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1 Introduction

In recent years, the gradient flow equation has been the focus of much attention. The

equation was proposed by Martin Luscher [1] for Yang-Mills theory as a certain type of

diffusion equation to give a one parameter deformation of the gauge field evolving in the

flow time starting from the bare gauge field as the initial condition. It was found [2] that

the expectation value of any gauge invariant local operators of the new gauge field, which

is the solution of the gradient flow equation, is finite without additional renormalization.

Various applications of the physical observable are studied recently. Ref. [3] give a

review of the recent applications. For example, the gradient flow of a matter field χ is

proposed as follows [4]:

χ̇ = ∆χ, χ|t=0 = ψ, (1.1)

∆ = /D2 or simply ∆ = DµDµ, (1.2)

where Dµ = ∂µ + Bµ. Using this equation, the expectation value of the chiral densities

is calculated [4]. The relation between the small flow time behavior of certain gauge

invariant local products and the correctly-normalized conserved energy-momentum tensor

in the Yang-Mills theory is given [5]. More appropriate probes for the translation Ward

identities is defined [6]. The methods is also applied in the lattice theory [1, 7–21], a new

scheme of the step scaling, the improved action, and so on.

In this way, the gradient flow equation has spurred a great deal of research. In view

of this nice property, it is natural to consider possible extensions of this method for other

theories. One interesting system is the super Yang-Mills theory. This theory shares similar

property as the Quantum Chromodynamics (QCD) since it has a matter field called gaug-

ino, though it is in the adjoint representation. On the other hand, the restriction from the

supersymmetry (SUSY) can give a natural extension of the gradient flow in Yang-Mills the-

ory. In this sense, super Yang-Mills theory could be an interesting laboratory for studying

the extension of the gradient flow equation.

Once it is constructed, there can be interesting applications of the supersymmetric

Yang-Mills lattice theory. For example, imposing the supersymmetric Ward-Takahashi

identity for composite fields with finite flow time, one might be able to determine the

renormalization factor for the super current as well as various improvement terms in the

action and operators, in close analogy with Luscher’s work on the chiral symmetry in QCD

with Wilson fermions. This method may also be useful for testing the validity of various

proposals of supersymmetric lattice models.

In this paper, we construct the gradient flow equation for super Yang-Mills theory.

Since the super gauge symmetry is nonlinearly realized, we first construct the generalization

of the gradient flow equation for quantum field theories with nonlinearly realized symmetry.

Applying the generalized equation to super Yang-Mills theory, we construct a natural

extension of the gradient flow using superfield formalism. We find that with a special

choice of the modification term in the gradient flow equation, we obtain a closed equation

within the Wess-Zumino (WZ) gauge.
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This paper is organized as follows. In section 2, we give a brief review of the method

of gradient flow in Yang-Mills theory. In section 3 we propose the generalized gradient

flow equation of the quantum field theory with nonlinearly realized symmetry. In section 4

we apply the generalized equation to super Yang-Mills theory. To obtain the compact

expression of the equation of super Yang-Mills theory, we look for a special choice of the

modification term to give a closed equation within the WZ gauge. In section 6, we give

the gradient flow equation for super Yang-Mills theory concretely with component fields

including the gaugino field. Section 7 is devoted to summary and discussions.

2 Gradient flow equation for Yang-Mills theory

The gauge field Bµ is defined by the gradient flow equation

Ḃµ = DνGνµ + α0Dµ∂νBν , (2.1)

Bµ|t=0 = Aµ, (2.2)

where the dot means a differential in terms of the flow time t, Aµ describe a fundamental

bare field of SU(N) gauge theory, Gµν and Dµ are defined by

Gµν = ∂µBν − ∂νBµ + [Bµ, Bν ], (2.3)

Dµ = ∂µ + [Bµ, ·] (2.4)

respectively. The reason why we call the equation the gradient flow one is that the first

term of r.h.s. of eq. (2.1) is proportional to the gradient of the action,

S =

∫

d4xTr[Gµν(x)Gµν(x)]. (2.5)

The second term of the r.h.s. of eq. (2.1) is a modification term to damp the gauge degrees

of freedom. In this paper, we call this term as the α0 term. It has to be proportional to

the form of gauge transformation so that it does not affect the evolution of gauge invariant

observables. Luscher claims that any expectation value which is described by the gauge

field Bµ, which is defined by eq. (2.1) at positive flow time has a well-defined continuum

limit without additional renormalization. Calculating the expectation value of the energy

density at one loop order using this method, he showed that it is the case [1]. Soon after

that, Luscher and Weisz proved this claim to all order in perturbation theory [2]. Hereafter,

we call the claim of the all order finiteness of the observables constructed from the gauge

field Bµ with finite flow time as “the Luscher-Weisz theorem”. Eq. (2.1) has a gauge

symmetry at any flow time if the gauge parameter ω(t, x) satisfies the condition

∂tω = α0Dµ∂µω. (2.6)

The symmetry of the equation is a key to prove the Luscher-Weisz theorem.

When we extend the method of gradient flow to the super Yang-Mills theory, we

encounter a problem. Since the super gauge symmetry is nonlinearly realized, the naive

gradient flow equation does not respect the super gauge symmetry. In order to solve this

problem, we propose a generalization of the gradient flow equation with nonlinearly realized

symmetry in the next section.
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3 General form of gradient flow equation

The gradient flow gives the steepest descent time evolution in the space based on the energy

function of the system. For example, when the space is Rn, the gradient flow equation is

given as

dqi

dt
= −∂E(q)

∂qi
(i = 1, · · · , n), (3.1)

where qi(i = 1, · · · , n) is the position in Rn and E(q) is the energy function. The time

evolution of the energy function is then given as

dE(q)

dt
=

n
∑

i=1

∂E(q)

∂qi
dqi

dt
= −

n
∑

i=1

(

∂E(q)

∂qi

)2

≤ 0, (3.2)

so that the energy decreases monotonically in time towards an extremum of the energy

function.

The gradient flow can be naturally extended to field theory. For example, in the field

theory in 4 dimension with field φ(x) with action S(φ), taking the space {φ(x)} as the

functional space and the action S(φ) as the energy function the gradient flow equation

becomes

∂φt(x)

∂t
= −δS(φt)

δφt(x)
. (3.3)

Since the flow stops when the field reaches the extremum of the action, the gradient flow

gives an interpolation of the initial field and a classical solution of the theory.

There is a question whether the symmetry of the theory is preserved under the time

evolution with the gradient flow equation of the type in eq. (3.3). Fortunately, in Yang-

Mills theory case, the gauge symmetry is preserved. However, in general, the problem can

arise when the symmetry of the system is nonlinearly realized.

It turns out that the super Yang-Mills theory has a super gauge symmetry which is

nonlinearly realized with respect to the vector superfield. Since the BRS symmetry is the

key for Luscher-Weisz theorem for Yang-Mills theory, one can expect that the super gauge

symmetry in super Yang-Mills theory could also play a crucial role. In the following sub-

sections, we consider the field theories with a nonlinearly realized symmetry and construct

the generalization of the gradient flow equation which respects the symmetry.

3.1 Field theories with nonlinearly realized symmetry

Let us now generalize the gradient flow for field theories with a symmetry which is nonlin-

early realized.

φa(x) → φ′a(x), (a = 1, · · · ,M) (3.4)

where a is the index for the internal degrees of freedom and M is the total number of

components. φ′ is a nonlinear function of φ. Under this transformation, the action is

invariant

S(φ′) = S(φ). (3.5)

– 4 –
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One can find that the naive gradient flow equation given in eq. (3.3) does not keep the

symmetry. This is because the gradient flow equation based on eq. (3.3) for the field after

the transformation φ′ reads

∂φa′
t (x)

∂t
= − δS(φ′

t)

δφa′
t (x)

. (3.6)

Using eq. (3.5) and the chain rule for derivative, the above equation becomes

M
∑

b=1

∂φa′
t (x)

∂φb
t(x)

∂φb
t(x)

∂t
= −

M
∑

b=1

∂φb
t(x)

∂φa′
t (x)

δS(φt)

δφb
t(x)

. (3.7)

Multiplying
∂φc

t
(x)

∂φa′
t
(x)

and sum over a, the naive gradient flow equation for φ′
t would reduce to

∂φc
t(x)

∂t
= −

M
∑

a=1

∂φc
t(x)

∂φa′
t (x)

∂φb
t(x)

∂φa′
t (x)

δS(φt)

δφb
t(x)

. (3.8)

Thus the naive gradient flow equations before and after the symmetry transformation are

different.

3.2 Our proposal for generalized gradient flow equation

How can we define a gradient flow equation which respects the symmetry? As we have

seen in the previous subsection, the problem in the naive gradient flow equation is that the

l.h.s. and the r.h.s. transform differently under the symmetry transformation. A natural

solution could be to introduce a “metric” to compensate the mismatch of the transformation

property. The metric in functional space for the field theory in D dimension can be defined

through the norm of the variation of fields δφ(x) which is invariant under the symmetry.

||δφ||2 =
∫

dDxgab(φ(x))δφ
a(x)δφb(x), a = 1, 2, · · · ,M (3.9)

where M is the number of components of the field and gab(φ(x)) is the metric in the

functional space. The metric should be chosen in such a way that the norm is invariant

under the symmetry transformation as

||δφ′||2 = ||δφ||2, (3.10)

which leads to the following properties for the metric in the functional space.

gab(φ
′(x)) =

∂φc(x)

∂φ′a(x)

∂φd(x)

∂φ′b(x)
gcd(φ(x)), (3.11)

gab(φ′(x)) =
∂φ′a(x)

∂φc(x)

∂φ′b(x)

∂φd(x)
gcd(φ(x)). (3.12)

Whether one can find an appropriate metric or not for a given field theory is quite nontrivial,

but there are quite a few examples in which one can find the metric explicitly such as O(N)

nonlinear sigma model or SU(N) lattice gauge theory. In any case, eqs. (3.11) and (3.12)

– 5 –
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mean that symmetry transformation is the isometry for the metric defined through the

invariant norm.

The condition for the isometry in eq. (3.12) gives exactly the right quantity to com-

pensate the mismatch of the transformation property in the naive gradient flow equation.

Thus we find that when we require the invariance of the gradient flow under the symmetry,

the gradient flow should be modified as

∂φa
t (x)

∂t
= −gab(φt(x))

δS(φt)

δφb
t(x)

. (3.13)

In what follows, we call the above equation as the generalized gradient flow equation. It

is clear the time evolutions of φ and φ′ fields with our generalized gradient flow equation

are mutually consistent under symmetry transformation The evolution equation (3.13) was

also discussed in the context of Fokker-Plank equation. [23–30].

In appendices B and C, we apply the generalized gradient flow equation to the O(N)

nonlinear sigma model and the SU(N) lattice gauge theory and verify its validity. We

find that the generalized gradient flow equation gives a time evolution which respects

the nonlinearly realized symmetry of the system. In the next section, we construct the

gradient flow equation of the super Yang-Mills theory based on the generalized gradient

flow equation which respects the super gauge symmetry.

4 Supersymmetric gradient flow equation

4.1 Derivation of gradient flow equation of super Yang-Mills theory

Before studying the super Yang-Mills theory, let us review the steps for constructing the

gradient flow equation in ordinary non-SUSY Yang-Mills theory. The local gauge transfor-

mation is given as

Aµ(x) → Aµ(x) +Dµω(x), (4.1)

where Dµ is the covariant derivative and ω(x) is the gauge transformation parameter. One

can see that the invariant norm of the vector field δAµ(x) is given as

||δAµ(x)||2 =
∫

d4xTr [δAµ(x)δAµ(x)] , (4.2)

which means that the metric in the field space is

gab(Aµ) = 2δab. (4.3)

Therefore, how to derive the gradient flow in ordinary Yang-Mills theory can be summarized

as follows:

1. Starting from the Yang-Mills action SYM, we make a variation over the Ab
µ(x) field,

and multiply the metric 2δab, where

SYM =

∫

d4xTr[Fµν(x)Fµν(x)], (4.4)

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. (4.5)

– 6 –
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2. We replace the Aµ(x) field with the new gauge field Bµ(t, x), and impose the initial

condition Bµ(0, x) = Aµ(x), and introduce the field strength Gµν ≡ ∂µBν − ∂νBµ +

[Bµ, Bν ].

3. We add a new gauge fixing term to suppress the increase of the degree of new gauge

freedom in the flow time direction. It has to be proportional to the gauge transfor-

mation, because physical quantities do not depend on the term.

4. We regard the sum of them as r.h.s. of the gradient flow equation.

5. We regard the derivative of Ba
µ(t, x) with respect to t as l.h.s. of the gradient flow

equation.

Thus, we obtain the gradient flow equation in Yang-Mills theory as eqs. (2.1) and (2.2).

We now apply the general gradient flow equation to super Yang-Mills theory. The

super gauge transformation of the super Yang-Mills vector superfield V is given as

eV → e−iΛ†

eV eiΛ, (4.6)

where Λ,Λ† are arbitrary chiral and anti-chiral superfields. The component of superfield

V is defined by V = {C,X, X̄,M,M∗, Vm,Λ, Λ̄, D}. The invariant norm for δV under the

super gauge transformation is then given as

||δV ||2 ≡ −
∫

d8zTr
[

e−V
(

δeV
)

e−V
(

δeV
)]

. (4.7)

This means that the space of vector superfields has a nontrivial metric in functional space.

To obtain the gradient flow equation of the super Yang-Mills theory, we replace the state-

ment partly as follows:

• Yang-Mills action SYM → Super Yang-Mills action SSYM, where

SSYM = −
∫

d4x

∫

d2θTr[WαWα] + h.c., (4.8)

Wα = −D̄D̄(e−V Dαe
V ). (4.9)

• Gauge field Aµ(x) → Superfield V (z). The argument z stands for super coordinate

(x, θ, θ̄).

• New gauge field Bµ(t, x) → New superfield V(t, z). The component of superfield

V is defined by V = {c, χ, χ̄,m,m∗, vm, λ, λ̄, d}. We impose the initial condition

V(0, z) = V (z).

• Gauge transformation → Super gauge transformation.

• Metric gab(Aµ) → gab(V ).

– 7 –
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Thus we propose a general form of the supersymmetric extension of the gradient flow

equation,

∂Va

∂t
= −gab(V)δSSYM

δVb
+ α0δVa. (4.10)

The δV is the super gauge transformation of V , which is defined by the equation as

δV = LV/2 · [(Φ− Φ†) + coth(LV/2) · (Φ + Φ†)], (4.11)

where Φ is a chiral superfield. Substituting the explicit forms of gab(V), δSSYM

δVb , δVa, we

obtain the gradient flow equation in the matrix form as

∂V
∂t

=
LV

1− e−LV
(F + α0ΦV) + h.c., (4.12)

where

F = Dαwα + {e−VDαeV , wα}. (4.13)

and ΦV is a chiral field, V = VaT a and T a is a representation matrix. The field strength

wα is given by wα ≡ −D̄D̄(e−VDαe
V). The LV is defined by

LV · ≡ [V , · ]. (4.14)

The derivation of the above equation is given in appendix E. The covariant term of eq. (4.12)

was also discussed in the stochastic quantization [31, 32]. We can also rewrite eq. (4.12)

more simply using eV as a basic variable as

∂eV

∂t
= eV(F + α0ΦV) + h.c.. (4.15)

This form is useful for studying the time dependence of the super gauge transformation as

discussed in the next subsection.

4.2 Symmetries of gradient flow equation

We comment on the supersymmetry and super gauge symmetry of the gradient flow equa-

tion. The equation consists of covariant derivative operators D, D̄, and vector multiplet

V . Because supersymmetric transformation operators Qξ, Q̄ξ̄ commute with D, D̄, the

equation keeps SUSY manifestly if ξ and ξ̄ do not depend on the flow time.

It is important to examine the condition that the gradient flow equation has super

gauge symmetry at any flow time. Taking the infinitesimal super gauge transformation for

both sides of the gradient flow equation, we obtain the condition for Λ,

i
dΛ

dt
= α0(δΛΦV + i[Λ,ΦV ]). (4.16)

The δΛ is infinitesimal super gauge transformation,

ΦV → ΦV + δΛΦV . (4.17)

If Λ satisfies the condition eq. (4.16), the gradient flow equation is invariant for the super

gauge transformation at any flow time.

– 8 –



J
H
E
P
1
1
(
2
0
1
4
)
0
9
4

5 Gradient flow equation of super Yang-Mills theory under Wess-Zumino

gauge

In this section, we determine the form of the gradient flow equation of super Yang-Mills

theory under the WZ gauge. Because eq. (4.12) have infinite number of terms, it is very

difficult to solve it. In order to obtain the flow equation with finite number of terms, we

choose the WZ gauge.

However, generally the time evolution from the flow equation can carry the system

away from the WZ gauge. Therefore, the most important question is whether there exists

the special chiral field ΦV which give the super gauge transformation keeping the WZ

gauge. As a result, we find that such a ΦV exists.

Here we discuss how to determine the form of the α0 term. We try to find out the

special form of the α0 term so that the gradient flow equation is consistent within the WZ

gauge. This means the α0 term has to satisfy the following requirements.

• It is positive.

• The mass dimension is two.

• It is described by super gauge transformation δV .

• The flow of the vector field keeps the WZ gauge at any flow time.

As a result, we found out that there exists at least one example of the α0 term which

satisfies these conditions.

α0 = 1, (5.1)

δV = ΦV +Φ†
V +

1

2
[V ,ΦV − Φ†

V ] +
1

12
[V , [V ,ΦV +Φ†

V ]], (5.2)

where

ΦV = D̄2(D2V + [D2V ,V ]). (5.3)

It is possible that ΦV which gives the super gauge transformation keeping the WZ gauge

may not be unique. However, this example can be useful for further studies.

6 Gradient flow equation of super Yang-Mills theory for each component

In this section, we applied our equation, which is obtained in section 4, to super Yang-

Mills theory concretely, and derive the gradient flow equation of each component under WZ

gauge. It gives the gradient flow equation of the matter field. For the sake of understanding

this section, we give the equation in the case of the pure Abelian supersymmetric theory

in appendix F as an example.

– 9 –
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6.1 Expansion in component fields

We rewrite F for the convenience as

F = Dαwα + {e−VDαeV , wα}. (6.1)

Useful formulae to expand eq. (6.1) in component fields are given in appendix G. The gauge

covariant term is given as
(

LV

1− e−LV
· F
)

+

(

LV

eLV − 1
· F †

)

= F + F † +
1

2
[V , F − F †] +

1

12
[V , [V , F + F †]] +O(V3), (6.2)

where F is represented in (x, θ, θ̄) coordinates by

F (x, θ, θ̄) = −8d+ 8θσm
Dmλ̄− 8θ̄σ̄m

Dmλ

+4(θ̄σ̄mθ)[vm, d] + 4(θσkσ̄mσlθ̄)Dlvmk + 8[θ̄λ̄, θλ]

−8iθθ(θ̄σ̄lσm
DlDmλ̄) + 8iθθ[θ̄λ̄, d]

+4iθθ(θ̄σ̄kσm∂kDmλ̄) + 4iθ̄θ̄(θσkσ̄m∂kDmλ)

+θθθ̄θ̄
(

2�d+ 2i∂m[vm, d] + iTr[σ̄mσlσ̄nσk]∂nDlvmk

−2i∂m{λ̄α̇, (σ̄
mλ)α̇}

)

. (6.3)

On the other hand, F † is represented in (x, θ, θ̄) coordinates by

F †(x, θ, θ̄) = −8d+ 8θσm
Dmλ̄− 8θ̄σ̄m

Dmλ

−4(θ̄σ̄mθ)[vm, d] + 4(θσlσ̄mσkθ̄)Dlvmk + 8[θ̄λ̄, θλ]

−4iθθ(θ̄σ̄kσm∂kDmλ̄)− 4iθ̄θ̄(θσkσ̄m∂kDmλ)

+8iθ̄θ̄(θσlσ̄m
DlDmλ) + 8iθ̄θ̄[θλ, d]

+θθθ̄θ̄
(

2�d+ 2i∂m[vm, d]− iTr[σ̄mσkσ̄nσl]∂nDlvmk

+2i∂m{(λ̄σ̄m)α, λα}
)

. (6.4)

Finally, we get the gauge covariant term in (x, θ, θ̄) coordinates as follows.
(

LV

1− e−LV
·
(

Dαwα + {e−VDαeV , wα}
)

)

+ h.c.

= −16d+ 16θσm
Dmλ̄− 16θ̄σ̄m

Dmλ

+16θσmθ̄Dkvmk + 16[θ̄λ̄, θλ]

−8iθθ(θ̄σ̄lσm
DlDmλ̄) + 8iθθ[θ̄λ̄, d]

+8iθ̄θ̄(θσlσ̄m
DlDmλ) + 8iθ̄θ̄[θλ, d]

+θθθ̄θ̄

(

4�d+ 4i∂m[vm, d]

+iTr[σ̄mσlσ̄nσk − σ̄mσkσ̄nσl]DnDlvmk

−2i∂m{λ̄α̇, (σ̄
mλ)α̇}+ 2i∂m{(λ̄σ̄m)α, λα}

−4

3
[vm, [vm, d]]

)

. (6.5)
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In a similar way, we obtain δV in terms of (x, θ, θ̄) coordinates as

δV(x, θ, θ̄) = ΦV +Φ†
V +

1

2
[V ,ΦV − Φ†

V ] +
1

12
[V , [V ,ΦV +Φ†

V ]]

= 16d− 16θσm
Dmλ̄+ 16θ̄σ̄m

Dmλ− 16θσkθ̄Dk∂mvm

−8iθθθ̄σ̄kσm
DkDmλ̄− 8θθθ̄α̇[λ̄

α̇, ∂mvm]

−8iθ̄θ̄θσkσ̄m
DkDmλ− 8θ̄θ̄θα[λα, ∂mvm]

+4θθθ̄θ̄

(

�d+ i{λ̄α̇, (σ̄
m

Dmλ)α̇} − i{λα, (σm
Dmλ̄)α}

+i[d, ∂mvm] + i[vm, ∂md]− 1

6
[vm, [vm, d]]

)

. (6.6)

6.2 Gradient flow equation of super Yang-Mills theory for each component of

vector multiplet

Because a physical quantity does not depend on the form of the α0 term, we choose a

particular value α0 = 1. Then we obtain

(

LV

1− e−LV
·
(

Dαwα + {e−VDαeV , wα}
)

)

+ h.c.+ 1 · δV

= 16θσmθ̄Dkvmk + 16[θ̄λ̄, θλ]− 16θσkθ̄Dk∂mvm

−16iθθθ̄σ̄kσm
DkDmλ̄+ 8iθθ[θ̄λ̄, d+ i∂mvm]

+16iθ̄θ̄θσkσ̄m
DkDmλ+ 8iθ̄θ̄[θλ, d− i∂mvm]

+θθθ̄θ̄
(

8�d+ 8i[vm, ∂md] + iTr[σ̄mσlσ̄nσk − σ̄mσkσ̄nσl]DnDlvmk

+4i{λ̄α̇, (σ̄
m

Dmλ)α̇} − 4i{λα, (σm
Dmλ̄)α} − 2[vm, [vm, d]]

)

. (6.7)

Finally, we obtain the flow equations for the each component of the vector multiplet as

ċ = 0, (6.8)

χ̇ = 0, (6.9)

˙̄χ = 0, (6.10)

ṁ = 0, (6.11)

ṁ∗ = 0, (6.12)

v̇m = −16Dkvmk + 16Dm∂kv
k − 8{λ̄α̇, (σ̄mλ)α̇}, (6.13)

˙̄λ = −16σ̄kσm
DkDmλ̄+ 8[λ̄, d+ i∂mvm], (6.14)

λ̇ = −16σkσ̄m
DkDmλ− 8[λ, d− i∂mvm], (6.15)

ḋ = 16�d+ 16i[vm, ∂md]

+2iTr[σ̄mσlσ̄nσk − σ̄mσkσ̄nσl]DnDlvmk

+8i{λ̄α̇, (σ̄
m

Dmλ)α̇} − 8i{λα, (σm
Dmλ̄)α}

−4[vm, [vm, d]]. (6.16)
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We find that the flow equations for each component are consistent with WZ gauge. Here

we choose initial conditions to satisfy the WZ gauge at t = 0 as

c|t=0 = 0, (6.17)

χ|t=0 = 0, (6.18)

χ̄|t=0 = 0, (6.19)

m|t=0 = 0, (6.20)

m∗|t=0 = 0, (6.21)

vm|t=0 = Vm, (6.22)

λ̄|t=0 = Λ̄, (6.23)

λ|t=0 = Λ, (6.24)

d|t=0 = D. (6.25)

Let us compare the flow equation for Yang-Mills theory proposed by Luscher with our

results for super Yang-Mills theory in eqs. (6.14) and (6.15). In ref. [4], Luscher claims

that the gradient flow equations of the quark field are given as

˙̄χ = χ̄
←−
∆ + α0χ̄∂νBν , (6.26)

χ̇ = ∆χ− α0∂νBνχ. (6.27)

On the other hand our results for the gradient flow equations of the gaugino field in

eqs. (6.14) and (6.15) are given as

˙̄λ = −16σ̄kσm
DkDmλ̄+ 8[λ̄, d+ i∂mvm], (6.28)

λ̇ = −16σkσ̄m
DkDmλ− 8[λ, d− i∂mvm]. (6.29)

If we regard ∆ as /D2, eqs. (6.26) and (6.27) are almost similar to our results eqs. (6.28)

and (6.29) respectively except for [λ̄, d] term and [λ, d] term and the point that α0 terms

are described in terms of commutation relations.

7 Summary and discussion

In this paper, we proposed the generalized gradient flow equation for field theories with

nonlinearly realized symmetry. Introducing the invariant norm for the variation of the

field φa(x) where a = 1, · · · ,M is the index for the internal degrees of freedom, one can

naturally define a metric gab(φ(x)) in the functional space. Using this metric, we proposed

the generalized gradient flow equation as

φ̇a
t (x) = −gab(φt(x))

δS(φt)

φb
t(x)

. (7.1)

Applying the generalized equation to super Yang-Mills theory using the superfield formal-

ism, we obtained a gradient flow equation which manifestly preserves both super symmetry

and super gauge symmetry. By choosing an appropriate α0 term described in terms of ΦV

– 12 –
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in eq. (5.3), we obtained a gradient flow equation of the super Yang-Mills theory which is

closed under the WZ gauge.

We found that the gradient flow of the super Yang-Mills theory is very similar to the one

in Yang-Mills theory and QCD. It is known that the gradient flow equation of the Yang-Mills

theory and QCD has a wide variety of successful applications. We expect that our method

may also be useful for testing the validity of various proposals of supersymmetric lattice

models as well as extracting the physics of the super Yang-Mills theory. It is important to

examine whether gauge invariant physical quantities require additional renormalization or

not, which is under way. It is also interesting to study the properties of the generalized

gradient flow equation for the nonlinear sigma model, which is a subject for future studies.
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A Notation

We use the following notation. The definition of the covariant derivative and the gauge

field strength are

Dm· ≡ ∂m ·+ i

2
[vm, ·], (A.1)

vmn ≡ ∂mvn − ∂nvm +
i

2
[vm, vn]. (A.2)

respectively. The differential operators D and D̄ are

Dα(x) =
∂

∂θα
+ i(σmθ̄)α∂m, (A.3)

D̄α̇(x) = − ∂

∂θ̄α̇
− i(θσ̄m)α̇∂m, (A.4)

respectively. We introduce y and y† as

ym = xm + iθσmθ̄, (A.5)

y†m = xm − iθσmθ̄. (A.6)

respectively. For the sake of ease, we give D and D̄ in terms of (y, θ, θ̄) or (y†, θ, θ̄)

coordinates as

Dα(y, θ, θ̄) =
∂

∂θα
+ 2i(σmθ̄)α

∂

∂ym
, (A.7)

D̄α̇(y, θ, θ̄) = − ∂

∂θ̄α̇
, (A.8)

Dα(y
†, θ, θ̄) =

∂

∂θα
, (A.9)

D̄α̇(y
†, θ, θ̄) = − ∂

∂θ̄α̇
− 2i(θσ̄m)α̇

∂

∂y†m
. (A.10)

– 13 –



J
H
E
P
1
1
(
2
0
1
4
)
0
9
4

B O(N) nonlinear sigma model

The O(N) nonlinear sigma model is described by the unit O(N) vector field φα(x) (α =

1, · · · , N) with the constraint
∑N

α=1(φ
α)2 = 1. The action is given as

S =
1

2λ

∫

dDx

N
∑

α=1

∂µφ
α∂µφ

α, (B.1)

where λ is the coupling. The action is invariant under the global O(N) rotation

φα(x) → φα(x) +
N
∑

β=1

ωαβφβ (B.2)

where ωαβ is an infinitesimal antisymmetric tensor. The invariant norm is given as

||δφ||2 =
∫

dDx

N
∑

α=1

(δφα(x))2. (B.3)

The functional space can be parameterized by φa(x)(a = 1, · · · , N − 1) as independent

fields. Solving the constraint, the N -th component is expressed as

φN (x) = ±
[

1−
N−1
∑

a=1

(φa(x))2

]1/2

. (B.4)

Substituting eq. (B.4) into eq. (B.3), we obtain

||δφ||2 =
∫

dDx

N−1
∑

a,b=1

gab(φ(x))δφ
a(x)δφb(x), (B.5)

where the metric in the functional space gab(φ(x)) is given by

gab(φ(x)) = δab +
φa(x)φb(x)

1−∑N−1
c=1 (φc(x))2

. (B.6)

In this parameterization of the functional space, the O(N) symmetry is nonlinearly real-

ized as

φa(x) → φ′a(x) = φa(x) + δφa(x)

= φa(x) +
N−1
∑

b=1

ωabφb(x)± ωaN

[

1−
N−1
∑

b=1

(φb(x))2

]1/2

,

(B.7)

where ωab, ωaN are the infinitesimal parameters for the O(N) rotation. One can easily find

that if one considers the transformation in eq. (B.7) as the coordinate transformation of

the functional space, it is the isometry. In other words,

gab(φ′) =
∂φ′a

∂φc

∂φ′b

∂φd
gcd(φ) (B.8)
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holds. It is then obvious that the following generalized equation

φ̇a
t (x) = −gab(φt(x))

δS(φt)

δφb
t(x)

(B.9)

gives essentially identical time evolution for φ and φ′. Moreover, a straightforward calcu-

lation shows that the gradient flow equation based on our proposal eq. (B.9) gives

φ̇a
t (x) = 1

λ

[

�φa
t (x)− φa

t (x)
(

∑N−1
b=1 φb

t(x)�φb
t(x) + φN

t (x)�φN
t (x)

)]

, (B.10)

with φN
t (x) ≡ ±

[

1−∑N−1
c=1 (φc

t(x))
2
]1/2

. The time evolution for φN
t (x) can also be induced

using eq. (B.10) which reads

φ̇N
t (x) =

1

λ

[

�φN
t (x)− φN

t (x)

(

N−1
∑

b=1

φb
t(x)�φb

t(x) + φN
t (x)�φN

t (x)

)]

.

(B.11)

Eqs. (B.10), (B.11) can be combined to

φ̇α(x) =
1

λ



�φα(x)− φα(x)





N
∑

β=1

φβ(x)�φβ(x)







 , (B.12)

which is manifestly O(N) symmetric and also keeps the constraint
∑N

α=1(φ
α(x))2 = 1.

C Lattice gauge theory

The SU(N) lattice gauge theory is described by the link variable U(µ, x) which are N ×N

SU(N) matrices . The action is given as

S = β
∑

x

∑

µ>ν

[

1− 1

N
Tr(P (µ, ν, x) + P †(µ, ν, x))

]

. (C.1)

Here P (µ, ν, x) is the plaquette defined as

P (µ, ν, x) = U(µ, x)U(ν, x+ µ̂)U†(µ, x+ ν̂)U†(ν, x). (C.2)

This action is invariant under the gauge transformation

U(µ, x) → Λ(x)U(µ, x)Λ†(x+ µ̂), (C.3)

where Λ(x) are arbitrary SU(N) matrices on the lattice site x and the invariant norm is

given as

||δU ||2 =
∑

x

∑

µ

Tr
[

δU†(µ, x)δU(µ, x)
]

. (C.4)

The link variable U(µ, x) can be parameterized as

U(µ, x) = exp(iAµ(x)), (C.5)
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where Aµ(x) ≡
∑N2−1

a=1 Aa
µ(x)T

a is SU(N) gauge field and T a(a = 1, · · ·N2−1) are traceless

Hermitian N ×N matrices with the condition Tr(T aT b) = 1
2δ

ab.

The metric from the invariant norm can be explicitly obtained using the following

matrix identity. Let V be a N × N matrix and consider an infinitesimal variation δV .

Defining an linear operator LV which acts on arbitrary matrix M as

LV ·M ≡ [V,M ] , (C.6)

then the following matrix identity holds for linear order in δV

e−V (eV+δV − eV ) =
1− e−LV

LV
· δV. (C.7)

Using this matrix identity and setting V = iAµ(x), the invariant norm can be rewritten as

||δU ||2 =
∑

x,µ

Tr

[(

1− e−LV

LV
· T a

)(

1− e−LV

LV
· T b

)]

δAa
µ(x)δA

b
µ(x). (C.8)

Therefore, the metric gab(Aµ(x)) becomes

gab(Aµ(x)) = Tr

[(

1− e−LV

LV
· T a

)(

1− e−LV

LV
· T b

)]

. (C.9)

A simple algebra shows that the metric gab(Aµ(x)) is

gab(Aµ(x)) = 4Tr

[(

LV

1− e−LV

· T a

)(

LV

1− e−LV

· T b

)]

. (C.10)

The generalized gradient flow equation for the field Atµ(x)

Ȧa
tµ(x) = −gab(Aµ(x))

δS(At)

δAb
tµ(x)

(C.11)

gives

Ȧtµ(x) = −iβ
LV

1− e−LV

·
(

Xt(µ, x)Ut(µ, x)−U†
t(µ, x)X

†
t (µ, x)

− 1

N
tr
[

Xt(µ, x)Ut(µ, x)−U†
t(µ, x)X

†
t (µ, x)

]

)

(C.12)

where Vt,Ut(µ, x), Xt(µ, x) are defined as

Vt = iAtµ(x) (C.13)

Ut(µ, x) = exp(iAtµ(x)) (C.14)

Xt(µ, x) =
∑

ν 6=µ

[

Ut(ν, x+ µ̂)U†
t(µ, x+ ν̂)U†

t(ν, x)

−U†
t(ν, x+ µ̂− ν̂)U†

t(µ, x− µ̂)U(ν, x− ν̂)
]

. (C.15)
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Using eq. (C.12), we obtain the generalized gradient flow equation for Ut(µ, x) as

U̇t(µ, x) = β
(

Ut(µ, x)Xt(µ, x)−X
†
t (µ, x)U

†
t (µ, x)

− 1

N
tr
[

Xt(µ, x)Ut(µ, x)−U†
t(µ, x)X

†
t (µ, x)

]

)

Ut(µ, x). (C.16)

Noting that

Ut(µ, x)Xt(µ, x) =
∑

ν 6=µ

Pt(µ, ν, x) + Pt(µ,−ν, x) (C.17)

where Pt(µ, ν, x) is the plaquette constructed from Ut, the final form for the generalized

gradient flow equation for the link field in SU(N) lattice gauge theory becomes

U̇t(µ, x) = β
∑

ν 6=µ

(

Pt(µ, ν, x) + Pt(µ,−ν, x)− P
†
t (µ, ν, x)− P

†
t (µ,−ν, x)

− 1

N
Tr(Pt(µ, ν, x) + Pt(µ,−ν, x)− P

†
t (µ, ν, x)− P

†
t (µ,−ν, x))

)

Ut(µ, x)

(C.18)

which agrees with eq. (1.4) given in the paper [1].

D Short summary of supersymmetry

We give the notation of the superfield formalism. We follow the convention by Wess and

Bagger [22].

D.1 Definition

The chiral superfield is defined by

D̄αΦ = 0. (D.1)

We described chiral multiplet Φ = {A,ψ, F} in terms of (x, θ, θ̄) coordinates as

Φ(x, θ, θ̄) = A+ iθσmθ̄∂mA+
1

4
θθθ̄θ̄�A

+
√
2θψ − i√

2
θθ∂mψσmθ̄ + θθF. (D.2)

The vector superfield is defined by

V = V †. (D.3)

We described vector multiplet V = {C,X, X̄,M,M∗, Vm,Λ, Λ̄, D} in terms of (x, θ, θ̄)

coordinates as

V (x, θ, θ̄) = C + iθX − iθ̄X̄ +
i

2
θθM − i

2
θ̄θ̄M∗

−θσmθ̄Vm + iθθθ̄

[

Λ̄ +
i

2
σ̄m∂mX

]

−iθ̄θ̄θ

[

Λ +
i

2
σm∂mX̄

]

+
1

2
θθθ̄θ̄

[

D +
1

2
�C

]

. (D.4)
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D.2 Wess-Zumino gauge

The infinitesimal super gauge transformation is defined by

V ′ = V +Φ+ Φ†. (D.5)

Under this transformation, the each component of the vector multiplet transforms as

follows:

C ′ = C +A+A∗ (D.6)

X ′ = X − i
√
2ψ (D.7)

M ′ = M − 2iF (D.8)

V ′
m = Vm − i∂m(A−A∗) (D.9)

Λ′ = Λ (D.10)

D′ = D. (D.11)

Using this gauge transformation, we fixed the WZ gauge, which is C,X,M = 0. Under

this gauge, V is described in terms (x, θ, θ̄) coordinates as

V (x, θ, θ̄) = −θσmθ̄Vm + iθθθ̄Λ̄− iθ̄θ̄Λ +
1

2
θθθ̄θ̄D, (D.12)

V 2(x, θ, θ̄) = −1

2
θθθ̄θ̄VmV m, (D.13)

V 3(x, θ, θ̄) = 0. (D.14)

And V is also described in terms (y, θ, θ̄) coordinate as

V (y, θ, θ̄) = −θσmθ̄Vm + iθθθ̄Λ̄− iθ̄θ̄θΛ +
1

2
θθθ̄θ̄[D − i∂mV m], (D.15)

V 2(y, θ, θ̄) = −1

2
θθθ̄θ̄VmV m, (D.16)

V 3(y, θ, θ̄) = 0. (D.17)

E Derivation of gradient flow equation for vector superfield V

The invariant norm for the variation of the vector superfield V is given as

||δV ||2 = −
∫

d8zTr[e−V δeV e−V δeV ]. (E.1)

The superfield V can be expanded as

V = V aT a, (E.2)

where T a(a = 1, · · · , N2− 1) are the basis of N ×N traceless Hermitian matrices with the

condition Tr(T aT b) = 1
2δ

ab. Using the matrix identity for infinitesimal variation δV

e−V (eV+δV − eV ) =
1− e−LV

LV
· δV, (E.3)
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one can rewrite the invariant norm as follows:

||δV ||2 = −
∫

d8zδV a(z)δV b(z)Tr

[(

1− e−LV

LV
· T a

)(

1− e−LV

LV
· T b

)]

. (E.4)

Thus the metric gab(V ) is defined as

gab(V ) = −Tr

[(

1− e−LV

LV
· T a

)(

1− e−LV

LV
· T b

)]

. (E.5)

The metric gab(V ), which is the inverse of the above is then defined as

gab(V ) = −4Tr

[(

LV

1− e−LV

· T a

)(

LV

1− e−LV

· T b

)]

. (E.6)

To derive gab(V ), we have used the matrix identity

Tr(AT a)Tr(T aB) =
1

2
Tr(AB) (E.7)

for arbitrary traceless matrices A,B.

The super Yang-Mills action is given as

SSYM = −
∫

d4x

∫

d2θTr[WαWα] + h.c. (E.8)

=

∫

d8zTr[e−V (DαeV )Wα] + h.c.. (E.9)

When we make a variation over the V b field, we obtain

δSSYM

δV b(z)
=

∫

d8wTr

[

δ

δV a(z)
{e−V (DαeV )Wα}(w)

]

+ h.c. (E.10)

= 2

∫

d8wTr

[

δeV (w)

δV b(z)
{(DαWα)e

−V +Wα(Dαe
−V )}(w)

−δe−V (w)

δV b(z)
(DαeV )Wα(w)

]

+ h.c. (E.11)

= Tr

[

T b e
LV − 1

LV
·
(

DαWα + {e−V DαeV ,Wα}
)

(z)

]

+ h.c. (E.12)

Here we used the useful formulae as

δ(eV ) = eV
[

1− e−LV

LV
· δV

]

(E.13)

=

[

eLV − 1

LV
· δV

]

eV , (E.14)

δ(e−V ) = e−V

[

1− eLV

LV
· δV

]

(E.15)

=

[

e−LV − 1

LV
· δV

]

e−V . (E.16)
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Combining eqs. (E.6) and (E.12), and replacing the V field with the V field, we obtain

gab(V)δSSYM

δVb(z)
= −4Tr

[(

LV

1− e−LV
· T a

)(

LV

1− e−LV
· T b

)]

×Tr

[

T b e
LV − 1

LV
·
(

Dαwα + {e−VDαeV , wα}
)

(z)

]

+ h.c. (E.17)

= −2Tr

[

T a LV

1− e−LV
·
(

Dαwα + {e−VDαeV , wα}
)

(z)

]

+ h.c.. (E.18)

Here, we used the identity in eq. (E.7).

The matrix form of the gradient flow equation is

V̇ = −T agab
δSSYM

δVb
+ α0δV . (E.19)

Using the matrix identity

T aTr [T aA] =
1

2
A, (E.20)

for arbitrary traceless matrix A and substituting eq. (E.18), we finally obtain

V̇ =
LV

1− e−LV
·
(

Dαwα + {e−VDαeV , wα}
)

+ h.c.+ α0δV . (E.21)

F Pure abelian supersymmetric theory

We consider a supersymmetric pure Abelian gauge theory to simplify the discussion. Be-

cause this theory does not have an interaction, the theory also does not have divergences

in the first place, but it is useful to understand the basic structure as a toy model.

F.1 Derivation of gradient flow equation of pure abelian supersymmetric

theory

From the discussion in section 4, we obtain the gradient flow Equation of the pure Abelian

supersymmetric theory. The free vector field action which is invariant under the super-

symmetric gauge transformation is

S = −1

4

∫

d4x(WαWα|θθ + W̄α̇W̄
α̇|θ̄θ̄)

= −1

4

∫

d8z(DαWα + D̄α̇W̄
α̇)V (F.1)

where V is vector multiplet, V = {C,X, X̄,M,M∗, Vm,Λ, Λ̄, D}. W and W̄ are defined by

Wα = −D̄D̄DαV, (F.2)

W̄α̇ = −DDD̄α̇V. (F.3)

Making variation of the action S over V , we obtain

δS

δV
= −DαWα. (F.4)
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We used here the relation equation,

DαWα = D̄α̇W̄
α̇. (F.5)

Then we obtained the extended gradient flow equation of the pure supersymmetric theory as

V̇ = Dαwα + α0(D
2D̄2 + D̄2D2)V , (F.6)

V|t=0 = V, wα|t=0 = Wα. (F.7)

where V is vector multiplet depending on the flow time, V = {c, χ, χ̄,m,m∗, vm, λ, λ̄, d}.
The α0 term, which is the second term of the r.h.s. of eq. (F.6), is introduced to suppress

the new gauge degrees of freedom under the evolution in the flow time.

F.2 Gradient flow equation of pure Yang-Mills theory for each component of

vector multiplet

Describing the extended gradient flow equation in the coordinate of superspace which are

labeled (x, θ, θ̄), we find out the each dependence of the component of vector multiplet on

the flow time.

V(x, θ, θ̄) = c+ iθχ− iθ̄χ̄+
i

2
θθm− i

2
θ̄θ̄m∗

−θσmθ̄vm + iθθθ̄

[

λ̄+
i

2
σ̄m∂mχ

]

−iθ̄θ̄θ

[

λ+
i

2
σm∂mχ̄

]

+
1

2
θθθ̄θ̄

[

d+
1

2
�c

]

. (F.8)

Using (F.8), we calculate each terms of the gradient flow equation, we obtain

Dαwα = −2d+ 2θσm∂mλ̄− 2θ̄σ̄m∂mλ+ 2(θσkθ̄)∂mvkm

−iθ̄θ̄θ�λ+ iθθθ̄�λ̄+
1

2
θθθ̄θ̄�d, (F.9)

(D2D̄2 + D̄2D2)V = 16(d+�c)− 16θ(σm∂mλ̄− i�χ) + 16θ̄(σ̄m∂mλ− i�χ̄)

+8iθθ�m− 8iθ̄θ̄�m∗ − 16(θσmθ̄)∂m∂kvk

+8iθθθ̄(�λ̄+ iσ̄m∂m�χ)− 8iθ̄θ̄θ(�λ+ iσm∂m�χ̄)

+4θθθ̄θ̄(�d+��c). (F.10)

Substituting (F.9) and (F.10) into (F.6), finally, we obtain the flow equations for the each

component of the vector multiplet as

ċ = 16α0�c− 2(1− 8α0)d, (F.11)

χ̇ = 16α0�χ− 2i(1− 8α0)σ
m∂mλ̄, (F.12)

˙̄χ = 16α0�χ̄− 2i(1− 8α0)σ̄
m∂mλ, (F.13)

ṁ = 16α0�m, (F.14)

ṁ∗ = 16α0�m∗, (F.15)

v̇m = 2�vm − 2(1− 8α0)∂m∂kvk, (F.16)
˙̄λ = 2�λ̄, (F.17)

λ̇ = 2�λ, (F.18)

ḋ = 2�d. (F.19)
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Taking α0 as

α0 =
1

8
, (F.20)

we obtain

ċ = 2�c, (F.21)

χ̇ = 2�χ, (F.22)

˙̄χ = 2�χ̄, (F.23)

ṁ = 2�m, (F.24)

ṁ∗ = 2�m∗, (F.25)

v̇m = 2�vm, (F.26)
˙̄λ = 2�λ̄, (F.27)

λ̇ = 2�λ, (F.28)

ḋ = 2�d. (F.29)

One can see that each component of the vector multiplet evolves separately in time.

F.3 Flow time dependence of super gauge transformation

When we demand that the gradient flow equation (F.6) is invariant under the super gauge

transformation,

V ′ = V + φ+ φ†, (F.30)

at each time, φ have to satisfy the equation as

φ̇ = α0D̄
2D2φ, (F.31)

φ|t=0 = Φ, (F.32)

where Φ is a chiral field,

D̄Φ = 0. (F.33)

The chirality of the φ at each flow time is guaranteed by eq. (F.31).

G Expansion of equation (6.1) with component fields

For the convenience of the expansion of (6.1) with the component fields, we give useful

methods and formulae.

G.1 Coordinate transformation

It is useful to calculate wα in terms of (y, θ, θ̄) coordinates. We obtain wα as

wα(y, θ, θ̄) = −D̄2(e−VDαe
V) (G.1)

= −4iλα + 4θαd− 2i(σmσ̄kθ)αvmk

+4θθ{σm
Dmλ̄}α. (G.2)

Using the expansion formula,

f(y, θ, θ̄) = f(x) + iθσmθ̄∂mf(x) +
1

4
θθθ̄θ̄�f(x), (G.3)

– 22 –



J
H
E
P
1
1
(
2
0
1
4
)
0
9
4

and

f(x, θ, θ̄) = f(y)− iθσmθ̄∂mf(y) +
1

4
θθθ̄θ̄�f(y), (G.4)

we always rewrite the results in the (y, θ, θ̄) coordinate or (x, θ, θ̄) either. For example,

wα(x, θ, θ̄) = −4iλα + 4θαd− 2i(σmσ̄kθ)αvmk

+4θθ{σm
Dmλ̄}α + 4(θσmθ̄)∂mλα

+2θθ(σmθ̄)α{−i∂md+ ∂m∂kvk −�vm}

+
i

2
θθ(σmσ̄kσlθ̄)α∂l[vk, vm]− iθθθ̄θ̄�λα. (G.5)

Note that they are not covariant under the super gauge transformation, because we take

the WZ gauge fixing. Using (A.7), we obtain the result of calculation of Dαwα which is

first term of the r.h.s. of (6.1) as

Dαwα(y, θ, θ̄) = −8d+ 8θσm
Dmλ̄− 8θ̄σ̄m∂mλ

−8i(θ̄σ̄mθ)∂md− 4(θ̄σ̄lσmσ̄kθ)∂lvmk

−8iθθ{θ̄σ̄lσm∂lDmλ̄}. (G.6)

G.2 Useful formulae

We also give useful formulae to obtain the second term with component field of r.h.s. of

(6.1) in terms of (y, θ, θ̄) coordinates as

e−VDαeV(y, θ, θ̄) = (θ̄σ̄m)αvm + 2iθαθ̄λ̄− iθ̄θ̄λα

+θ̄θ̄

(

θαd− i

2
(θσmσ̄k)αvkm

)

−θθθ̄θ̄Dm(λ̄σ̄m)α. (G.7)

Finally we obtain the A in terms of (y, θ, θ̄) coordinates as

(

Dαwα + {e−VDαeV , wα}
)

(y, θ, θ̄) = −8d+ 8θσm
Dmλ̄− 8θ̄σ̄m

Dmλ

+8[θ̄λ̄, θλ]− 8i(θ̄σ̄mθ)Dmd

+4(θσkσ̄mσlθ̄)Dlvmk

−8iθθ(θ̄σ̄lσm
DlDmλ̄)

+8iθθ[θ̄λ̄, d]. (G.8)

The A† in terms of (y†, θ, θ̄) coordinates is

(

Dαwα + {e−VDαeV , wα}
)†

(y†, θ, θ̄) = −8d− 8θ̄σ̄m
Dmλ+ 8θσm

Dmλ̄

+8[θ̄λ̄, θλ] + 8i(θ̄σ̄mθ)Dmd

+4(θσlσ̄mσkθ̄)Dlvmk

+8iθ̄θ̄(DlDmλσmσ̄lθ)

+8iθ̄θ̄[λ(y†)θ, d]. (G.9)
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