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RATIONALITY OF BERSHADSKY-POLYAKOV VERTEX

ALGEBRAS

TOMOYUKI ARAKAWA

Abstract. We prove the conjecture of Kac-Wakimoto on the rationality of ex-
ceptional W -algebras for the first non-trivial series, namely, for the Bershadsky-

Polyakov vertex algebras W
(2)
3 at level k = p/2−3 with p = 3, 5, 7, 9, . . . . This

gives new examples of rational conformal field theories.

1. Introduction

Recently, a remarkable family of W -algebras associated with simple Lie algebras
and their non-principal nilpotent elements, called exceptional W -algebras, has been
discovered by Kac and Wakimoto [10]. In [10] it was conjectured that with an
exceptional W -algebra one can associate a rational conformal field theory.

As a first step to resolve the Kac-Wakimoto conjecture we have proved in the
previous article [3] that exceptional W -algebras are lisse, or equivalently [2], C2-
cofinite. Therefore it remains [15, 6] to show that exceptional W -algebras are
rational, i.e., that the representations are completely reducible, in order to prove
the conjecture. In this article we prove the rationality of the first non-trivial series

of exceptional W -algebras, that is, the Bershadsky-Polyakov (vertex) algebras W
(2)
3

[13, 4] at level k = p/2 − 3 with p = 3, 5, 7, 9, . . . . The vertex algebra W
(2)
3 is the

W -algebra associated with g = sl3 and it minimal nilpotent element.
Let us state our main result more precisely: Let Wk denote the unique simple

quotient of W
(2)
3 at level k 6= −3.

Main Theorem (Conjectured by Kac and Wakimoto [10]). Let p be an odd integer
equal or greater than 3, k = p/2− 3. Then the vertex algebra Wk is rational. The
simple Wk-modules are parameterized by the set of integral dominant weights of

ŝl3 of level p − 3. These simple modules can be obtained by the quantum BRST

reduction from irreducible admissible representations of ŝl3 of level k.

For p = 3, W3/2−3 is one-dimensional. In the remaining cases Wp/2−3 are con-
formal with negative central charges.

We note that Zhu’s algebra of W
(2)
3 is closely related with Smith’s algebra [14]

which is a deformation of the universal enveloping algebra U(sl2(C)) of sl2(C), and

that the rational quotient Wp/2−3 has features in common with the ŝl2-integrable
affine vertex algebras in the sense that the following relations hold:

: G+(z)p−2 :=: G−(z)p−2 := 0,

where G+(z) and G−(z) are the standard generating fields of Wp/2−3, see below.
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2. Bershadsky-Polyakov algebras at exceptional levels.

Let Wk denote the Bershadsky-Polyakov (vertex) algebra W
(2)
3 at level k 6= −3,

which is the vertex algebra freely generated by the fields J(z), G±(z), T (z) with the
following OPE’s:

J(z)J(w) ∼
2k + 3

3(z − w)2
, G±(z)G±(w) ∼ 0,

J(z)G±(w) ∼ ±
1

z − w
G±(w),

T (z)T (w) ∼ −
(2k + 3)(3k + 1)

2(k + 3)(z − w)4
+

2

(z − w)2
T (w) +

1

z − w
∂T (w),

T (z)G±(w) ∼
3

2(z − w)2
G±(w) +

1

z − w
∂G±(w),

T (z)J(w) ∼
1

(z − w)2
J(w) +

1

z − w
∂J(w),

G+(z)G−(w) ∼
(k + 1)(2k + 3)

(z − w)3
+

3(k + 1)

(z − w)2
J(w)

+
1

z − w

(
3 : J(w)2 : +

3(k + 1)

2
∂J(w) − (k + 3)T (w)

)
.

As in introduction we denote by Wk the unique simple quotient of Wk.

Theorem 2.1 ([3]). Let k, p be as in Main Theorem. Then Wk is lisse, or equiv-
alently, C2-cofinite.

Set

L(z) =
∑

n∈Z

Lnz
−n−2 = T (z) +

1

2
∂J(w).

This defines a conformal vector of Wk with central charge

c(k) = −
4(k + 1)(2k + 3)

k + 3
= −

4(p− 4)(p− 3)

p
,

which gives J , G+, G− conformal weights 1, 1, and 2, respectively. Hence W
k

is Z≥0-graded with respect to the Hamiltonian L0. We expand the corresponding
fields accordingly:

J(z) =
∑

n∈Z

Jnz
−n−1, G+(z) =

∑

n∈Z

G+
n z

−n−1, G−(z) =
∑

n∈Z

G−
n z

−n−2.

We have

[Jm, Jn] =
2k + 3

3
mδm+n,0, [Jm, Gn] = Gm+n, [Jm, Fn] = −Fm+n,

[Lm, Jn] = −nJm+n −
(2k + 3)(m+ 1)m

6
δm+n,0,

[Lm, G
+
n ] = −nG+

m+n, [Lm, G
−
n ] = (m− n)G−

m+n,

[G+
m, G

−
n ] = 3(J2)m+n + (3(k + 1)m− (2k + 3)(m+ n+ 1))Jm+n − (k + 3)Lm+n

+
(k + 1)(2k + 3)m(m+ 1)

2
δm+n,0,
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where
∑

n∈Z
(J2)nz

−n−2 def
= : J(z)2 :.

For (ξ, χ) ∈ C2, let L(ξ, χ) be the irreducible representation of Wk generated by
the vector |ξ, χ〉 such that

J0|ξ, χ〉 = ξ|ξ, χ〉, Jn|ξ, χ〉 = 0 for n > 0,

L0|ξ, χ〉 = χ|ξ, λ〉, Ln|ξ, χ〉 = 0 for n > 0,

G−
n |ξ, χ〉 = 0 for n ≥ 0, G+

n |ξ, χ〉 = 0 for n ≥ 1.

By Theorem 2.1, any simple Wk-module is of the form L(ξ, λ) with some ξ and χ.
(It is important that the lisse condition is defined independent of the choice of a
conformal vector.)

For a W
k-module M set

Ma,d = {m ∈M ; J0m = am, L0m = dm}.

It is clear that L(ξ, χ) =
⊕

(a,d)∈C2

d∈χ+Z≥0

L(ξ, χ)a,d, dimL(ξ, χ)ξ,χ = 1. Let

L(ξ, χ)top = {v ∈ L(ξ, χ);L0v = χv} =
⊕

a

L(ξ, χ)a,χ.

By definition L(ξ, χ)top is spanned by the vectors (G+
0 )

i|ξ, χ〉 with i ≥ 0.
Following [14] set

g(ξ, χ) = −(3ξ2 − (2k + 3)ξ − (k + 3)χ),

so that G−
0 G

+
0 |ξ, χ〉 = g(ξ, χ)|ξ, χ〉. We have

G−
0 (G

+
0 )

i|ξ, χ〉 = ihi(ξ, χ)(G
+
0 )

i−1|ξ, χ〉,

where

hi(ξ, χ) =
1

i
(g(ξ, χ) + g(ξ + 1, χ) + · · ·+ g(ξ + i− 1, χ))

= −i2 + ki− 3ξi+ 3i− 3ξ2 − k + 2kξ + 6ξ + kχ+ 3χ− 2.

Hence we have the following assertion.

Proposition 2.2. If the space L(ξ, χ)top is n-dimensional, then hn(ξ, χ) = 0.

Define

∆(−J, z) = z−J0 exp

(
∞∑

k=1

(−1)k+1−Jk
kzk

)
,

and set
∑

n∈Z

ψ(a(n))z
−n−1 = Y (∆(−J, z)a, z)

for a ∈ W
k. For anyWk-moduleM , we can define onM a newW

k-module structure
by twisting the action of Wk as a(n) 7→ ψ(a(n)) ([11]). We denote by ψ(M) thus

obtained W
k-module from M .

Proposition 2.3. Suppose that dimL(ξ, χ)top = i. Then

ψ(L(ξ, χ)) ∼= L(ξ + i− 1−
2k + 3

3
, χ− (ξ − i+ 1) +

2k + 3

3
).
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Proof. The assertion follows from the fact that

ψ(Jn) = Jn −
2k + 3

3
δn,0, ψ(Ln) = Ln − Jn +

2k + 3

3
,

ψ(G+
n ) = G+

n−1, ψ(G−
n ) = G−

n+1.

�

By solving the equation

hi(ξ, χ) = hj(ξ + i− 1−
2k + 3

3
, χ− (ξ − i+ 1) +

2k + 3

3
)

we obtain the following assertion.

Proposition 2.4. Suppose that dimL(ξ, χ)top = i and dimψ(L(ξ, χ))top = j.
Then

ξ = ξi,j
def
=

1

3
(−2i− j + 2k + 6),

χ = χi,j
def
=

i2 + ji− ki− 3i+ j2 − 6j − 2jk + 3k + 6

3(k + 3)
.

Proposition 2.5. Let k, p be as in Main Theorem. Then (G+
−1)

p−21 belongs to

the maximal ideal of Wk.

Proof. Since ξ1,p−2 = χ1,p−2 = 0, the correspondence 1 7→ |ξ1,p−2, χ1,p−2〉 gives an
isomorphism Wk

∼= L(ξ1,p−2, χ1,p−2). Because

hp−2(ξ1,p−2 − (2k + 3)/2, χ1,p−2 + (2k + 3)/3) = 0,

from Proposition 2.3 it follows that ψ(Wk)top is at most p− 2-dimensional. Hence

(G+
−1)

p−21 = 0. �

Remark 2.6. One can show that in fact (G+
−1)

p−2 generates the maximal ideal of

W
k. However we do not need this fact.

Proposition 2.7. Let k, p be as in Main Theorem. Then any simple Wk-module is
isomorphic to L(ξi,j , χi,j) for some (i, j) such that 1 ≤ i ≤ p− 2, 1 ≤ j ≤ p− i− 1.

Proof. Let L(ξ, χ) be a simple Wk-module. As : G+(z)p−2 := 0 on L(ξ, χ) by
Proposition 2.5, L(ξ, χ)top is at most (p− 2)-dimensional. Since ψ(L(ξ, χ)) is also
a Wk-module we have (ξ, χ) = (ξi,j , χi,j) for some 1 ≤ i, j ≤ p − 2. Because

ψ(ψ(L(ξi.j , χi,j))) is also a Wk-module it follows that ξi,j + i − 1 − 2k+3
3 = i−j

3 ≤
−2j−1+2k+6

3 = p−2j−1
3 . Hence j ≤ p− i− 1. �

The simple W
k-modules L(ξi,j , χi,j) with 1 ≤ i ≤ p − 2, 1 ≤ j ≤ p− i − 1, are

mutually non-isomorphic since their highest weights are distinct.

3. Proof of Main Theorem

Let k, p be as in Main Theorem.
Let g = sl3 as in introduction, h ⊂ g be the Cartan subalgebra of g consisting

of diagonal matrixes. Set hi = Ei,i − Ei+1,i+1, hθ = h1 + h2, ei = eαi
= Ei,i+1,

fi = fαi
= Ei+1,i for i = 1, 2, eθ = E1,3, fθ = E3,1, where Ei,j is the matrix

element. We equip g the invariant form (x|y) = tr(xy). Set Λ̄1 = (2h1 + h2)/3,
Λ̄1 = (h1 + 2h2)/3, so that (Λ̄i|hj) = δi,j .
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Let ĝ = g[t, t−1]⊕CK ⊕CD be the (non-twisted) affine Kac-Moody algebra
associated with g, where K is the central element and D is the degree operator.

Let ĥ = h⊕CK ⊕CD ⊂ ĝ the standard Cartan subalgebra, ĥ∗ = h∗ ⊕CΛ0 ⊕Cδ

the dual of ĥ, where Λ0 and δ are elements dual to K and D, respectively.
The vector fθ is a the minimal nilpotent element of g. Let g =

⊕
j∈ 1

2Z
gj be the

corresponding Dynkin grading: gj = {u ∈ g; [hθ, u] = 2ju}. Denote by H
∞
2 +0

fθ
(?)

the BRST cohomology of the generalized quantized Drinfeld-Sokolov reduction as-
sociated with (g, fθ) and the Dynkin grading. We have [7, 9] the vertex algebra
isomorphism

W
k ∼→ H

∞
2 +0

fθ
(V k(g)),

which is given by the following assignment:

J(z) 7→ J−Λ̄1+Λ̄2(z)− : Φ1(z)Φ2(z) :,

G+(z) 7→ Jf1(z)− : Jh1(z)Φ2(z) : + : Φ1(z)Φ2(z)
2 : −(k + 1)∂Φ2(z),

G+(z) 7→ −Jf2(z)− : Jh2(z)Φ1(z) : − : Φ1(z)
2Φ2(z) : −(k + 1)∂Φ1(z),

Here

Ju(z) = u(z)−
∑

β,γ∈{α1,α2,θ}

c
fγ
u,fβ

: ψ∗
β(z)ψγ(z) :

for u ∈ g, cu3
u1,u2

is the structure constant, ψα(z), ψ
∗
α(z) with α ∈ {α1, α2, θ} are

fermionic ghosts satisfying

ψα(z)ψ
∗
β(w) ∼

δα,β
z − w

, ψα(z)ψβ(w) ∼ ψ∗
α(z)ψβ(

∗w) ∼ 0,(1)

Φ1(z), Φ2(z) are bosonic ghosts satisfying

Φ1(z)Φ2(w) ∼
1

z − w
, Φi(z)Φi(w) ∼ 0,

and the BRST differential is the zero mode of the field

Q(z) =
∑

α∈{α1,α2,θ}

eα(z)ψ
∗
α(w)− : ψ∗

α1
(z)ψ∗

α2
(z)ψθ(z) :

+Φ1(z)ψ
∗
α1
(z) + Φ2(z)ψα2(z) + ψθ(z).

Let Ok be the category O of ĝ at level k, Lλ the irreducible representation of ĝ
with highest weight λ. Denote by W

k-Mod the category of Wk-modules.

Theorem 3.1 ([1]).

(i) The functor H
∞
2 +0

fθ
(?) : Ok → W

k-Mod, M 7→ H
∞
2 +0

fθ
(M), is exact.

(ii) For λ ∈ ĥ∗ we have H
∞
2 +0

fθ
(Lλ) = 0 if and only if λ(α∨

0 ) ∈ {0, 1, 2, 3, . . .}.

Otherwise H
∞
2 +0

fθ
(Lλ) is irreducible.

Let Admk be the set of admissible weights [8] of ĝ of level k, and put

Admk
+ = {λ ∈ Admk; λ̄ is an integral dominant weight of g},

where ĥ∗ ∋ λ 7→ λ̄ ∈ h∗ is the restriction. Then

Admk
+ = {µ̄+ kΛ0;µ ∈ P̂ p−3

++ },
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where P̂ p−3
++ is the set of integral dominant weights of ĝ of level p − 3. Explicitly,

we have

Admk
+ = {λi,j ; 1 ≤ i ≤ p− 2, 1 ≤ j ≤ p− i − 1},

where

λi,j = (i − 1)Λ̄1 + (p− i − j − 1)Λ̄2 + kΛ0.

Note that

ξi,j = (λi,j | − Λ̄1 + Λ̄2), χi,j =
(λi,j |λi,j + 2ρ̄)

2(k + 3)
− (λi,j |Λ̄2),(2)

where ρ̄ = Λ̄1 + Λ̄2.
Recall the following result of Malikov and Frenkel [12].

Theorem 3.2 ([12, Corollary 5.2.2]). For λ ∈ Admk
+, Lλ is a module over LkΛ0 .

Proposition 3.3. For λi,j ∈ Admk
+, H

∞
2 +0

fθ
(Lλi,j

) is a simple Wk-module isomor-

phic to L(ξi,j , χi,j).

Proof. By Theorem 3.1 we have Wk
∼= H

∞
2 +0

fθ
(LkΛ0 ). Hence by the functoriality of

H
∞
2 +0

fθ
(?), Theorem 3.2 immediately gives that H

∞
2 +0

fθ
(Lλi,j

) is a module over Wk.

By Theorem 3.1, H
∞
2 +0

fθ
(Lλi,j

) is (nonzero and) irreducible. Let v be the image of

the highest weight vector of Lλi,j
in H

∞
2 +0

fθ
(Lλi,j

). By (2) and the fact [9] that the

image of L(z) in W
k is cohomologous to

Lg(z) + Lch(z) + LΦ(z) + ∂J Λ̄2(z),

where Lg(z) is the Sugawara operator of g, Lch(z) = −
∑

α=α1,α2,θ
: φα(z)∂φ

∗
α(z),

LΦ(z) =
1
2 (: Φ2(z)∂Φ1(z) : − : ∂Φ1(z)Φ2(z)), it is straightforward to check that the

assignment |ξi,j , χi,j〉 7→ v gives aWk-module homomorphism. By the irreducibility,
this must be an isomorphism. �

By Propositions 2.7 and 3.3, the set {H
∞
2 +0

fθ
(Lλ);λ ∈ Admk

+} gives the complete
set of isomorphism classes of simple Wk-modules. Therefore Main Theorem now
follows immediately from the following important result of Gorelik and Kac [5].

Theorem 3.4 ([5, Corollary 8.8.9]). For any λ, µ ∈ Admk, we have

Ext1
Wk

-Mod(H
∞
2 +0

fθ
(Lλ), H

∞
2 +0

fθ
(Lµ)) = 0.
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