Kyoto University Research Information Repository	
Title	Rationality of Bershadsky-Polyakov Vertex Algebras
Author(s)	Arakawa, Tomoyuki
Citation	Communications in Mathematical Physics (2013), 323(2): 627-633
Issue Date	2013-10
URL	http://hdl.handle.net/2433/192979
Right	The final publication is available at Springer via http://dx.doi.org/10.1007/s00220-013-1780-4
Туре	Journal Article
Textversion	author

RATIONALITY OF BERSHADSKY-POLYAKOV VERTEX ALGEBRAS

TOMOYUKI ARAKAWA

ABSTRACT. We prove the conjecture of Kac-Wakimoto on the rationality of exceptional W-algebras for the first non-trivial series, namely, for the Bershadsky-Polyakov vertex algebras $W_3^{(2)}$ at level k = p/2-3 with $p = 3, 5, 7, 9, \ldots$ This gives new examples of rational conformal field theories.

1. INTRODUCTION

Recently, a remarkable family of W-algebras associated with simple Lie algebras and their *non-principal* nilpotent elements, called *exceptional* W-algebras, has been discovered by Kac and Wakimoto [10]. In [10] it was conjectured that with an exceptional W-algebra one can associate a rational conformal field theory.

As a first step to resolve the Kac-Wakimoto conjecture we have proved in the previous article [3] that exceptional W-algebras are *lisse*, or equivalently [2], C_2 -cofinite. Therefore it remains [15, 6] to show that exceptional W-algebras are *rational*, i.e., that the representations are completely reducible, in order to prove the conjecture. In this article we prove the rationality of the first non-trivial series of exceptional W-algebras, that is, the *Bershadsky-Polyakov (vertex) algebras* $W_3^{(2)}$ [13, 4] at level k = p/2 - 3 with $p = 3, 5, 7, 9, \ldots$ The vertex algebra $W_3^{(2)}$ is the W-algebra associated with $\mathfrak{g} = \mathfrak{sl}_3$ and it minimal nilpotent element.

Let us state our main result more precisely: Let \mathcal{W}_k denote the unique simple quotient of $W_3^{(2)}$ at level $k \neq -3$.

Main Theorem (Conjectured by Kac and Wakimoto [10]). Let p be an odd integer equal or greater than 3, k = p/2 - 3. Then the vertex algebra W_k is rational. The simple W_k -modules are parameterized by the set of integral dominant weights of $\widehat{\mathfrak{sl}}_3$ of level p - 3. These simple modules can be obtained by the quantum BRST reduction from irreducible admissible representations of $\widehat{\mathfrak{sl}}_3$ of level k.

For p = 3, $\mathcal{W}_{3/2-3}$ is one-dimensional. In the remaining cases $\mathcal{W}_{p/2-3}$ are conformal with negative central charges.

We note that Zhu's algebra of $W_3^{(2)}$ is closely related with Smith's algebra [14] which is a deformation of the universal enveloping algebra $U(\mathfrak{sl}_2(\mathbb{C}))$ of $\mathfrak{sl}_2(\mathbb{C})$, and that the rational quotient $\mathcal{W}_{p/2-3}$ has features in common with the $\widehat{\mathfrak{sl}}_2$ -integrable affine vertex algebras in the sense that the following relations hold:

$$: G^+(z)^{p-2} :=: G^-(z)^{p-2} := 0,$$

where $G^+(z)$ and $G^-(z)$ are the standard generating fields of $\mathcal{W}_{p/2-3}$, see below.

This work is partially supported by the JSPS Grant-in-Aid for Scientific Research (B) No. 20340007.

TOMOYUKI ARAKAWA

2. Bershadsky-Polyakov algebras at exceptional levels.

Let \mathcal{W}^k denote the Bershadsky-Polyakov (vertex) algebra $W_3^{(2)}$ at level $k \neq -3$, which is the vertex algebra freely generated by the fields $J(z), G^{\pm}(z), T(z)$ with the following OPE's:

$$\begin{split} J(z)J(w) &\sim \frac{2k+3}{3(z-w)^2}, \quad G^{\pm}(z)G^{\pm}(w) \sim 0, \\ J(z)G^{\pm}(w) &\sim \pm \frac{1}{z-w}G^{\pm}(w), \\ T(z)T(w) &\sim -\frac{(2k+3)(3k+1)}{2(k+3)(z-w)^4} + \frac{2}{(z-w)^2}T(w) + \frac{1}{z-w}\partial T(w), \\ T(z)G^{\pm}(w) &\sim \frac{3}{2(z-w)^2}G^{\pm}(w) + \frac{1}{z-w}\partial G^{\pm}(w), \\ T(z)J(w) &\sim \frac{1}{(z-w)^2}J(w) + \frac{1}{z-w}\partial J(w), \\ G^{+}(z)G^{-}(w) &\sim \frac{(k+1)(2k+3)}{(z-w)^3} + \frac{3(k+1)}{(z-w)^2}J(w) \\ &\qquad + \frac{1}{z-w}\left(3:J(w)^2: + \frac{3(k+1)}{2}\partial J(w) - (k+3)T(w)\right). \end{split}$$

As in introduction we denote by \mathcal{W}_k the unique simple quotient of \mathcal{W}^k .

Theorem 2.1 ([3]). Let k, p be as in Main Theorem. Then W_k is lisse, or equivalently, C_2 -cofinite.

 Set

$$L(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2} = T(z) + \frac{1}{2} \partial J(w).$$

This defines a conformal vector of \mathcal{W}^k with central charge

$$c(k) = -\frac{4(k+1)(2k+3)}{k+3} = -\frac{4(p-4)(p-3)}{p},$$

which gives J, G^+ , G^- conformal weights 1, 1, and 2, respectively. Hence \mathcal{W}^k is $\mathbb{Z}_{\geq 0}$ -graded with respect to the Hamiltonian L_0 . We expand the corresponding fields accordingly:

$$J(z) = \sum_{n \in \mathbb{Z}} J_n z^{-n-1}, \quad G^+(z) = \sum_{n \in \mathbb{Z}} G_n^+ z^{-n-1}, \qquad G^-(z) = \sum_{n \in \mathbb{Z}} G_n^- z^{-n-2}.$$

We have

$$\begin{split} [J_m,J_n] &= \frac{2k+3}{3} m \delta_{m+n,0}, \quad [J_m,G_n] = G_{m+n}, \quad [J_m,F_n] = -F_{m+n}, \\ [L_m,J_n] &= -n J_{m+n} - \frac{(2k+3)(m+1)m}{6} \delta_{m+n,0}, \\ [L_m,G_n^+] &= -n G_{m+n}^+, \quad [L_m,G_n^-] = (m-n) G_{m+n}^-, \\ [G_m^+,G_n^-] &= 3(J^2)_{m+n} + (3(k+1)m - (2k+3)(m+n+1)) J_{m+n} - (k+3)L_{m+n} \\ &+ \frac{(k+1)(2k+3)m(m+1)}{2} \delta_{m+n,0}, \end{split}$$

where $\sum_{n\in\mathbb{Z}}(J^2)_nz^{-n-2}\stackrel{\mathrm{def}}{=}:J(z)^2:.$

For $(\xi, \chi) \in \mathbb{C}^2$, let $L(\xi, \chi)$ be the irreducible representation of \mathcal{W}^k generated by the vector $|\xi, \chi\rangle$ such that

$$\begin{aligned} J_0|\xi,\chi\rangle &= \xi|\xi,\chi\rangle, \quad J_n|\xi,\chi\rangle = 0 \quad \text{for } n > 0, \\ L_0|\xi,\chi\rangle &= \chi|\xi,\lambda\rangle, \quad L_n|\xi,\chi\rangle = 0 \quad \text{for } n > 0, \\ G_n^-|\xi,\chi\rangle &= 0 \quad \text{for } n \ge 0, \quad G_n^+|\xi,\chi\rangle = 0 \quad \text{for } n \ge 1 \end{aligned}$$

By Theorem 2.1, any simple \mathcal{W}_k -module is of the form $L(\xi, \lambda)$ with some ξ and χ . (It is important that the lisse condition is defined independent of the choice of a conformal vector.)

For a \mathcal{W}^k -module M set

$$M_{a,d} = \{ m \in M; J_0m = am, \ L_0m = dm \}.$$

It is clear that $L(\xi, \chi) = \bigoplus_{\substack{(a,d) \in \mathbb{C}^2 \\ d \in \chi + \mathbb{Z}_{\geq 0}}} L(\xi, \chi)_{a,d}, \dim L(\xi, \chi)_{\xi,\chi} = 1.$ Let

$$L(\xi,\chi)_{\text{top}} = \{ v \in L(\xi,\chi); L_0 v = \chi v \} = \bigoplus_a L(\xi,\chi)_{a,\chi}.$$

By definition $L(\xi, \chi)_{\text{top}}$ is spanned by the vectors $(G_0^+)^i | \xi, \chi \rangle$ with $i \ge 0$. Following [14] set

$$g(\xi,\chi) = -(3\xi^2 - (2k+3)\xi - (k+3)\chi),$$

so that $G_0^-G_0^+|\xi,\chi\rangle = g(\xi,\chi)|\xi,\chi\rangle$. We have

$$G_0^-(G_0^+)^i |\xi, \chi\rangle = ih_i(\xi, \chi) (G_0^+)^{i-1} |\xi, \chi\rangle,$$

where

$$h_i(\xi,\chi) = \frac{1}{i}(g(\xi,\chi) + g(\xi+1,\chi) + \dots + g(\xi+i-1,\chi))$$

= $-i^2 + ki - 3\xi i + 3i - 3\xi^2 - k + 2k\xi + 6\xi + k\chi + 3\chi - 2$

Hence we have the following assertion.

Proposition 2.2. If the space $L(\xi, \chi)_{top}$ is n-dimensional, then $h_n(\xi, \chi) = 0$.

Define

$$\Delta(-J, z) = z^{-J_0} \exp\left(\sum_{k=1}^{\infty} (-1)^{k+1} \frac{-J_k}{k z^k}\right),\,$$

and set

$$\sum_{n \in \mathbb{Z}} \psi(a_{(n)}) z^{-n-1} = Y(\Delta(-J, z)a, z)$$

for $a \in \mathcal{W}^k$. For any \mathcal{W}^k -module M, we can define on M a new \mathcal{W}^k -module structure by twisting the action of \mathcal{W}^k as $a_{(n)} \mapsto \psi(a_{(n)})$ ([11]). We denote by $\psi(M)$ thus obtained \mathcal{W}^k -module from M.

Proposition 2.3. Suppose that dim $L(\xi, \chi)_{top} = i$. Then

$$\psi(L(\xi,\chi)) \cong L(\xi+i-1-\frac{2k+3}{3},\chi-(\xi-i+1)+\frac{2k+3}{3}).$$

Proof. The assertion follows from the fact that

$$\psi(J_n) = J_n - \frac{2k+3}{3}\delta_{n,0}, \quad \psi(L_n) = L_n - J_n + \frac{2k+3}{3},$$
$$\psi(G_n^+) = G_{n-1}^+, \quad \psi(G_n^-) = G_{n+1}^-.$$

By solving the equation

$$h_i(\xi,\chi) = h_j(\xi + i - 1 - \frac{2k+3}{3}, \chi - (\xi - i + 1) + \frac{2k+3}{3})$$

we obtain the following assertion.

Proposition 2.4. Suppose that $\dim L(\xi, \chi)_{top} = i$ and $\dim \psi(L(\xi, \chi))_{top} = j$. Then

$$\xi = \xi_{i,j} \stackrel{\text{def}}{=} \frac{1}{3} (-2i - j + 2k + 6),$$

$$\chi = \chi_{i,j} \stackrel{\text{def}}{=} \frac{i^2 + ji - ki - 3i + j^2 - 6j - 2jk + 3k + 6}{3(k+3)}$$

Proposition 2.5. Let k, p be as in Main Theorem. Then $(G_{-1}^+)^{p-2}\mathbf{1}$ belongs to the maximal ideal of W^k .

Proof. Since $\xi_{1,p-2} = \chi_{1,p-2} = 0$, the correspondence $\mathbf{1} \mapsto |\xi_{1,p-2}, \chi_{1,p-2}\rangle$ gives an isomorphism $\mathcal{W}_k \cong L(\xi_{1,p-2}, \chi_{1,p-2})$. Because

$$h_{p-2}(\xi_{1,p-2} - (2k+3)/2, \chi_{1,p-2} + (2k+3)/3) = 0,$$

from Proposition 2.3 it follows that $\psi(W_k)_{\text{top}}$ is at most p-2-dimensional. Hence $(G_{-1}^+)^{p-2}\mathbf{1} = 0.$

Remark 2.6. One can show that in fact $(G_{-1}^+)^{p-2}$ generates the maximal ideal of \mathcal{W}^k . However we do not need this fact.

Proposition 2.7. Let k, p be as in Main Theorem. Then any simple W_k -module is isomorphic to $L(\xi_{i,j}, \chi_{i,j})$ for some (i, j) such that $1 \le i \le p-2, 1 \le j \le p-i-1$.

Proof. Let $L(\xi, \chi)$ be a simple \mathcal{W}_k -module. As : $G^+(z)^{p-2} := 0$ on $L(\xi, \chi)$ by Proposition 2.5, $L(\xi, \chi)_{top}$ is at most (p-2)-dimensional. Since $\psi(L(\xi, \chi))$ is also a \mathcal{W}_k -module we have $(\xi, \chi) = (\xi_{i,j}, \chi_{i,j})$ for some $1 \leq i, j \leq p-2$. Because $\psi(\psi(L(\xi_{i,j}, \chi_{i,j})))$ is also a \mathcal{W}_k -module it follows that $\xi_{i,j} + i - 1 - \frac{2k+3}{3} = \frac{i-j}{3} \leq \frac{-2j-1+2k+6}{3} = \frac{p-2j-1}{3}$. Hence $j \leq p-i-1$.

The simple \mathcal{W}^k -modules $L(\xi_{i,j}, \chi_{i,j})$ with $1 \leq i \leq p-2, 1 \leq j \leq p-i-1$, are mutually non-isomorphic since their highest weights are distinct.

3. Proof of Main Theorem

Let k, p be as in Main Theorem.

Let $\mathfrak{g} = \mathfrak{sl}_3$ as in introduction, $\mathfrak{h} \subset \mathfrak{g}$ be the Cartan subalgebra of \mathfrak{g} consisting of diagonal matrixes. Set $h_i = E_{i,i} - E_{i+1,i+1}$, $h_\theta = h_1 + h_2$, $e_i = e_{\alpha_i} = E_{i,i+1}$, $f_i = f_{\alpha_i} = E_{i+1,i}$ for $i = 1, 2, e_\theta = E_{1,3}, f_\theta = E_{3,1}$, where $E_{i,j}$ is the matrix element. We equip \mathfrak{g} the invariant form $(x|y) = \operatorname{tr}(xy)$. Set $\overline{\Lambda}_1 = (2h_1 + h_2)/3$, $\overline{\Lambda}_1 = (h_1 + 2h_2)/3$, so that $(\overline{\Lambda}_i|h_j) = \delta_{i,j}$.

Let $\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K \oplus \mathbb{C}D$ be the (non-twisted) affine Kac-Moody algebra associated with \mathfrak{g} , where K is the central element and D is the degree operator. Let $\widehat{\mathfrak{h}} = \mathfrak{h} \oplus \mathbb{C}K \oplus \mathbb{C}D \subset \widehat{\mathfrak{g}}$ the standard Cartan subalgebra, $\overline{\mathfrak{h}}^* = \mathfrak{h}^* \oplus \mathbb{C}\Lambda_0 \oplus \mathbb{C}\delta$ the dual of $\widehat{\mathfrak{h}}$, where Λ_0 and δ are elements dual to K and D, respectively.

The vector f_{θ} is a the minimal nilpotent element of \mathfrak{g} . Let $\mathfrak{g} = \bigoplus_{j \in \frac{1}{2}\mathbb{Z}} \mathfrak{g}_j$ be the corresponding Dynkin grading: $\mathfrak{g}_j = \{u \in \mathfrak{g}; [h_\theta, u] = 2ju\}$. Denote by $H_{f_\theta}^{\frac{\infty}{2}+0}(?)$ the BRST cohomology of the generalized quantized Drinfeld-Sokolov reduction associated with $(\mathfrak{g}, f_{\theta})$ and the Dynkin grading. We have [7, 9] the vertex algebra isomorphism

$$\mathcal{W}^k \xrightarrow{\sim} H^{\frac{\infty}{2}+0}_{f_\theta}(V^k(\mathfrak{g})),$$

which is given by the following assignment:

A . **A**

$$\begin{split} J(z) &\mapsto J^{-\Lambda_1 + \Lambda_2}(z) - : \Phi_1(z) \Phi_2(z) :, \\ G^+(z) &\mapsto J^{f_1}(z) - : J^{h_1}(z) \Phi_2(z) : + : \Phi_1(z) \Phi_2(z)^2 : -(k+1) \partial \Phi_2(z), \\ G^+(z) &\mapsto -J^{f_2}(z) - : J^{h_2}(z) \Phi_1(z) : - : \Phi_1(z)^2 \Phi_2(z) : -(k+1) \partial \Phi_1(z), \end{split}$$

Here

$$J^{u}(z) = u(z) - \sum_{\beta,\gamma \in \{\alpha_1, \alpha_2, \theta\}} c_{u, f_{\beta}}^{f_{\gamma}} : \psi_{\beta}^{*}(z)\psi_{\gamma}(z) :$$

for $u \in \mathfrak{g}$, $c_{u_1,u_2}^{u_3}$ is the structure constant, $\psi_{\alpha}(z)$, $\psi_{\alpha}^*(z)$ with $\alpha \in \{\alpha_1, \alpha_2, \theta\}$ are fermionic ghosts satisfying

(1)
$$\psi_{\alpha}(z)\psi_{\beta}^{*}(w) \sim \frac{\delta_{\alpha,\beta}}{z-w}, \quad \psi_{\alpha}(z)\psi_{\beta}(w) \sim \psi_{\alpha}^{*}(z)\psi_{\beta}(^{*}w) \sim 0,$$

 $\Phi_1(z), \Phi_2(z)$ are bosonic ghosts satisfying

$$\Phi_1(z)\Phi_2(w) \sim \frac{1}{z-w}, \quad \Phi_i(z)\Phi_i(w) \sim 0,$$

and the BRST differential is the zero mode of the field

$$Q(z) = \sum_{\alpha \in \{\alpha_1, \alpha_2, \theta\}} e_{\alpha}(z)\psi_{\alpha}^*(w) - :\psi_{\alpha_1}^*(z)\psi_{\alpha_2}^*(z)\psi_{\theta}(z):$$
$$+\Phi_1(z)\psi_{\alpha_1}^*(z) + \Phi_2(z)\psi_{\alpha_2}(z) + \psi_{\theta}(z).$$

Let \mathcal{O}_k be the category \mathcal{O} of $\hat{\mathfrak{g}}$ at level k, \mathbf{L}_{λ} the irreducible representation of $\hat{\mathfrak{g}}$ with highest weight λ . Denote by \mathcal{W}^k -Mod the category of \mathcal{W}^k -modules.

Theorem 3.1 ([1]).

- (i) The functor $H_{f_{\theta}}^{\frac{\infty}{2}+0}(?): \mathcal{O}_k \to \mathcal{W}^k$ -Mod, $M \mapsto H_{f_{\theta}}^{\frac{\infty}{2}+0}(M)$, is exact. (ii) For $\lambda \in \hat{\mathfrak{h}}^*$ we have $H_{f_{\theta}}^{\frac{\infty}{2}+0}(\mathbf{L}_{\lambda}) = 0$ if and only if $\lambda(\alpha_0^{\vee}) \in \{0, 1, 2, 3, \ldots\}$.
- Otherwise $H_{f_{\theta}}^{\frac{\infty}{2}+0}(\mathbf{L}_{\lambda})$ is irreducible.

Let Adm^k be the set of admissible weights [8] of $\hat{\mathfrak{g}}$ of level k, and put

$$Adm_{+}^{k} = \{\lambda \in Adm^{k}; \lambda \text{ is an integral dominant weight of } \mathfrak{g}\},\$$

where $\widehat{\mathfrak{h}}^* \ni \lambda \mapsto \overline{\lambda} \in \mathfrak{h}^*$ is the restriction. Then

$$Adm_{+}^{k} = \{\bar{\mu} + k\Lambda_{0}; \mu \in \widehat{P}_{++}^{p-3}\},\$$

where \widehat{P}_{++}^{p-3} is the set of integral dominant weights of $\widehat{\mathfrak{g}}$ of level p-3. Explicitly, we have

$$Adm_{+}^{k} = \{\lambda_{i,j}; 1 \le i \le p - 2, \ 1 \le j \le p - i - 1\},\$$

where

$$\lambda_{i,j} = (i-1)\overline{\Lambda}_1 + (p-i-j-1)\overline{\Lambda}_2 + k\Lambda_0.$$

Note that

(2)
$$\xi_{i,j} = (\lambda_{i,j}| - \bar{\Lambda}_1 + \bar{\Lambda}_2), \quad \chi_{i,j} = \frac{(\lambda_{i,j}|\lambda_{i,j} + 2\bar{\rho})}{2(k+3)} - (\lambda_{i,j}|\bar{\Lambda}_2),$$

where $\bar{\rho} = \bar{\Lambda}_1 + \bar{\Lambda}_2$.

Recall the following result of Malikov and Frenkel [12].

Theorem 3.2 ([12, Corollary 5.2.2]). For $\lambda \in Adm_+^k$, \mathbf{L}_{λ} is a module over $\mathbf{L}_{k\Lambda_0}$.

Proposition 3.3. For $\lambda_{i,j} \in Adm_+^k$, $H_{f_{\theta}}^{\frac{\infty}{2}+0}(\mathbf{L}_{\lambda_{i,j}})$ is a simple \mathcal{W}_k -module isomorphic to $L(\xi_{i,j}, \chi_{i,j})$.

Proof. By Theorem 3.1 we have $\mathcal{W}_k \cong H_{f_{\theta}}^{\frac{\infty}{2}+0}(\mathbf{L}_{k\Lambda_0})$. Hence by the functoriality of $H_{f_{\theta}}^{\frac{\infty}{2}+0}(?)$, Theorem 3.2 immediately gives that $H_{f_{\theta}}^{\frac{\infty}{2}+0}(\mathbf{L}_{\lambda_{i,j}})$ is a module over \mathcal{W}_k . By Theorem 3.1, $H_{f_{\theta}}^{\frac{\infty}{2}+0}(\mathbf{L}_{\lambda_{i,j}})$ is (nonzero and) irreducible. Let v be the image of the highest weight vector of $\mathbf{L}_{\lambda_{i,j}}$ in $H_{f_{\theta}}^{\frac{\infty}{2}+0}(\mathbf{L}_{\lambda_{i,j}})$. By (2) and the fact [9] that the image of L(z) in \mathcal{W}^k is cohomologous to

$$L_{\mathfrak{g}}(z) + L_{\mathrm{ch}}(z) + L_{\Phi}(z) + \partial J^{\overline{\Lambda}_2}(z),$$

where $L_{\mathfrak{g}}(z)$ is the Sugawara operator of \mathfrak{g} , $L_{ch}(z) = -\sum_{\alpha=\alpha_1,\alpha_2,\theta} : \phi_{\alpha}(z)\partial\phi_{\alpha}^*(z)$, $L_{\Phi}(z) = \frac{1}{2} (: \Phi_2(z)\partial\Phi_1(z) : -: \partial\Phi_1(z)\Phi_2(z))$, it is straightforward to check that the assignment $|\xi_{i,j}, \chi_{i,j}\rangle \mapsto v$ gives a \mathcal{W}^k -module homomorphism. By the irreducibility, this must be an isomorphism. \Box

By Propositions 2.7 and 3.3, the set $\{H_{f_{\theta}}^{\frac{\infty}{2}+0}(\mathbf{L}_{\lambda}); \lambda \in Adm_{+}^{k}\}$ gives the complete set of isomorphism classes of simple \mathcal{W}_{k} -modules. Therefore Main Theorem now follows immediately from the following important result of Gorelik and Kac [5].

Theorem 3.4 ([5, Corollary 8.8.9]). For any $\lambda, \mu \in Adm^k$, we have

$$\operatorname{Ext}^{1}_{\mathcal{W}^{k}-\operatorname{Mod}}(H^{\frac{\infty}{2}+0}_{f_{\theta}}(\mathbf{L}_{\lambda}), H^{\frac{\infty}{2}+0}_{f_{\theta}}(\mathbf{L}_{\mu})) = 0.$$

References

- T. Arakawa. Representation theory of superconformal algebras and the Kac-Roan-Wakimoto conjecture. *Duke Math. J.*, Vol. 130, No. 3, pp. 435–478, 2005.
- [2] T. Arakawa. A remark on the C₂ cofiniteness condition on vertex algebras. Math. Z., Vol. 270, No. 1-2, pp. 559–575, 2012.
- T. Arakawa. Associated varieties of modules over Kac-Moody algebras and C₂-cofiniteness of W-algebras. preprint, arXiv:1004.1554v2.
- Michael Bershadsky. Conformal field theories via Hamiltonian reduction. Comm. Math. Phys., Vol. 139, No. 1, pp. 71–82, 1991.
- [5] Maria Gorelik and Victor Kac. On complete reducibility for infinite-dimensional Lie algebras. Adv. Math., Vol. 226, No. 2, pp. 1911–1972, 2011.
- [6] Yi-Zhi Huang. Vertex operator algebras and the Verlinde conjecture. Commun. Contemp. Math., Vol. 10, No. 1, pp. 103–154, 2008.

- [7] Victor Kac, Shi-Shyr Roan, and Minoru Wakimoto. Quantum reduction for affine superalgebras. Comm. Math. Phys., Vol. 241, No. 2-3, pp. 307–342, 2003.
- [8] V. G. Kac and M. Wakimoto. Classification of modular invariant representations of affine algebras. In *Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988)*, Vol. 7 of Adv. Ser. Math. Phys., pp. 138–177. World Sci. Publ., Teaneck, NJ, 1989.
- [9] Victor G. Kac and Minoru Wakimoto. Quantum reduction and representation theory of superconformal algebras. Adv. Math., Vol. 185, No. 2, pp. 400–458, 2004.
- [10] Victor G. Kac and Minoru Wakimoto. On rationality of W-algebras. Transform. Groups, Vol. 13, No. 3-4, pp. 671–713, 2008.
- [11] Haisheng Li. The physics superselection principle in vertex operator algebra theory. J. Algebra, Vol. 196, No. 2, pp. 436–457, 1997.
- [12] F. G. Malikov and I. B. Frenkel'. Annihilating ideals and tilting functors. Funktsional. Anal. i Prilozhen., Vol. 33, No. 2, pp. 31–42, 95, 1999.
- [13] A. M. Polyakov. Gauge transformations and diffeomorphisms. Internat. J. Modern Phys. A, Vol. 5, No. 5, pp. 833–842, 1990.
- [14] S. P. Smith. A class of algebras similar to the enveloping algebra of sl(2). Trans. Amer. Math. Soc., Vol. 322, No. 1, pp. 285–314, 1990.
- [15] Yongchang Zhu. Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc., Vol. 9, No. 1, pp. 237–302, 1996.

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502 JAPAN

E-mail address: arakawa@kurims.kyoto-u.ac.jp