

Quéroué et
al. (2014)

Wang et al.
(2014)

Al nmol kg-1 0.15 0.14 n.a.a n.a. – 0.3 0.24 n.a. n.a. – 0.3 – 40
Mn nmol kg-1 0.001 <0.01 0.008 0.004 0.005 0.003 0.01 0.002 0.002 0.01 0.06 – 10
Fe nmol kg-1 0.032 0.033 0.065 0.25 0.07 0.09 0.04 0.014 0.090 0.19 0.03 – 3
Co pmol kg-1 0.5 <2 0.72 1.7 1 2 2 0.29 0.70 1 3 – 300
Ni nmol kg-1 0.017 <0.01 0.026 0.013 0.04 0.07 0.01 0.013 0.003 0.03 2 – 12
Cu nmol kg-1 0.017 <0.005 0.013 0.053 0.02 0.02 0.005 0.003 0.030 0.19 0.4 – 5
Zn nmol kg-1 0.12 0.071 0.115 n.a. 0.09 0.1 0.06 0.016 n.a. 0.21 0.05 – 10
Cd nmol kg-1 <0.002 <0.009 n.a. 0.00019 0.001 0.002 0.009 n.a. 0.00012 0.0005 0.001 – 1.05
Pb pmol kg-1 0.3 1.6 n.a. 0.72 1 0.9 1 n.a. 0.20 1 4 – 160
a Not analyzed.
b Data taken from ref 4.

Table 4
Blanks and detection limits of this study and literature using Nobias Chelate-PA1.

Concentration in
open-ocean

waterb

Blank Detection limit
Element Unit



n AVE SD AVE SD n AVE SD AVE SD n AVE SD AVE SD n AVE SD AVE SD

Al nmol kg-1 4 22.3 ± 1.8 4 12.7 ± 0.5 4 22.7 ± 0.7 27.5 ± 0.2 4 17.0 ± 0.8 17.7 ± 0.2

Mn nmol kg-1 4 41.5 ± 1.0 46.6 ± 1.8 4 8.36 ± 0.21 9.39 ± 0.43 4 1.62 ± 0.05 1.50 ± 0.11 4 0.255 ± 0.013 0.21 ± 0.03

Fe nmol kg-1 4 24.8 ± 1.6 25.1 ± 1.0 4 8.14 ± 0.24 8.65 ± 0.40 4 0.564 ± 0.063 0.546 ± 0.046 4 1.16 ± 0.04 1.00 ± 0.10

Co pmol kg-1 4 1232 ± 12 1578c 4 191 ± 5 255c 4 25.2 ± 0.9 31.8 ± 1.1d 4 47.2 ± 2.1 65.2 ± 1.2d

Ni nmol kg-1 4 5.87 ± 0.46 5.49 ± 0.19 3 5.22 ± 0.27 5.01 ± 0.21 4 2.18 ± 0.08 2.08 ± 0.06 4 4.22 ± 0.10 4.00 ± 0.10

Cu nmol kg-1 4 5.66 ± 0.31 5.84 ± 0.22 4 3.48 ± 0.12 3.81 ± 0.20 4 0.661 ± 0.019 0.84 ± 0.06d 4 1.43 ± 0.02 1.62 ± 0.07d

Zn nmol kg-1 4 11.6 ± 0.6 10.7 ± 0.5 4 4.66 ± 0.62 3.84 ± 0.15 4 0.063 ± 0.013 0.041 ± 0.007 4 1.83 ± 0.03 1.71 ± 0.12

Cd nmol kg-1 4 0.185 ± 0.002 0.187 ± 0.008 4 0.263 ± 0.007 0.270 ± 0.008 4 0.0025 ± 0.0010 0.0021 ± 0.0006 4 0.276 ± 0.006 0.271 ± 0.006

Pb pmol kg-1 4 49.0 ± 2.3 53.1 ± 4.8 4 25.3 ± 1.0 29.0 ± 4.8 4 27.2 ± 2.4 28.6 ± 1.0 4 42.2 ± 1.9 42.7 ± 1.5

a The sample number was GS-64.

b The sample number was GD-54.

c Information value.

d With UV irradiation.

Table 5
Analytical results for the certified reference materials of nearshore sewater (CASS-5 and NASS-6) and the GEOTRACES reference samples of seawater (GS and GD).

Element

CASS-5 NASS-6 GS GD

This study This study This studya This studybCertified value Certified value Consensus value Consensus value

– –

Unit



Detection limitb

n AVE SD
Al nmol kg-1 0.023 15 0.15 ± 0.10 0.3 0.3 – 40
Mn nmol kg-1 0.001 15 0.001 ± 0.001 0.003 0.06 – 10
Fe nmol kg-1 0.004 15 0.032 ± 0.029 0.09 0.03 – 3
Co pmol kg-1 0.3 15 0.5 ± 0.6 2 3 – 300
Ni nmol kg-1 0.014 15 0.017 ± 0.0226 0.07 2 – 12
Cu nmol kg-1 0.003 15 0.017 ± 0.007 0.02 0.4 – 5
Zn nmol kg-1 0.007 15 0.12 ± 0.05 0.1 0.05 – 10
Cd nmol kg-1 0.004 15 0.002e 0.001 – 1.05
Pb pmol kg-1 0.1 15 0.3 ± 0.3 0.9 4 – 160
a 3 SD for 1 M HNO3 (n  = 10).
b 3 SD for procedural blank, with the exception of Cd.
c Data taken from ref 4.
d Not detected.
e Limited by interference of MoO.

Concentration in
open-ocean

waterc

n.d.d

Supplementary Table 1
Detection limits and procedural blanks.

Element Unit
Detection limit

without
preconcentrationa

Procedural blank
Eightfold preconcentration



Spiked
average

concentration
(nmol kg–1)

n AVE SD n AVE SD
Al 3 5.2 ± 0.7 14.6 3 104 ± 3

Mn 3 1.01 ± 0.11 7.19 3 106 ± 4

Fe 3 0.82 ± 0.12 2.35 3 92.9 ± 9.2

Co 3 0.034 ± 0.005 0.0916 3 99.5 ± 8.1

Ni 3 5.9 ± 0.7 11.2 3 106 ± 5

Cu 3 1.6 ± 0.2 10.4 3 101 ± 4

Zn 3 6.0 ± 0.7 10.1 3 107 ± 6

Cd 3 0.59 ± 0.06 1.17 3 105 ± 6

Pb 3 0.069 ± 0.006 0.126 3 100 ± 6

Supplementary Table 2
Recovery experiments from seawater.

Unspiked seawater
concentration (nmol kg

–1)
% Recovery

From seawater

Element
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