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Abstract 

We developed the ionic liquid ion source, and the ionic liquid ion beams were 

produced by applying the high-electric field between the tip and the extractor. Ionic 

liquids used were 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6). 

Time-of-flight measurement showed that small cluster ions as well as fragment ions 

were contained in positive and negative ion beams. The positive or negative cluster 

ions were deposited on Si(100) substrates. X-ray photoelectron spectroscopy 

measurement showed that the composition of deposited layers was similar to that of 

ionic liquid solvent. This suggested that a cation (A+) or an anion (B-) was attached to a 

ionic liquid cluster (AB)n resulting in the formation of positive cluster ion (AB)nA+ or 

negative cluster ion (AB)nB-, respectively. The surface of ionic liquid layers deposited 

on Si(100) substrates was flat at an atomic level for positive and negative cluster ion 

irradiation. Also, the contact angle of deposited layers was similar to that of ionic 

liquid solvent. Thus surface modification of Si(100) substrates was demonstrated with  

BMIM-PF6 cluster ion beams. 
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1.Introduction 

Ion beam technology is one example of ion-assisted material processing, and it has 

several advantages, one of which that various kinds of ion beams such as positive and 

negative, monomer and cluster ion beams, are available [1-5]. Also, alternative or 

simultaneous irradiation of positive and negative ion beams has attracted much 

attention as a useful approach in ion beam applications, and it opens up new fields in 

the material processing. Among these ion beams, cluster ion beams have several 

unique features, for example, simultaneously low energy and high current ion beams 

can be realized.  Furthermore, the impact of cluster ions on solid surfaces is 

characterized by several unique irradiation effects, which include a high energy density, 

multiple collisions, and low energy irradiation effects [6-10]. For example, the multiple 

collision effect enhances the lateral motion of constituent atoms (or molecules) on the 

surface, which contributes to the formation of a flat surface. Taking account of these 

features, we have produced liquid cluster ion beams by exploiting a nozzle beam 

method [11-14]. With regard to the source materials, liquid materials are more 

appropriate than gaseous materials, as they tend to have more radicals in their 

polyatomic molecules than gaseous materials. These radicals play an important role in 

chemical erosion and sputtering of material surfaces [15-17]. 

On the other hand, ionic liquids (ILs) are room temperature molten salts with 

negligible vapor pressures. They contain equal amount of cations and anions, which are 

polyatomic molecules. They exhibit many features which are advantageous for a 

number of applications such as synthetic chemistry, catalysis, photochemistry and 

electrochemistry [18-20]. In addition, the surface modification of semiconductor 

substrates by ionic liquids have recently attracted much interest, and they are used as 

electrolyte dielectrics to realize very high field-induced carrier densities in the 

conducting channel of a field-effect transistor [21,22]. In this device application, it is of 

much importance to prepare ILs thin layers with good adhesion and atomically flat 
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interface. The ILs ion beams have been created by an electrospray ion source. These 

beams were characterized by in situ time-of-flight (TOF) mass spectrometry [5]. 

The ILs thin layers with good adhesion could be formed on a substrate by cluster 

ion beam deposition. However, in order to produce ILs cluster ion beams, the nozzle 

beam method using an adiabatic expansion phenomenon cannot be applied because the 

vapor pressure of ILs is extremely low. As a new approach to the liquid cluster ion 

generation, we have developed an ILs ion source using a high electric field method 

[23,24], and applied it to material processing. In this article, we modify the IL ion 

source for generation of stable ion beams, and the mass analysis of ionic liquid ion 

beams is performed by using 1-butyl-3-methylimidazolium hexafluorophosphate 

(BMIM-PF6). The production of positive and negative cluster ions is investigated. 

Furthermore, irradiation of ionic liquid cluster ions on Si substrates is performed at 

room temperature, and surface modification of the substrates is investigated.  

 

2. Experimental 

ILs ion beam system is similar of that previously described [23]. A high-electric field 

method was employed for the ion-emission from a sharp tip. ILs used was 1-butyl-3-

methylimidazolium hexafluorophosphate (BMIM-PF6). Because the drop of ILs was 

initially fed directly on the tip of the needle, the wettability of ILs was an important 

factor. As shown in Table 1, the contact angle of the ionic liquid (BMIM-PF6) put on a 

carbon plate is 32.5 deg, and carbon exhibits better wettability for BMIM-PF6 than W 

and stainless steel (SUS). Also, as carbon is an excellent material in mechanical 

processing, the needle was made of carbon. The diameter of the carbon needle was 0.3 

mm.  As a tip designed, for example, a needle with a radius of 80 μm was employed. 

The needle was supported on the porous electrode covered with carbon felt. The porous 

electrode instead of the SUS pipe, which was used in the previous ion source, was made 

of SUS, and it was connected to ILs reservoir. The thickness of the felt was 
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approximately 100 μm, and the porosity of felt-covered electrode was estimated to be 

approximately 50 %. Also, the needle was biased either positively or negatively with 

respect to a nearby aperture electrode which served as the extractor. The orifice 

prepared on the aperture electrode was 2 mm in diameter. An extractor was placed at 

approximately 3 mm away from the tip.  The ionic liquid ions were emitted from the tip 

by applying the voltage between the tip and the extractor. The potential difference 

generates an electric field that is particularly intense over the emitter surface. As 

opposed to most ion sources either positive or negative ion beams can be extracted from 

ILs ion source depending only on the direction of the applied electric field, i.e. selecting 

the appropriate polarity of the voltage source. The extraction voltage was adjusted to 

be between 0 kV and 10 kV. The extracted ion beams were accelerated toward a 

substrate. The acceleration voltage was adjusted to be between 0 kV and 10 kV. The 

ion beams deposition on the substrate was performed at lower acceleration voltages. 

The substrate used was Si(100) substrate. The background pressure around the 

substrate was 1.0 x 10–6 Torr, which was attained using a diffusion pump.  

With regard to the mass analysis, the mass over charge ratio m/q of the various 

particles produced was determined by time of flight (TOF) mass spectrometry [15]. In 

the TOF measurement, the linear mode operation and one stage acceleration method 

were used. The ion beam was interrupted by applying a pulse voltage at time t = 0 and 

the arrival time distribution of ion current received at a Micro Channel Plate (MCP) 

detector was measured. The flight distance was 1.7 m, and the time of flight measured 

was in a range of 10 μs. When energetic ions reached the top plate of the MCP, 

secondary electrons were emitted and were amplified exponentially in the channel 

plate. On the assumption that all the particles have a kinetic energy per unit charge 

equal to the voltage difference V, the current curve yields the distribution of m/q. It 

should be noted that it is important to measure the energy distribution for more 

accurate mass-analysis. 
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3. Results and discussion 

With regard to the ion beam characteristics, both positive and negative ions started 

to be emitted at an extraction voltage of approximately 4 kV. The surface tension of 

BMIM-PF6 is 0.049 N/m. Also, the tip radius was 80 μm, and the distance between the 

tip and the extractor was 3 mm. Therefore, the threshold voltage was estimated to be a 

few kilovolts, and it was close to the experimental result, i.e. 4 kV. The ions extracted 

were moved toward a Faraday cup, on which they were collected as an ion current. The 

ion current for BMIM-PF6 increased with increasing extraction voltage, and the ion 

current at an extraction voltage of 6 kV was approximately 70 nA for positive ions and 

approximately 80 nA for negative ions, respectively.  

In order to investigate the stability of ILs ion beams, the extractor was placed more 

closely at approximately 0.5 mm away from the tip. Figure 1 shows the time 

dependence of ILs ion currents for (a) positive and (b) negative ions as a parameter of 

the extraction voltage (Vext). The pulse currents are observed at the extraction voltages 

such as 2.65 kV and 2.7 kV. The pulse period decreases with increasing the extraction 

voltage, and the continuous currents were achieved at an extraction voltage of 2.8 kV. 

Moreover, the continuous currents were stable for a long time, e.g., one hour. If the 

number of cations or anions extracted is much larger than that of anions or cations 

remained, the extracted current becomes unstable, for example, in an electrospray 

method. On the other hand, in the ILs ion source developed, the porous felt-electrode 

was placed around the tip, and the flow rate of ILs toward the tip could be adjusted by 

the porosity. In addition, the high electric field induced by applying the extraction 

voltage to the tip could control the flow rate. As a result, the stable current was 

obtained by adjusting the extraction voltage as well as the porosity of the flowing space. 

Figure 2 shows the mass spectra for (a) positive and (b) negative ionic liquid ion 

beams. The extraction voltage (Vext) was 4 kV. As shown in the figure, several peaks 
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appear in the mass spectra for positive and negative ions, although the mass resolution 

is not sufficient at higher masses. The molecular weight of cation (C8H15N2) and anion 

(PF6) is 139.22 and 144.96, respectively. Both cations and anions are produced as 

positive and negative fragment ions. Furthermore, by assuming that singly charged 

ions are extracted, positive and negative cluster ions with a size of a few molecules to a 

few tens molecules are produced. Cluster sizes, for example, 3 molecules as well as 5, 7, 

11, and 15 molecules are estimated from several peaks of the spectra. It was reported 

that multiply charged clusters could be produced by using salt with higher ionic 

bonding [25,26]. However, the TOF measurement cannot distinguish the singly 

charged cluster with a mass (m) from the doubly charged cluster with a double-mass 

(2m). Therefore, we assumed that singly charged ions were extracted. In addition, ILs 

clusters have the ionic bonding ability, and the same number of cations and anions 

form a neutral ILs cluster. For example, a cation (A+) or an anion (B-) is attached to the 

neutral cluster (AB)n, which results in the formation of a positive cluster ion (AB)nA+ or 

negative cluster ion  (AB)nB- with the cluster  size of n.   

The composition of ILs layers deposited on Si(100) substrates was measured by an 

X-ray photoelectron spectroscopy (XPS). Figure 3 shows (a) F1s, (b) N1s, and (c) P2p 

peaks for BMIM-PF6 layers deposited by positive and negative ion beams. The 

acceleration voltage was 6 kV, and the ion dose was 1.0 × 1015 ions/cm2. Compared with 

the XPS peaks for deposited layers, the peaks for BMIM-PF6 solvent are stronger by 

approximately 10 times, because much solvent are attached to the Si surface. Moreover, 

the deposited layer was very thin. The layer thickness was estimated to be less than 5 

nm because a Si peak was observed very weakly. Furthermore, XPS peaks observed 

correspond to the constituent elements in a BMIM-PF6 molecule. For example, N atoms 

are included in a cation, and F and P atoms are included in an anion. The composition 

ratio of these atoms, which can be estimated with respect to carbon atoms, is similar to 

that of ionic liquid (BMIM-PF6) solvent. According to the TOF measurement, ionic 
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liquid cluster ions as well as fragment ions were produced. Therefore, the observation 

of XPS peaks for constituent elements indicates that either a cation or an anion is 

attached to the neutral BMIM-PF6 cluster resulting in the formation of positive or 

negative cluster ions, respectively.  

In addition, the XPS peak intensities are similar between positive and negative ion 

irradiation. Also, the chemical shift for Nis and P2p peaks is observed, although F1s peak 

position is not shifted. This indicates that the dissociation of a cation and an anion 

occurs after impact on the substrate surface, and the fragment atoms such as N and P 

atoms react with another atom such as C and O atom. With regard to the fragment 

atoms, small cluster ions as well as the cation and anion could also be dissociated. If 

the acceleration voltage is 6 kV for small cluster ions, for example, with a size of 4 

molecules, the incident energy is approximately one hundred electron volts per 

constituent atom. This is high incident energy, and the dissociation of a BMIM-PF6 

molecule contained in the positive and negative clusters might be occurred. Ion/surface 

collision phenomena in the hyperthermal collision energy regime (1-100 eV) were 

reviewed in the references [15,16]. It was reported that inelastic collisions including 

soft landing could lead to excitation of the polyatomic projectile ions, resulting in the 

fragmentation described in terms of surface-induced dissociation (SID). Thus, fragment 

atoms produced are mixed in the ILs layers formed. It should be noted, however, that 

the large cluster ions contribute to the ILs deposition by keeping a molecular state of 

BMIM-PF6 without dissociation. Also, the number of BMIM-PF6 molecules transferred 

by large cluster ion beams is large because it is multiplied by the cluster size. 

The surface morphology of deposited layers on Si (100) substrates was investigated 

by an atomic force microscope (AFM). Figure 4 shows AFM images of Si substrates 

unirradiated and irradiated by positive and negative cluster ions. The acceleration 

voltage was 8 kV, and the ion dose was 1.0 × 1015 ions/cm2. The scanning area was 

1000 nm × 1000 nm. Although Si substrates irradiated by the cluster ion beams were 
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rinsed by acetone, the deposited layers were found to remain by the XPS measurement. 

As shown in the figure, the Si surface becomes rough after deposition, and the surface 

roughness (Ra) is 0.64 nm and 0.70 nm for positive and negative cluster ion irradiation, 

respectively. It is larger than that of the unirradiated surface, i.e., 0.16 nm. Also, the 

surface morphology of deposited layers by positive and negative cluster ion beams 

represents the specific waves. The change of morphology is performed by deposition of 

ILs soft materials. 

Figure 5 shows the dependence of the surface roughness on the acceleration voltage. 

The ion dose was 1.0 × 1015 ions/cm2. A shown in Figure 5, the surface roughness 

increased with increasing the acceleration voltage, and it was approximately 0.70 nm 

at an acceleration voltage of 8 kV. Because ILs is soft materials, the irradiation of high-

energetic cluster ions as well as fragment ions on ILs under-layers causes the increase 

of surface roughness.  

The wettability of Si (100) surfaces irradiated by ILs cluster ion beams were 

investigated by measuring the contact angles for water droplet, which was put on the 

Si surfaces just after taking out of the vacuum chamber. Before the cluster ion 

irradiation, the Si(100) surfaces were cleaned with hydrofluoric acid and pure water. 

Figure 6 shows the dependence of the contact angle on the ion dose for the positive and 

negative cluster ion irradiation. The acceleration voltage was 8 kV. The contact angle 

for the unirradiated Si-surface was 74.4 degree. As shown in the figure, the contact 

angle for the negative cluster ion irradiation decreases, and it is approximately 50 

degree. This is the same as the contact angle of ILs layers formed on the Si surface by a 

dipping method. On the other hand, for the positive cluster ion irradiation, the contact 

angle is less than 50 degree at an ion dose of 5.0 x 1014 ions/cm2, and it increases to be 

approximately 50 degree with increasing the ion dose. This indicates that the ILs 

layers are formed on the Si surface even at a lower ion dose. It is noted that the surface 

modification of Si substrates is performed by deposition of the ILs cluster ions.   
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Figure 7 shows the dependence of the contact angle on the acceleration voltage for 

the positive and negative cluster ion irradiation. The ion dose was 1.0 x 1015 ions/cm2. 

As shown in the figure, the contact angle is approximately 50 degree for most the 

irradiated surfaces, although it is smaller for negative cluster ion irradiation at an 

acceleration voltage of 6 kV. According to the AFM observation, the surface roughness 

of the deposited layers increased with increasing the acceleration voltage. However, the 

contact angle is almost the same at different acceleration voltages, and it is 

independent of the change of surface roughness. Since the ILs is soft matter without 

mixing water, the interaction of water droplets with deposited ILs-layers is weak. As a 

result, the contact angle for deposited layers is constant. Furthermore, for fragment 

ions as well as small cluster ions, the incident energy is larger than a few hundreds 

electron volts per atom. The ILs layers including fragment atoms might be deposited on 

the substrate surface, which results in the surface modification of Si substrates. 

The adhesion of ILs deposited layers on Si substrates was stronger than the ILs 

solvent, because they were not removed by acetone rinse. It is considered that good 

adhesion of the ILs layers might be performed by chemical bonding of a cation or an 

anion with the Si surface atom. In order to show that ILs layers deposited were 

transparent and electric conductive, we measured the transmittance and the scanning 

electron microscope (SEM) image for ILs layers deposited on glass substrates [27]. The 

deposition condition was the same as that for Si(100) substrates. According to the 

measurement, the transmittance of the ILs layers deposited by the positive and 

negative cluster ion beams was the same as that of the glass substrate. This suggested 

that the deposited layers were transparent, although the layer thickness was very thin. 

In addition, the SEM images of glass substrates were observed clearly without charge-

up of electron beams. This was ascribed to the deposition of ionic liquids exhibiting 

electric conductivity. 
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4. Conclusions 

We developed the ionic liquids (ILs) ion source using the high electric field method, 

and produced both positive and negative ILs ion beams. TOF measurement showed 

that cluster ions of ILs (BMIM-PF6) as well as fragment ions such as cation (BMIM) 

and anion (PF6) were produced. The cluster size was distributed between a few 

molecules and a few tens molecules. With regard to the cluster ions, a cation (A+) or an 

anion (B-) was attached to a ionic liquid cluster (AB)n resulting in the formation of 

positive cluster ion (AB)nA+ or negative cluster ion (AB)nB-, respectively. Furthermore, 

the positive and negative cluster ion beams  including the fragment ions were 

deposited on Si(100) substrates, and the deposited layers with the flat surface at an 

atomic level was formed. XPS measurement showed that the composition of deposited 

layers was similar to that of ILs solvent. Also, the contact angle of Si(100) surfaces 

irradiated at different acceleration voltages and ion doses was similar to that of ILs 

solvent. 
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Table caption 

Table 1: Contact angles of ionic liquids (BMIM-PF6) on carbon (C), tungsten (W), and 

stainless (SUS). 

 

 

 

Figure captions 

Figure 1: Time dependence of ILs ion currents for (a) positive and (b) negative ions as a 

parameter of the extraction voltage (Vext). 

 

Figure 2: Mass spectra for (a) positive and (b) negative ionic liquid ion beams. 

 

Figure 3: (a) F1s, (b) N1s, and (c) P2p peaks for BMIM-PF6 layers deposited by positive 

and negative ion beams. The acceleration voltage was 6 kV, and the ion dose 

was 1.0 × 1015 ions/cm2. 

 

Figure 4: AFM images of Si substrates (a) unirradiated and irradiated by (b) positive 

and (c) negative cluster ions. The acceleration voltage was 8 kV, and the ion 

dose was 1.0 × 1015 ions/cm2. 

 

Figure 5: Dependence of the surface roughness on the acceleration voltage. The ion 

dose was 1.0 × 1015 ions/cm2. 

 

Figure 6: Dependence of the contact angle on the ion dose for the positive and negative 

cluster ion irradiation. The acceleration voltage was 8 kV. 
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Figure 7: Dependence of the contact angle on the acceleration voltage for the positive 

and negative cluster ion irradiation. The ion dose was 1.0 x 1015 ions/cm2. 
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Figure 5: Takaoka et al. 

 

 


