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ABSTRACT  

Metabolomics, a modern branch of chemical biology, provides qualitative 

and quantitative information about the metabolic states of organisms or cells at 

the molecular level.  Here I report non-targeted, metabolomic analyses of 

human blood, using liquid chromatography-mass spectrometry (LC-MS).  I 

compared the blood metabolome to the previously reported metabolome of the 

fission yeast, Schizosaccharomyces pombe.  The two metabolomic datasets 

were highly similar: 101 of 133 compounds identified in human blood (76%) 

were also present in S. pombe, and 45 of 57 compounds enriched in red blood 

cells (RBCs) (79%), were also present in yeast.  The most abundant 

metabolites were ATP, glutathione, and glutamine.  Apart from these three, the 

next most abundant metabolites were also involved in energy metabolism, anti-

oxidation, and amino acid metabolism.  I identified fourteen new blood 

compounds, eight of which were enriched in RBCs: citramalate, GDP-glucose, 

trimethyl-histidine, trimethyl-phenylalanine, trimethyl- tryptophan, trimethyl-

tyrosine, UDP-acetyl-glucosamine, UDP-glucuronate, dimethyl-lysine, 

glutamate methyl ester, N-acetyl-(iso)leucine, N-acetyl-glutamate, N2-acetyl-

lysine, and N6-acetyl-lysine.  Ten of the newly identified blood metabolites were 

also detected in S. pombe, and ten of them were methylated or acetylated 

amino acids.  Trimethylated or acetylated free amino acids were also abundant 

in white blood cells.  It may be possible to investigate their physiological roles 

using yeast genetics. 
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INTRODUCTION 

1.1 Metabolomics  

Metabolomics, a modern branch of chemical biology, provides qualitative 

and quantitative information about the metabolic states of organisms or cells at 

the molecular level (Fernie et al. 2004; Kell 2004; Goodacre et al. 2004; 

Nicholson & Lindon 2008; Patti et al. 2012).  It aims to profile small molecules 

present in living organisms, and is now recognized as an important tool for 

studying metabolic regulation in a synthetic way, together with transcriptomic 

and proteomic analyses (Hirai et al. 2004).  From the “-omics” sciences 

metabolomics is closest to the phenotype (Figure 1 p.1), as the metabolites are 

the end products of cellular processes, and their levels can be regarded as the 

ultimate response of the biological systems to genetic and environmental 

changes (Fiehn 2002).  

 
Figure 1. “Omics” Sciences: Genomics, Transcriptomics, Proteomics, 
and Metabolomics 
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Thousands of diverse intracellular metabolites (Figure 2 p.2) over a very 

broad range of concentrations can be detected in biological samples such as 

human blood (Rappaport et al. 2014).  In metabolomics, two detection 

techniques are commonly used – Nuclear magnetic resonance spectroscopy 

(NMR) and mass spectrometry (MS).  A number of approaches are used to 

separate metabolites prior to detection in MS, such as gas chromatography 

(GC-MS), liquid chromatography (LC-MS) and capillary electrophoresis (CE-

MS) (Fernie et al. 2004).  The advantages and disadvantages of analytical 

techniques used in metabolomics research are summarized in Table 1 p.3 

(Chaleckis et al. 2013).  While both NMR and MS have their advantages and 

disadvantages, one of the major differences is that MS is a more sensitive 

molecular detection method than NMR.  MS allows the detection of molecules 

present at low concentrations in biological samples.  

 

Figure 2. Biological molecules detectable in metabolomics experiments 
Over thousand metabolites belonging to different groups can be detected in NIH West 
Coast Metabolomics Center.  
(Source: http://metabolomics.ucdavis.edu/core-services/metabolites) 
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Table 1. Advantages and disadvantages of analytical techniques used in 
metabolomics research 

Technique Advantages Disadvantages 
GC-MS ・ Relatively low-cost method  

・ No ion suppression  
・ Long-term stability and robustness  
・ Large spectral libraries available  

 ・Requires derivatization  
・ Not suited for thermo labile 
compounds  
・ Impractical for identification of 
unknowns 

LC-MS  ・ Compatible with a large number of 
compound classes, both charged and 
uncharged  
・ Utilizes organic solvents well-suited for 
MS  
・ Good sensitivity  

 ・ Poor reproducibility of 
retention times  
・ Different classes of 
compounds require different 
columns/solvents to achieve 
optimal separation 

CE-MS  ・ Ideal for ionic or very polar metabolites 
・ High resolution separation  
・ High peak capacity  
・ Low cost of operation due to minimal 
consumption of solvents  
・ Low sample consumption 

 ・ Sensitive to sample ion 
strength  
・ Higher detection limits due to 
small injection volumes 

NMR  ・ High analytical reproducibility  
・ Non-destructive method 
・ High speed of analysis  
・ Ability to study living systems 

 ・ Unable to identify individual 
metabolite signals in complex 
NMR spectra  
・ Low sensitivity compared to 
MS 

(Chaleckis et al. 2013) 

However, the number of identified and named compounds in 

metabolomics experiments is surprisingly small.  One reason is the paucity of 

commercially available standards.  Second, it is difficult to identify unknown 

ions, due to the limited structural information that can be obtained using MS.  

Third, the concentrations of many metabolites present in biological samples are 

very low, and they tend to undergo changes during sample preparation.  Hence, 

fewer than several hundred relatively abundant compounds are usually 

reported in comprehensive metabolomic studies (Brauer et al. 2006; Pluskal, 

Nakamura, et al. 2010; Soga et al. 2003). 
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1.2 Fission yeast  

The fission yeast, Schizosaccharomyces pombe, a eukaryotic microbe 

with a genome encoding only ~5,000 genes (Wood et al. 2002; Wood et al. 

2012), is an excellent model organism to study nutritional control of the 

transition between proliferation and quiescence (Yanagida et al. 2011).   

Metabolomic analysis of S. pombe cells has been previously used in 

order to understand cellular metabolic states under different nutritional regimes 

and as governed by different genotypes.  Initially, our laboratory reported the 

identification of 123 compounds using liquid chromatography-mass 

spectrometry (LC-MS) and their changes following heat stress and genetic 

perturbations (Pluskal, Nakamura, et al. 2010).  Our laboratory described the 

accumulation of antioxidants, glutathione and ergothioneine, in a proteasome 

regulatory subunit mutant mts3-1 (Takeda et al. 2010).  Also, our laboratory 

performed targeted measurements of intermediates of the coenzyme A 

biosynthetic pathway from pantothenate (Nakamura et al. 2012), investigated 

changes in the cellular metabolome upon glucose (Pluskal et al. 2011) and 

nitrogen starvation (Sajiki et al. 2013), and accumulation of various metabolites 

in the quiescence-defective ∆klf1 mutant (Shimanuki et al. 2013).  These 

studies showed that S. pombe may be used as a model organism to study 

comprehensive metabolic patterns under defined genetic and physiological 

conditions. 

1.3 Human blood 

In humans, approximately 5 liters (~7% of body mass) of blood circulates 

throughout the body per min (Allison 1960).  As shown in Figure 3 p.5, in a 



 

 5 

healthy individual 45% of the blood volume is occupied by RBCs, while only 1% 

comprises platelets and leucocytes, white blood cells (WBC), the rest being 

plasma (Alberts et al. 2002).  

 

Figure 3. Blood components  
(A) Blood components plasma, WBC, RBC separated by centrifugation. (B) Blood 
under the microscope.  Most of the cells are RBC; WBCs are indicated by orange 
arrows. 

Plasma contains proteins (e.g. albumins, globulins, fibrinogen, etc.), 

electrolytes, hormones, glucose, and other metabolites.  Nutrients are 

distributed throughout the body while waste products are brought to the kidneys 

for excretion.  

Blood cells differ in their size and abundance (Table 2, p.6).  Platelets 

are cytoplasm fragments (2-3 μm diameter) of megakaryocytes and contain no 

nucleus.  The main function of platelets is the prevention of bleeding through 

clot formation.  Their number is 10-20 times smaller compared to that of the 

RBC.  WBCs, also called leukocytes, are a group of diverse cells involved in 

the body’s defense against infections.  These cells have a nucleus, and are 

fully biochemically active.  WBCs are larger by volume than the RBCs, but 

since they are about 100 times less numerous than RBCs, they constitute only 

a minor portion of blood.  RBCs are most abundant by number and total cell 

volume in blood (Alberts et al. 2002). 

B�A�

Plasma�

White blood cells,�
platelets�

Red blood cells�

50 �m�
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Table 2. Comparison of blood cells in healthy individual 
 Platelets Red blood cells White blood cells 

Number of cells 
(cell/mL) 

5 × 108 5 × 109 1 × 107 

Cell volume (fL) 10 90 200a 
a lymphocytes (Segel et al. 1981) 

Red blood cells (RBC), alternatively called erythrocytes, serve to deliver 

oxygen to tissues via the blood flow in vertebrates.  Virtually all vertebrates 

have RBCs (with exception of some deep ocean fish (Ruud 1954)).  The shape 

of RBCs in humans is a biconcave disk with a diameter 6-8 μm (thickness, 2-

2.5 μm).  A typical RBC is flattened and depressed in the center, with a 

dumbbell-shaped cross section.  This shape is believed to optimize the flow 

properties of blood and provides the basis for the remarkable flexibility of RBCs.  

The structural integrity of RBC is obvious from its unique shape.  RBC shows 

extensive deformability.  The capability of changing the shape when in narrow 

capillaries (5-10 μm in diameter) should be an essential property of RBC 

(Mohandas & Gallagher 2008).  Roughly half of the membrane mass of human 

RBCs is proteins, and the other half is carbohydrate and lipids, which consists 

of phospholipids and cholesterol (Steck 1974).  While proteins and nucleic aids 

are not synthesized, membrane phospholipid fatty acid turnover appears to 

occur in mature RBCs (Arduini et al. 1992).  The membrane of the RBC aids in 

regulating the surface flexibility and deformability.  It is composed of three 

layers, the exterior one rich in carbohydrates, while the lipid bilayer contains 
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many membrane bound proteins; in addition, there exists a membrane skeleton, 

a network of proteins that is situated on the inner surface of the lipid bilayer. 

Mammalian RBCs exclude nuclei, mitochondria, and other prominent cell 

organelles, such as lysosomes, endoplasmic reticulum, and Golgi bodies during 

erythropoiesis in the bone marrow.  Mature RBCs, simplified and specialized for 

gas transfer, have no demonstrable protein synthesis, nor tricarboxylic acid 

(TCA) cycle activity (Rapoport et al. 1990).  Nevertheless, RBCs produce 

adenosine triphosphate (ATP) glycolytically, maintain redox homeostasis, and 

osmoregulate (van Wijk & van Solinge 2005).  Human RBCs have a relatively 

long life span of about 120 days (Franco 2009).  When senescent, they are 

captured by the spleen for degradation. 

To carry out its function throughout its relatively long lifespan an RBC 

needs to maintain cellular homeostasis.  Relatively simple RBCs, without a 

nucleus, transcription and protein synthesis, are a model system for metabolic 

simulations (Joshi & Palsson 1990; Nakayama et al. 2005).  To maintain 

structural integrity RBCs need energy, redox, and biosynthesis of key 

metabolites (Table 3 p.7).  

Table 3. Major metabolic pathways in RBC 
Pathway Function 
Glycolysis Energy 
Pentose phosphate pathway and 
glutathione metabolism 

Redox 

Nucleotide metabolism Purine synthesis 
 
Many membrane proteins have been identified, including transporters for 

water, glucose, ions, and gases, and ATPases such as Na+/K+-ATPase and 

Ca++-ATPase (Pasini et al. 2006).  These consume ATP and may act to create 
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the ionic inner environment appropriate for the function of RBCs.  ATP is the 

main source of cellular energy for RBCs, which is used for sugar metabolism, 

for membrane transport and the cytoskeletal-membrane movements.  ATP is 

produced by glycolysis of glucose, so it follows that glycolytic enzymes and 

coenzymes are present in RBCs.  

The ‘cytoplasmic’ part of the RBC is rich in highly dense haemoglobin 

that binds to oxygen.  The pentose phosphate pathway (PPP) accounts for only 

approximately 8% of glucose metabolism in RBCs under normal steady-state 

conditions, since 92% of glucose is metabolized through glycolysis 

(D’Alessandro et al. 2013).  When faced with oxidative stress, RBCs respond 

by diverting as much as 90% of glucose metabolism toward the PPP 

(D’Alessandro et al. 2013).  The principal role of RBCs is obviously as a carrier 

of haemoglobin, as 33% of RBC weight including water is haemoglobin.  

Although the contents are smaller than haemoglobin, a number of proteins and 

enzymes required for metabolism to maintain RBCs are present in the 

cytoplasm (Roux-Dalvai et al. 2008). 

Numerous blood metabolomic analyses have been previously reported, 

mostly of serum and plasma (A et al. 2005; Lawton et al. 2008; Bruce et al. 

2009; Kimura et al. 2009; Serkova et al. 2011; Psychogios et al. 2011).  

However, metabolomics of whole blood or RBCs have been less well 

investigated (summarized in Table 4 p.9 (Chaleckis et al. 2013)), except for 

several reports on long-term stored blood (D’Alessandro et al. 2012; 

D’Alessandro et al. 2013; Nishino et al. 2009), blood of disease patients 

(Darghouth, Koehl, Heilier, et al. 2011; Darghouth, Koehl, Madalinski, et al. 
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2011), or blood marker compounds of food intake (Catalán et al. 2013).  

Reports on the WBC, platelet metabolomes are scarce (Sze & Jardetzky 1990; 

Lee & Britz-McKibbin 2009; Paglia et al. 2012). 

Table 4. Recent reports covering RBC metabolome  
Study Metabolite 

extraction 
Method Number of 

metabolites 
Reference 

Metabolic signature of RBCs 
from sickle cell disease 
patients, overhydrated 
hereditary stomatocytosis 
patients 

Boiling LC-MS 89（46 
confirmed 
by 
standards） 

(Darghouth, Koehl, 
Madalinski, et al. 2011; 
Darghouth, Koehl, Heilier, et 
al. 2011; Darghouth et al. 
2010) 

Metabolic analysis of RBCs 
during prolonged storage 

Methanol, 
chloroform, 
acetonitrile 

LC-MS Around 40 (D’Alessandro et al. 2013; 
D’Alessandro et al. 2012; 
D’Alessandro et al. 2011) 

Metabolite extraction 
efficiency with various 
solvents 

Methanol, 
chloroform, 
water 

GC-MS, 
LC-MS 

85 (Zhang et al. 2009) 

Verification of erythrocyte 
metabolism by metabolome 
analysis 

Methanol  CE-MS 32 (Kinoshita et al. 2007; Nishino 
et al. 2009) 

Metabolic studies of 
P.falciparum in red blood 
cell culture 

Methanol LC-MS 90 (Olszewski & Llinás 2013) 

Determination of metabolite 
and nucleotide intracellular 
concentration 

Perchloric 
acid 

NMR 52 (Sze & Jardetzky 1990) 

 (Chaleckis et al. 2013) 

In the human body about 90% of the 1014 cells are microbes in the gut 

(Savage 1977).  In addition to the human 20,000 protein-coding genes, there 

are about 500,000 microbial protein-coding genes (Qin et al. 2010).  Thus, 

human biospecimens contain a plethora of bioactive molecules generated from 

microbial metabolism (Nicholson, Holmes, J. Kinross, et al. 2012) together with 

chemicals introduced by the diet, drugs, infectious organisms, pollution, and 

lifestyle factors (Nicholson & Wilson 2003; Rappaport & Smith 2010; Rappaport 

et al. 2014).  Because blood transports chemicals to and from tissues and 
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represents a reservoir of all endogenous and exogenous chemicals in the body 

at a given time (Nicholson, Holmes, J. M. Kinross, et al. 2012), the blood 

metabolome offers a convenient means for interrogating biologically relevant 

questions such as human aging.  

1.4 Comparison of fission yeast and human red blood cells 

S. pombe is a small eukaryotic microorganism containing the nucleus, 

mitochondria and other cellular organelles, while human RBCs are highly 

specialized in oxygen transport, do not have cellular organelles and hence do 

not grow or divide.  The cell shape of growing and dividing S. pombe is 

cylindrical, and distinct from RBCs.  However, the cell volume of RBCs and 

S. pombe is rather similar (Figure 4 p.10).  The RBC is around 90 fL 

(Mohandas & Gallagher 2008) and fission yeast 120 fL [3.5 μm diameter 

(Mitchison 1957) and 13 μm cell length at 4.4 mM glucose (Pluskal et al. 2011), 

with the volume calculated using formula from Mitchison (1957)].  

 

Figure 4. Fission yeast and RBC 

Furthermore, S. pombe cells can grow and divide in the culture medium 

with glucose concentrations equivalent to that of human blood.  In plasma the 

Fission yeast� Red blood cell�

Shape�

Cylinder�

�
�
�

Disc�

Dimensions (µm)� 3.5 (Diameter)�
12 (Length)�

6-8 (Diameter)�
2 (Height)�

Volume (fL)� 120� 90�
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glucose concentrations in healthy persons are reported to be around 4-7 mM 

(Saltiel & Kahn 2001).  Surprisingly, the rate of S. pombe cell division in low 

(4.4 mM, 0.08%) glucose medium (the concentration similar to blood glucose) 

is identical to that in high (111 mM, 2%) glucose medium (Pluskal et al. 2011).  

Thus the glucose environment is appropriate for both RBCs and S. pombe. 

1.5 The aim of work 

To understand the small molecule diversity and conservation in the 

human red blood cell (RBC), I compared the metabolomes of human blood with 

that of fission yeast cells (Pluskal, Nakamura, et al. 2010; Pluskal et al. 2011) 

and determined metabolites in common, or unique to RBCs.  The reason to 

employ S. pombe cells for comparison is that compounds commonly present in 

RBCs and S. pombe may represent the necessary molecular functions to 

maintain RBCs and S. pombe cells.  In addition, the powerful genetics of 

S. pombe may allow future investigations of the functional roles of the 

compounds whose functions are obscure. 
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RESULTS 

2.1 Isolation of metabolites from human blood 

Blood was taken from the volunteers (Figure 5 p.12) in the morning 

before breakfast after the overnight fast.  Blood samples were taken directly in 

the laboratory and immediately used for the experiments.  For the metabolome 

sample we took 5 mL of blood, which is an acceptable amount for healthy 

persons, including the elderly. 

 
Figure 5. Blood donation 
(A) Blood donation set. (B) Blood donation. Indicated by arrows (1) needle and (2) 
5 mL heparin tube.  

2.1.1 Methods for separation of blood components 

Whole blood consists of plasma and blood cells, such as RBC, WBC, 

and platelets.  For the metabolome experiments, I tried isolation of RBC by 

leukocyte filter, cellulose column, Ficoll gradient, and centrifugation.   

An easy and straightforward way to fractionate plasma and blood cells is 

centrifugation.  After centrifugation of a whole blood sample, the plasma is on 

top, RBCs on the bottom, with a thin milky layer of WBCs (“buffy coat”) in 

between.  To retrieve the RBCs without contamination with the “buffy coat” is 

challenging (Figure 6 A p.14, RBC fraction still contains WBCs).  Even with 

specialized centrifugation equipment only about 80% of WBCs can be depleted 

from the RBC fraction, due to the very similar densities of some of the WBCs 

1A� B�

2

1

2
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subtypes and the RBCs (Singh & Kumar 2009).  While centrifugation of the 

blood sample is quick and easy, leukodepletion of RBCs is only partial (Figure 

6 A p.14 and Table 5 p.16). 

For blood transfusion, approximately 99% leukocyte depleted RBCs are 

needed to avoid immunological reactions (Singh & Kumar 2009).  Various 

designs of leukodepletion blood filters are used in practice (Dzik 1993).  For the 

preparation of RBC transfusion units, kits with leukocyte filters are commercially 

available.  I tried the PALL Purecell® Neo filter (Pall Corporation, USA).  These 

kits are designed for collection of over 100 mL of blood, have a large dead 

volume (~20 mL) and thus are less suitable for processing small amounts of 

blood, as in my case (5 mL).  To obtain the necessary volume (over 20 mL), I 

had to dilute the blood.  I also tried a smaller scale commercial filter, 

Plasmodipur (Euro Diagnostica BV, Arnhem, The Netherlands) that is used for 

malaria research (Janse et al. 1994), but there, too, at least 10 mL of blood is 

required, thus again the dilution was necessary.  As an alternative for the 

expensive filter, self-made cellulose columns are used for the leukodepletion in 

malaria research (Sriprawat et al. 2009).  However for the self-made cellulose 

column, a blood volume of over 20 mL was necessary.  The relatively small 

volume (5 mL) of donated blood was not suitable for leukodepletion by 

leukocyte filters or cellulose columns without modifications to the original 

protocol.  I could obtain leukodepleted RBCs by using leukocyte filter and 

cellulose column (Figure 6 B and C p.14), but the cells after the dilution with 

PBS and the lengthy procedure were clearly different from the fresh or 

centrifuged blood (Figure 6 p.14).  Blood taken from veins is dark red, but 
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during processing through filters or columns it turns bright red, possibly due to 

binding oxygen.  Furthermore, I frequently experienced column and filter 

clogging, which prolonged the procedure.  Thus, I decided to work with the 

whole blood and RBC samples, containing leukocytes.  To assess the 

contribution of leukocytes to the blood metabolome, I also isolated leukocytes.  

 
Figure 6. Methods for isolation of RBCs  
RBCs were isolated by (A) centrifugation, (B) leukocyte filter and (C) cellulose column.  
Blood cells stained with Giemsa solution under a microscope. 

Blood (before centrifugation)�

Plasma (after centrifugation)�

RBC (after centrifugation)�

RBC�

Leukocyte�

Leukocyte�

Centrifugation�

A�

B� C�

RBC (after leukocyte filter)�

Leukocyte filter� Cellulose column�

RBC (after cellulose column)�

20140617-A�
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For the leukocyte isolation I used the standard Ficoll gradient technique 

(Figure 7 p.15, Materials and Methods).  To isolate a sufficient amount of the 

leukocytes for the metabolome sample, I had to use at least 20 mL of blood.  I 

also could obtain plasma and RBCs after Ficoll centrifugation (Figure 7 B p.15).  

To remove the Ficoll solution, the cells had to be washed three times with a 

PBS buffer, adding to the lengthy processing time (Table 5 p.16).  I also 

isolated leukocytes for the metabolome analysis for semi-quantitative 

comparison with the whole blood and RBC samples.   

 

Figure 7. Isolation of blood cells by Ficoll gradient 
(A) Blood diluted with PBS is layered above Ficoll solution and (B) after centrifugation 
the blood components are separated into fractions (see Materials and Methods).  

The RBC and leukocyte isolation methods are summarized in the Table 

5 p.16.  Use of whole blood is easy and quick, but leaves the WBC inside the 

sample.  Methods to isolate leukodepleted RBCs worked, but required larger 

blood volumes (20 mL and more) than I could obtain (5 mL), as well as longer 

processing times.  Thus, to keep the protocol simple, reproducible and feasible 

for larger scale studies, I decided to use the procedure described below.  

A� B�

Blood diluted 
with PBS�

Ficoll�

Plasma�

WBC�

RBC�
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Table 5 Comparison of RBC isolation methods 
 Centrifugation Leukocyte 

filter 
Cellulose 
column 

Ficoll gradient 

Required 
sample 
volume 

1 mL 20 mL 20 mL 20 mL 

Approx. 
time 
required 

15 min 20 min 60 min 60 min 

Final 
sample 

RBC in 
plasma, 
containing 
leukocytes 

RBC in 
PBS, no 
leukocytes 

RBC in 
PBS, no 
leukocytes 

Separated RBC, 
WBC in PBS, 
plasma and 
Ficoll solution 

 

Blood samples (4-5 mL) for metabolomic analysis were collected from 

healthy volunteers before breakfast (schematized in Figure 8 p.17, Materials 

and Methods).  WBCs stained with Giemsa (Figure 6 p.14) were infrequently 

observed (<1%) in blood.  WBCs were not removed, since rapid quenching of 

metabolic reactions was necessary to obtain reproducible, quantitative data 

(Ficoll centrifugation to separate WBCs is a time-consuming step.).  I employed 

low speed centrifugation (120 g) for 15 min at room temperature for obtain 

plasma and RBC suspension, which were immediately quenched at –40°C 

followed by the metabolite extraction by 50% methanol.  Similar to the fission 

yeast metabolome sample preparation (Pluskal, Nakamura, et al. 2010), low-

molecular-weight metabolites were isolated by filtration with a 10 kDa cut-off 

filter at 4° C, concentrated on a rotary evaporator, re-suspended in 40 µL 50% 

acetonitrile, and stored at -80°C until analysis  The whole blood, plasma 

(supernatant) and RBC (pellets), were employed for metabolomics analysis. 
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Figure 8. Preparation and analysis of blood metabolome samples 
Metabolic compounds were extracted in 50% MeOH at -40° C from whole blood, 
plasma, and RBCs (Materials and Methods).  Extracted metabolites were isolated with 
a 10-kDa cut-off filter, concentrated by a rotary evaporator, and analyzed on an LC-MS 
system, as illustrated. 

2.1.2 Peak detection and identification of the compounds 

For LC-MS analysis, metabolites were first separated by hydrophilic 

interaction chromatography (ZIC-pHILIC column; Merck SeQuant (Guo & Gaiki 

2005)), and detected using an LTQ Orbitrap mass spectrometer (Thermo 

Fisher Scientific), in full scan mode (100-1000 m/z, ratio of mass-to-charge) 

with both positive and negative electrospray ionization.  LC-MS data contain 

semi-quantitative information about thousands of compounds in human blood.  

For compound analysis and quantification, I employed basically the same 

procedures used in previous analyses of S. pombe metabolites (Pluskal, 

Nakamura, et al. 2010) (Figure 9 p.18).  For quantification, I integrated peak 

curves, obtaining peak areas in arbitrary AU units.  ATP and glutathione are 

RBC-enriched, meaning that peak areas in the RBC-fraction were at least 2-

fold higher than corresponding peaks in plasma (See ‘Fifty-seven RBC-

enriched compounds’ below).  It is difficult to obtain reproducible quantitative 

data on reduced glutathione (GSH) due to its auto-oxidation during sample 
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preparation.  For that reason, only levels of total oxidized glutathione (GSSG) 

are reported in the present study. 

For standardization of the data, a fixed amount of PIPES and HEPES 

were always injected into the samples analyzed.  The peak heights and areas 

of these standard compounds were used to compare and calibrate data 

obtained from different experiments when necessary. 

  

 
Figure 9. Raw LC-MS data 3D plots of plasma and RBC fractions 
Raw LC-MS data 3D plots of plasma fraction (top) and RBC fraction (bottom) obtained 
in positive ionization mode are shown: X-axis, retention time (RT, min); Y-axis, m/z; Z-
axis, signal intensity.  Twenty identified peaks are shown as examples.  Peaks 1-10 
are detected in both plasma and RBCs.  These are amino acids, creatine, carnitine, 
dietary metabolites (caffeine, dimethyl-xanthine), and compounds introduced during 
sample preparation (HEPES as internal standard, NH4Cl formed in the LC-MS system).  
Peaks 11-20 are enriched in RBC samples. 
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2.2 Comparison of red blood cell and fission yeast metabolomes 

2.2.1 Hundred thirty-three compounds identified in human blood 

MZmine 2 software (Pluskal, Castillo, et al. 2010; Pluskal et al. 2012) 

was used for data processing and identification of blood metabolites.  I 

employed an in-house database of m/z and RT values of compounds 

previously identified in fission yeast studies (Pluskal, Nakamura, et al. 2010; 

Pluskal et al. 2011; Sajiki et al. 2013; Shimanuki et al. 2013; Takeda et al. 

2010; Nakamura et al. 2012).  For peaks not in the database, I performed a 

search using online databases HMDB (Wishart et al. 2013), KEGG (Kanehisa & 

Goto 2000), or ChemSpider (Pence & Williams 2010).  Whenever possible, 

identified compounds were verified using purchased standards.  In some cases, 

isomers (e.g. N-acetyl-leucine, N-acetyl-isoleucine; paraxanthine, theobromine, 

theophylline) could not be clearly distinguished by LC and were designated by 

more general names (e.g., N-acetyl-(iso)leucine or dimethyl-xanthine, 

respectively).  To identify metabolites for which standards were not available, I 

performed MS/MS analysis.  Methyl-lysine, N-trimethyl-phenylalanine, and N-

trimethyl-tyrosine were tentatively identified and described (Figure 10 A-C p.20).  

I was able to identify 133 compounds in blood, representing 14 categories 

(Figure 11 p.21 and Table 6 p.22). 
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Figure 10. MS/MS analysis of peaks identified as methyl-lysine, N-
trimethyl-phenylalanine and N-trimethyl-tyrosine 
See next page for description 
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Identification of any peak by MS/MS analysis in the absence of a standard requires the 
m/z value, fragmentation pattern, and retention time (RT).  Similar RTs were found in 
cases of amino acids and their methylated counterparts confirmed by standard 
compounds (e.g. N-trimethyl-tryptophan 6.0 min and tryptophan 8.7 min).  (A) A peak 
with an m/z value of 161.128 Da in positive ionization mode matched the calculated 
value for the methyl-lysine positive ion with a hydrogen adduct (161.129 Da).  The RT 
is 20.3 min while that of lysine is 23.3 min.  The MS/MS fragmentation pattern matches 
the methyl-lysine structure; the 130.086 Da fragment corresponds to loss of NH2(CH3) 
(31.043 Da), the 84.080 Da fragment to loss of NH2(CH3) (31.043) and CO2H2 
(46.005 Da).  While lysine has two amino-groups, I could not determine which of the 
amino groups is methylated; thus, I tentatively identified the compound as methyl-
lysine.  (B) A peak with an m/z value of 208.133 Da in positive ionization mode 
matched the calculated value for the trimethyl-phenylalanine positive ion with a 
hydrogen adduct (208.133 Da).  The RT is 5.3 min while that of phenylalanine is 
7.3 min.  The MS/MS fragmentation pattern matches the N-trimethyl-phenylalanine 
structure; the 149.059 Da fragment corresponds to loss of N(CH3)3 (59.074 Da), the 
131.049 Da fragment to loss of N(CH3)3 (59.074 Da) and H2O (18.010 Da), and the 
103.054 Da fragment to loss of N(CH3)3 (59.074 Da) and CO2H2 (46.005 Da).  
Therefore I tentatively identified the peak as N-trimethyl-phenylalanine.  (C) A peak 
with an m/z value of 224.128 Da in positive ionization mode matched the calculated 
value for the trimethyl-tyrosine positive ion with a hydrogen adduct (224.128 Da).  The 
RT is 8.0 min while that of tyrosine is 10.3 min.  MS/MS fragmentation pattern matches 
the N-trimethyl-tyrosine structure; the 165.054 Da fragment corresponds to loss of 
N(CH3)3 (59.074 Da), the 147.044 Da fragment to loss of N(CH3)3 (59.074 Da) and H2O 
(18.010 Da).  I thus tentatively identified the peak as N-trimethyl-tyrosine. 

 

 
Figure 11. Overview of 133 compounds detected in blood by HILIC LC/MS. 
Shown are number of compounds in each category and percentages. 
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Table 6. 133 compounds detected in blood metabolome samples 

 
  

Table 1. List of 133 identified metabolites in blooda

Category / Compound Status Not in fission
yeast

New blood 
component

RBC 
enrichedb

Peak aread 
Blood

Peak aread 
Fission yeast

Nucleotides
ADP STD R 64.0 ± 15.0 M M
AMP STD R 52.0 ± 6.8 M M
ATP STD R 81.0 ± 13.0 H H
CDP STD R 4.6 ± 2.1 L L
CTP STD R 2.2 ± 0.48 L M
GDP STD R 32.0 ± 5.5 L M
GMP STD R 3.5 ± 0.29 L L
GTP STD R 84.0 ± 14.0 M M
IMP STD R 180.0 ± 48.0 L L
UDP STD R 2.3 ± 0.5 L M
UMP STD R 19.0 ± 3.6 L L
UTP STD R 4.1 ± 1.6 L H
Nucleosides, nucleobases and derivatives
1-Methyl-adenosine STD 1.3 ± 0.14 M M
1-Methyl-guanosine STD 1.1 ± 0.36 L L
Adenine STD 3.4 ± 0.055 L M
Adenosine STD 0.045 ± 0.012 L L
Caffeine STD � 0.77 ± 0.057 M ND
Cytidine STD 2.1 ± 0.22 L L
Dimethyl-guanosine STD 0.77 ± 0.1 L L
Dimethyl-xanthine STD � 0.88 ± 0.044 M ND
Guanosine STD 0.12 ± 0.077 L L
Hypoxanthine STD 1.4 ± 0.22 L L
Inosine STD 0.059 ± 0.12 L L
Uracil STD 1.0 ± 0.041 L L
Urate STD � 0.69 ± 0.22 M ND
Uridine STD 1.0 ± 0.027 L L
Vitamins, Coenzymes
4-Aminobenzoate STD � 2.5 ± 0.86 L ND
NAD+ STD R 130.0 ± 30.0 M H
NADH STD R 80.0 ± 68.0 L M
NADP+ STD R 7200.0 ± 3000.0 L L
NADPH STD R 340.0 ± 220.0 L L
Nicotinamide STD R 26.0 ± 5.7 M M
Pantothenate STD 3.3 ± 1.1 L M
Nucleotide-sugar derivatives
GDP-glucose STD � R 20.0 ± 3.6 L M
UDP-acetyl-glucosamine STD � R 11.0 ± 1.4 L M
UDP-glucose STD R 35.0 ± 6.6 M H
UDP-glucuronate STD � � R 37.0 ± 6.2 L ND
Sugar phosphates
6-Phosphogluconate STD R 150.0 ± 25.0 L L
Diphospho-glycerate STD R 1700.0 ± 350.0 H L
Fructose-1,6-diphosphate STD R 1400.0 ± 360.0 M M
Fructose-6-phosphate STD R 23.0 ± 2.2 L M
Glucose-6-phosphate STD R 32.0 ± 4.1 M M
Glyceraldehyde-3-phosphate STD R 910.0 ± 1100.0 L L
Glycerol-2-phosphate STD R 3.7 ± 1.1 L M
Pentose-phosphate STD R 39.0 ± 12.0 L M
Phosphoenolpyruvate STD R 1000.0 ± 780.0 L M
Phosphoglycerate STD R 150.0 ± 17.0 M M
Sedoheptulose-7-phosphate STD R 3.6 ± 0.76 L M
Sugars and derivatives
1,5-Anhydroglucitol STD � 0.95 ± 0.14 M ND
Gluconate STD R 16.0 ± 1.8 M L
Glucosamine STD 0.89 ± 0.13 M L
Glucose STD 0.87 ± 0.12 M L
myo-Inositol STD 1.3 ± 0.39 L L
N-Acetyl-D-glucosamine STD R 35.0 ± 1.4 M L
Quinic acid STD 2.1 ± 2.0 L M
Organic acids
2-Oxoglutarate STD 0.94 ± 0.16 L L
Chenodeoxycholate STD � 0.49 ± 0.14 M ND
cis-Aconitate STD 0.33 ± 0.11 L L
Citramalate STD � R 3.2 ± 0.87 L M
Citrate STD 0.28 ± 0.069 M M
Fumarate STD R 5.6 ± 0.9 L L
Glutarate STD 0.94 ± 0.072 L L
Glycerate STD � 0.69 ± 0.18 L ND
Malate STD R 4.6 ± 0.6 L L
Succinate STD 0.92 ± 0.21 L L

Ratio RBC:plasma ± 
standard deviationc
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 Table 6. (continued) 

 

Table 1. (continued)

Category / Compound Status Not in fission
yeast

New blood 
component

RBC 
enrichedb

Peak aread 
Blood

Peak aread 
Fission yeast

Standard amino acids
Arginine STD 0.57 ± 0.072 H H
Asparagine STD 1.6 ± 0.18 L L
Aspartate STD R 6.3 ± 0.91 L M
Glutamate STD R 3.4 ± 0.74 M H
Glutamine STD 0.56 ± 0.053 H H
Histidine STD 0.93 ± 0.054 M H
Isoleucine STD 0.95 ± 0.14 M L
Leucine STD 1.1 ± 0.098 M L
Lysine STD 0.91 ± 0.15 L L
Methionine STD 0.76 ± 0.099 M L
Phenylalanine STD 0.93 ± 0.16 H M
Proline STD 0.92 ± 0.054 H L
Serine STD 1.1 ± 0.19 L L
Threonine STD 1.1 ± 0.12 M M
Tryptophan STD 0.47 ± 0.054 M M
Tyrosine STD 1.1 ± 0.083 M M
Valine STD 0.87 ± 0.07 M L
Methylated amino acids
Betaine STD 1.2 ± 0.11 H L
Butyro-betaine STD � R 5.3 ± 0.52 M ND
Dimethyl-arginine STD 0.95 ± 0.12 L L
Dimethyl-lysine STD � 0.51 ± 0.09 L L
Dimethyl-proline (stachydrine) STD � R 4.9 ± 0.66 H ND
Methyl-histidine STD 0.92 ± 0.056 L M
Methyl-lysine MS/MS 0.67 ± 0.11 M L
S-Methyl-ergothioneine STD � R 1500.0 ± 2300.0 L ND
Trimethyl-histidine (hercynine) MS/MS � R 110.0 ± 140.0 L M
Trimethyl-lysine STD R 6.3 ± 1.5 M L
Trimethyl-phenylalanine MS/MS � � R 14.0 ± 9.0 L ND
Trimethyl-tryptophan (hypaphorine) STD � � R 6.1 ± 1.7 H ND
Trimethyl-tyrosine MS/MS � � R ND* L ND
Acetylated amino acids
N-Acetyl-(iso)leucine STD � 1.8 ± 0.39 L L
N-Acetyl-arginine STD 0.34 ± 0.047 L M
N-Acetyl-aspartate STD 0.84 ± 0.2 L L
N-Acetyl-glutamate STD � 0.82 ± 0.18 L M
N-Acetyl-ornithine STD 2.6 ± 1.2 L L
N2-Acetyl-lysine STD � 2.1 ± 0.3 L L
N6-Acetyl-lysine STD � 0.88 ± 0.26 L M
Other amino acid derivatives
2-Aminoadipate STD 0.91 ± 0.073 L L
Arginino-succinate STD 0.69 ± 0.46 L M
Citrulline STD 0.97 ± 0.19 M M
Creatine STD � R 7.0 ± 1.6 H ND
Creatinine STD � 0.97 ± 0.079 H ND
Glutamate methyl ester STD � 1.5 ± 0.28 L L
Hippurate STD � 0.54 ± 0.083 M ND
Histamine STD 1.0 ± 0.5 L L
Indoxyl-sulfate STD � 0.43 ± 0.092 M ND
Kynurenine STD � 0.41 ± 0.081 L ND
Ornithine STD 1.2 ± 0.16 L M
Phosphocreatine STD � R 3.0 ± 0.95 L ND
Quinolinic acid STD � 0.35 ± 0.04 L ND
S-Adenosyl-homocysteine STD R 2100.0 ± 1600.0 L M
S-Adenosyl-methionine STD R 57.0 ± 62.0 L L
Taurine STD � 0.92 ± 0.18 M ND
Carnitines
Acetyl-carnitine STD � R 4.0 ± 0.58 H ND
Butyryl-carnitine STD � 0.95 ± 0.2 M ND
Carnitine STD � 0.85 ± 0.1 H ND
Decanoyl-carnitine STD � 0.42 ± 0.11 M ND
Dodecanoyl-carnitine STD � 0.51 ± 0.072 L ND
Hexanoyl-carnitine STD � 0.68 ± 0.087 L ND
Isovaleryl-carnitine STD � 0.94 ± 0.25 L ND
Octanoyl-carnitine STD � 0.45 ± 0.086 M ND
Propionyl-carnitine STD � R 5.3 ± 0.82 M ND
Tetradecanoyl-carnitine STD � R 11.0 ± 15.0 L ND
Choline derivatives
CDP-choline STD 0.98 ± 0.37 L L
Glycerophosphocholine STD 1.5 ± 0.24 M H
Antioxidant
Ergothioneine STD R 100.0 ± 4.8 H M
Glutathione disulfide (GSSG) STD R 1900.0 ± 430.0 H H
Ophthalmic acid STD R 310.0 ± 150.0 L M

Ratio RBC:plasma ± 
standard deviationc

a One hundred thirty-three identified metabolic compounds detected in human blood metabolome samples  by LC-MS. Status of the compounds was 
either confirmed by comercially available standard standard (STD) or MS/MS analysis (MS/MS). Compounds not detected in fission yeast (32 
compounds) and compounds not reported as blood metabolites (14 compounds) are marked by � in respective columns. bon average in mutiple 
persons. Ratios between RBC and plasma samples calculated from four blood samples donated by the same person within 24 hours. Values and 
standard deviations rounded to 2 significant numbers. ND - not detected. Values >2 shown in bold. dPeak areas defined as H, high (>108 AU); M, 
medium (107-108 AU); L, low (<107 AU); ND - not detected. In case of blood, equivalent of ~5�l of blood was injected into the LC-MS system, for 
fission yeast ~1�l of internal cell volume (see Materials and Methods). 
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For comparison of blood metabolomics data with those of S. pombe, I 

performed analysis of the metabolites of S. pombe cells growing and dividing in 

the low glucose concentrations (0.1%).  These S. pombe data obtained were 

basically the same as reported previously and quite significantly different from 

that cultured in the high glucose (111 mM) synthetic medium (Pluskal et al. 

2011).  In the following results sections, S. pombe data is shown for 

comparison which was obtained from cells cultured at 26° C in synthetic, 

minimal EMM2 medium with 0.1% glucose (5.6 mM; roughly the same glucose 

concentration found in blood).   

2.2.2 Thirty-two compounds identified in human blood were not 
detected in yeast 

 Among 133 identified blood metabolites, 32 were not found in fission 

yeast (Table 6 p.22, Figure 18 p.37).  They include three nucleoside bases and 

derivatives, one coenzyme precursor (4-aminobenzoate), one nucleotide-sugar 

derivative (UDP-glucuronate), one sugar derivative (1,5-anhydroglucitol), two 

organic acids (chenodeoxycholic acid, glyceric acid), six methylated amino 

acids including dimethyl-proline, eight other amino acid derivatives including 

creatine, creatinine, and taurine, and ten carnitines.  Thus, 24 of 32 compounds 

are derived from three categories, namely, methylated amino acids, other 

amino acids, and carnitines.  These three categories illustrate the major 

difference between human blood and S. pombe metabolomes.   

Some compounds may play specific roles in higher eukaryotes.  For 

example, creatine and phosphocreatine are stored in muscle as an energy 

source, and creatinine is the metabolic byproduct of creatine phosphate (Snow 
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& Murphy 2001).  Carnitines are produced in liver and stored in muscle for 

consumption and transport of fatty acids (Evans & Fornasini 2003).  Urate is a 

purine metabolic byproduct, high blood concentrations of which can cause gout 

(Ames et al. 1981), while caffeine is a xanthine alkaloid and of dietary origin 

(Barone & Roberts 1996; Benowitz 1990).  S. pombe does not produce caffeine, 

but can become hypersensitive or resistant to caffeine by certain mutations 

(Kumada et al. 1996; Ohkura et al. 1988).  

I examined whether caffeine and carnitine added to the culture medium 

of S. pombe could be metabolized.  For 6 h I cultured S. pombe cells in the 

presence of 0.1 and 1 mM caffeine or carnitine.  I could detect caffeine or 

carnitine peaks in the metabolome sample, but I could not find any metabolites 

of the two compounds nor other compounds affected by the addition of caffeine 

or carnitine.   

2.2.3 Eighteen S. pombe compounds not detected in human blood 

Eighteen compounds present in S. pombe were not detected in RBCs or 

in plasma (Table 7 p.26).  Compounds that control fast cell division and growth, 

such as cyclic AMP (an activator of protein kinase A (Yamashita et al. 1996)), 

AICAR (5'-phosphoribosyl-5-amino-4-imidazolecarboxamide, an activator of 

AMP-dependent protein kinase, AMPK (Corton et al. 1995)), SAICAR (succinyl-

aminoimidazolecarboxamide ribose-5’-phosphate, an activator of pyruvate 

kinase PKM2 (Keller et al. 2012)) and PRPP (phosphoribosyl pyrophosphate, 

involved in nucleotide metabolism (Murray 1971)) are present in S. pombe, but 

not in blood.  Acetyl-CoA, biotin, Coenzyme A, FAD (flavine adenine 

dinucleotide) and HMG-CoA may be required for rapid cell division.  
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Ferrichrome is a cyclic hexapeptide present in lower eukaryotes, such as 

Schizosaccharomyces and Ustilago, which forms a complex with iron (Schrettl 

et al. 2004).  Trehalose is a disaccharide having an α, α -1,1-glucosidic bond 

implicated in anhydrobiotic (anti-desiccant) and anti-oxidant mechanisms 

(Elbein et al. 2003).  Trehalose is not synthesized in the human body.  

Trehalose-6-phosphate has been implicated in plant flowering (Wahl et al. 

2013), but no function in fission yeast has been proposed.  Saccharopine is an 

intermediate of lysine metabolism (Xu et al. 2006). 

Table 7. List of 18 identified metabolites detected in fission yeast, but not 
in blood. 
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2.2.4 Compounds detected in WBCs in comparison with those from 
RBCs and S. pombe 

I then examined metabolites of WBCs isolated by Ficoll gradient 

centrifugation (Table 8 p.40).  Seven compounds that seem to be mainly 

involved in cell growth and division in eukaryotes were found in both WBCs and 

S. pombe (Table 7 p.26).  While the metabolic profile of WBCs was similar to 

that of RBCs, seven metabolites, 3’-5’-cAMP, acetyl-CoA, CMP, CoA, FAD 

(flavin adenine dinucleotide), HMG-CoA, and PRPP, were detected only in 

WBCs (Table 8 p.40).  Differences between the RBCs and WBCs are mainly 

the types of vitamins and coenzymes.  4-Aminobenzoate was detected in blood 

and RBCs, but not in WBCs.  Acetyl-CoA, biotin, FAD, and HMG-CoA, 

described above, belong to the coenzyme category.   

2.2.5 Fourteen newly identified blood compounds 

To my knowledge, 14 metabolites have not hitherto been reported in 

human blood, based on a recent report of detected blood metabolites 

(Rappaport et al. 2014) and literature database searches (Table 6 p.22 and 

Figure 21 p.47).  These new blood metabolites include citramalate, dimethyl-

lysine, GDP-glucose, glutamate methyl ester, N-acetyl-glutamate, N-acetyl-

(iso)leucine, N2-acetyl-lysine, N6-acetyl-lysine, trimethyl-histidine, trimethyl-

phenylalanine, trimethyl-tryptophan, trimethyl-tyrosine, UDP-acetyl-

glucosamine and UDP-glucuronate.  The eight compounds in boldface were 

enriched in RBCs, while ten underlined compounds were also found in 

S. pombe.  Ten of the 14 novel blood metabolites are methylated or acetylated 

amino acids. 
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2.2.6 Semi-quantification of blood metabolite peaks 

Each blood sample produced thousands of peaks in positive and 

negative ionization modes with a broad range (104~109 AU) of peak areas.  

Number of peaks and number of compounds detected in blood and fission 

yeast metabolome samples are compared in Figure 12 p.28.  

 
Figure 12. Number of peaks and compounds detected in human blood 
and fission yeast metabolomes. 
(A) Number of peaks detected in representative blood and fission yeast metabolome 
sample (data acquired in same sequence, positive and negative ionization modes 
combined). (B) Number of identified compounds in blood and fission yeast 
metabolome samples. 

 
I quantified compounds on the basis of their peak areas: High (H, over 

108 AU), Medium (M, 107-108 AU) and Low (L, <107 AU).  In blood samples, L, 

M, and H groups comprised 92, 7, and 1% of all peaks, respectively.  
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Figure 13. Scatter plots of all peaks detected in blood, plasma and RBC 
samples 
Blood was donated twice by the same person in 1 h, and the two (A) blood, (B) plasma, 
(C) RBC samples were processed separately (samples #1 and #2).  Scatter plot of all 
peaks detected in both blood samples (positive and negative ionization modes 
combined).  87 % of peaks differed less than 2-fold.  Less than 15% of these peaks 
could be assigned to a known compound (assigned peaks marked yellow). 

Quantitative reproducibility of peak areas was examined by collecting 

two blood samples independently from the same person at 1 h intervals.  Each 

pair of samples (#1 and #2) of blood, plasma, and RBCs was compared in a 

scatter plot (Figure 13 p.29).  In all cases, 85-87% of peak areas varied less 

than 2-fold (0.5 – 2.0x).  Fission yeast samples obtained under identical 

conditions showed similar reproducibility (Pluskal, Nakamura, et al. 2010).  

Very small peaks (area <106 AU) showed larger deviations.  For 133 

compounds identified in blood, plasma, or RBCs, however, 97% of peaks in the 

compared samples changed less than 2-fold (Figure 14 p.30).  Thus, in both, 

blood and fission yeast metabolomes, quantitative reproducibility was better for 

identified peaks (Pluskal, Nakamura, et al. 2010).  
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Figure 14. Scatter plots of identified compounds (representative single-
charged peaks) in blood, plasma and RBC samples 
Blood was donated twice by the same person in 1 h, and the two (A) blood, (B) plasma, 
(C) RBC samples were processed separately (samples #1 and #2).  A scatter plot of 
129 identified compounds detected in blood samples #1 and #2. Approximately 97% of 
these peaks were found within 2-fold change (see Table 8 p.40 for the peak details). 

Highly abundant metabolites form various adducts or fragments, 

resulting in multiple MS peaks.  For quantification, I used singly charged proton 

adducts in positive [M+H]+ and negative modes [M-H]-.  ATP produced these 

two peaks as its highest signals (Figure 15 A p.31).  ATP also produced 16 

additional peaks (6 in positive and 10 in negative ionization mode).  Since their 

retention time (RT) was basically identical to that of the corresponding primary 

peak, I suspect that these additional peaks were produced during ionization in 

the MS.  For ergothioneine, 17 peaks were identified in addition to the primary 

peaks (Figure 15 B p.31).  
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Figure 15. Multiple peaks produced by the same compound 
Multiple peaks are produced by abundant compounds such as ATP (A) and 
ergothioneine (B).  In addition to the primary single-charged ions (indicated by arrows), 
compounds produce multiply charged ions, fragments of the molecule, adducts with 
salts, and complexes with other compounds eluting at similar retention times.  I was 
able to identify 18 peaks related to ATP and 17 peaks related to ergothioneine, listed in 
the inset tables.   

In a representative blood sample I was able to identify 37 (74%) peaks in 

group H, 118 (33%) peaks in group M, and 518 peaks (11%) in group L.  The 

total number of assigned peaks (673) is much larger than that of actually 

identified compounds (133), due to the fact that many metabolites produced 

multiple peaks.  A number of peaks were also produced by electrolytes such as 

NH4Cl, originating from NaCl in blood samples.  While several thousand peaks 
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were obtained by LC-MS (Figure 12 p.28), the actual number of compounds 

that can be detected in blood may be much less, possibly ~1,000. 

The levels detected within chemically similar compound groups by our 

LC-MS system correlate quite well with reports in the literature. In Figure 

16 p.32 the levels for the acyl-carnitines are shown.  Acyl-carnitines are formed 

when the –OH in carnitine is linked to an acyl group (Figure 16 A p.32).  Names 

of the acyl-carnitines are derived from the corresponding side chain (Figure 16 

B p.32).  Measured peak areas of the carnitines in the blood samples (Figure 

16 C p.32) correlate quite well with concentration values reported in the 

literature (Figure 16 D p.32).  Carnitines have a positively charged 

trimethylammonium group, and are thus easy to ionize and can be detected to 

low micromolar concentrations.  

 
Figure 16. Semi-quantification of carnitines in blood  
(A) Structural formula of carnitine and acetyl-carnitine. (B) Number of carbon atoms in 
the side chain and names of the carnitine acetyl esters. (C) Measured peak areas of 
the detected carnitine and carnitine derivatives in the blood sample. (D) Carnitine and 
acyl-carnitines concentrations in blood as reported in literature (Böhmer et al. 1974; 
Costa et al. 1997). 
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2.2.7 Fifty-seven RBC-enriched compounds 

To determine the degree of compound enrichment in RBCs vs. plasma, 

samples of both were prepared from the same blood donor several times.  I 

designated RBC-enriched compounds as those having an RBC:plasma ratio 

greater than 2.0 (Figure 17 p.34 and Table 6 p.22). 

ATP and glutathione showed particularly large peak areas (>108 AU) in 

the RBC sample, but much smaller in the plasma sample (RBC:plasma ratios of 

81 and 1900, respectively).  In contrast, carnitine and urate showed 

RBC:plasma ratios of 0.85 and 0.69, respectively, even though their peak areas 

were large (>108 AU) in both samples. 

Fifty-seven compounds were enriched in RBCs (Table 6 p.22).  Most 

metabolites highly enriched in RBC-fractions (RBC:plasma ratio >30) were 

nucleotides (ADP, AMP, ATP, GDP, GTP, IMP), sugar phosphates (6-

phosphogluconate, diphospho-glycerate, fructose-1,6-diphosphate, 

glyceraldehyde-3-phosphate, pentose-phosphate, phosphoenolpyruvate, 

phosphoglycerate), vitamins (NAD+, NADH, NADP+, NADPH), antioxidants 

(ergothioneine, glutathione disulfide (GSSG), ophthalmic acid), methylated 

compounds (S-adenosyl-homocysteine, S-methyl-ergothioneine, tetradecanoyl-

carnitine, trimethyl-histidine), and N-acetyl-D-glucosamine.  There was no 

evidence of leakage of these highly enriched compounds from RBCs, 

confirming that cells were not damaged during handling.  Metabolites 

moderately enriched in RBCs (RBC:plasma ratio between 2 and 30) contain 

compounds from the categories mentioned above, as well as nucleotide-sugar 



 34 

derivatives and at least one or two compounds from other categories (except 

antioxidants and choline derivatives). 

 
Figure 17. Scatter plot comparison of the compounds detected in plasma 
and RBC samples 
Peak areas of each compound identified in RBCs and plasma, plotted in a scatter plot.  
Each compound is indicated with the number with the compound name in the table 
inset.  Purple numbers and names represent the compounds enriched in RBCs (the 
ratio RBC:plasma is more than 2-fold). 
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Many RBC-enriched compounds, such as nucleotides and sugar-

phosphates, are involved in RBC metabolic pathways (Nishino et al. 2009).  

Others such as acetyl-carnitine (Cooper et al. 1988) and trimethyl-lysine 

(Mizobuchi et al. 1990) were previously reported to be enriched in RBCs, but 

their origins and roles in RBCs are unknown.  Interestingly, eight of the fourteen 

newly discovered blood components (nucleotide-sugar derivatives and 

methylated amino acids) were also enriched in RBCs. 

In contrast to RBC-enriched compounds, adenosine, guanosine, and 

inosine were scarcely detected in RBCs.  Thus, brief centrifugation to sediment 

RBCs in combination with LC-MS quantification enabled us to classify 

metabolites into several groups based upon their RBC:plasma ratios (>30 

highly RBC-enriched, <30, >2 RBC-enriched; <2 present in both plasma and 

RBC). 

2.2.8 Comparison of semi-quantified metabolites between blood 
and S. pombe 

Some compounds exhibited similar abundance in blood and S. pombe 

cells (Table 6 p.22).  ATP (H), ADP (M), AMP (M) and GTP (M) were similar in 

both, whereas UTP was abundant in S. pombe (H), but not in blood (L).  With 

the exception of UTP, these nucleotides are enriched in RBCs; thus RBCs 

evidently have a low requirement for UTP, since RNA synthesis does not occur 

in RBCs.  2,3-Diphospho-glycerate, an allosteric regulator of hemoglobin 

present at mM concentrations in RBCs (Joshi & Palsson 1990), was highly 

abundant (H) in blood, but not in S. pombe (L).  Pentose-phosphate and 

sedoheptulose-7-phosphate were more abundant in S. pombe (M) than in blood 
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(L), indicating that growing and dividing yeast cells require greater amounts of 

pentose phosphate pathway intermediates. 

Seventeen regular and seven acetylated amino acids were commonly 

present in blood and yeast.  Fourteen methylated amino acids were significantly 

different between blood and S. pombe, while seven methylated amino acids 

(betaine, dimethyl-arginine, dimethyl-lysine, methyl-histidine, methyl-lysine, 

trimethyl-histidine, trimethyl-lysine) were commonly present in both, and seven 

others (butyro-betaine, dimethyl-proline, S-methyl-ergothioneine, trimethyl-

phenylalanine, -tryptophan, -tyrosine) were detected only in human samples.  

Three anti-oxidants - glutathione, ergothioneine, and ophthalmic acid - were 

present both human and yeast samples. 

2.2.9 Summary and categorization of detected blood compounds 

Human blood metabolites identified in this study are summarized in 

Figure 18 p.37.  Three nucleosides, adenosine, guanosine, and inosine, may 

be restricted to plasma, as RBC:plasma ratios are close to zero (Table 6 p.22).  

cis-Aconitate (0.3), citrate (0.3), indoxyl-sulfate (0.4), kynurenine (0.4), N-

acetyl-arginine (0.3), and quinolinic acid (0.4) appear to be found primarily in 

plasma.  In contrast, NADP+, S-adenosyl-homocysteine, phosphoenolpyruvate, 

glutathione disulfide (GSSG), diphospho-glycerate, and fructose-1,6-

diphosphate were highly enriched in RBC fractions.  Their RBC:plasma ratios 

are quite large (>1,000).  RBC compounds of intermediate abundance (ratio 

>50 - <1,000) included 6-phosphogluconate, ADP, AMP, ATP, ergothioneine, 

GTP, IMP, NAD+, NADPH, ophthalmic acid, phosphoglycerate, S-methyl-
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ergothioneine, tetradecanoyl-carnitine, and trimethyl-histidine.  All other 

compounds are presumably present in both RBCs and plasma. 

 
Figure 18. 133 compounds detected in human blood metabolome 
samples 
Compounds that were either RBC-enriched (57) or not (76), based on whether the 
ratios of their RBC:plasma peak areas, were either >2 or <2, respectively (Table 
6 p.22).  Abundance of compounds classified by peak area size, indicated by color, 
red (high), green (medium) and blue (low).  Compounds with the statue symbol are not 
present in S. pombe.  See text for detail. 
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Adenine�
Adenosine�
Caffeine ��
Cytidine�
Dimethyl-guanosine�
Dimethyl-xanthine ��
Guanosine�
Hypoxanthine�
Inosine�
Uracil�
Urate ��
Uridine�

Standard amino acids�
Aspartate�
Glutamate�

Organic acids�
Citramalate�
Fumarate�
Malate�

Vitamins, 
coenzymes�
NAD+�

NADH�
NADP+�

NADPH�
Nicotinamide�

Sugars and 
derivatives�
Gluconate�
N-Acetyl-D-glucosamine�

Other amino acid 
derivatives�
2-Aminoadipate�
Arginino-succinate�
Citrulline�
Creatinine ��
Glutamate methyl ester�
Hippurate ��
Histamine�
Indoxyl-sulfate ��
Kynurenine ��
Ornithine�
Quinolinic acid ��
Taurine ��

Abundance: high, medium, low�
� - compounds not detected in fission yeast�

20140619�
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2.2.10 Energy and anti-oxidant metabolites abundant in human 
blood and fission yeast 

Some compounds (ATP, glutathione and glutamine) were highly 

abundant in both RBCs and S. pombe (Figure 19 p.39).  Most compounds in 

the High and Medium categories are implicated in energy metabolism, anti-

oxidation, or amino acid metabolism.  In the WBC metabolome (Table 8 p.40), 

ATP, glutathione, and glycerophosphocholine (instead of glutamine) were 

abundant.  Some medium-level compounds (e.g. NAD+ and UDP-glucose) are 

required for production of high-energy compounds such as ATP, GTP, and UTP.  

Ergothioneine and ophthalmic acid are thought to be anti-oxidants.  It thus 

appears that energy metabolites, anti-oxidants, and amino acid metabolites 

may be the most highly conserved in eukaryotes. 
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Figure 19. Highly abundant compounds in blood and S. pombe 
Compound abundance in human blood and S. pombe.  For example, “High-High” 
indicates that ATP, glutathione, and glutamine are highly abundant in both blood and 
S. pombe.  See text 

 
 
 

Blood - S. pombe� High-High�
ATP�

Glutathione�
Glutamine�

High-Medium  &  Medium-High�
Arginine�

Glutamate�
Histidine�

Phenylalanine�

Ergothioneine �
Glycerophosphocholine�

NAD+�

UDP-glucose�

Medium-Medium�
ADP�
AMP�
GTP�

Threonine�
Tryptophan�

Tyrosine�
Citrulline�

Fructose-1,6-diphosphate�
Phosphoglycerate�

Glucose-6-phosphate�
Nicotinamide�

Ophthalmic acid�

High-Low�
Betaine�

Diphospho-glycerate�
Proline�

Low-High�
UTP�

High-None�
Acetyl-carnitine�

Carnitine�
Creatine�

Creatinine�
Dimethyl-proline�
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Table 8. All compounds detected in blood and fission yeast, and their 
properties 

 
 

Table S2. Compounds detected in fission yeast and blooda

Category Name Status m/z Ionisation RT In fission 
yeast In blood RBC 

enriched
New blood 
component Blood RBC WBC Fission 

yeast

3',5'-cAMP STD 328.045 NEG 7.1 � ND ND L L
ADP STD 428.037 POS 12.4 � � R M M H M
AMP STD 348.070 POS 11.5 � � R M M H M
ATP STD 508.003 POS 13.8 � � R H H H H
CDP STD 402.011 NEG 14.7 � � R L L L L
CMP STD 322.045 NEG 13.2 � ND ND L L
CTP STD 481.977 NEG 15.5 � � R L L M M
GDP STD 442.017 NEG 15.5 � � R L L M M
GMP STD 362.051 NEG 14.1 � � R L L M L
GTP STD 521.983 NEG 16.4 � � R M M H M
IMP STD 349.054 POS 13.1 � � R L L M L
UDP STD 402.995 NEG 14.0 � � R L L M M
UMP STD 323.029 NEG 12.6 � � R L L M L
UTP STD 482.961 NEG 15.1 � � R L L M H
1-Methyl-adenosine STD 282.120 POS 11.1 � � M L L M
1-Methyl-guanosine STD 298.115 POS 7.1 � � L L L L
Adenine STD 136.062 POS 6.6 � � L L L M
Adenosine STD 268.104 POS 6.2 � � L L M L
AICAR STD 337.055 NEG 12.7 � ND ND ND L
Caffeine STD 195.088 POS 3.8 � M M L ND
Cytidine STD 244.093 POS 9.1 � � L L L L
Dimethyl-guanosine STD 312.130 POS 6.0 � � L L L L
Dimethyl-xanthine STD 181.072 POS 4.5 � M M L ND
Guanosine STD 282.084 NEG 9.8 � � L L L L
Hypoxanthine STD 135.031 NEG 7.6 � � L L M L
Inosine STD 269.088 POS 8.2 � � L L L L
PRPP (5-Phospho-alpha-D-ribose 1-dip STD 388.945 NEG 16.5 � ND ND L M
SAICAR MS/MS 455.081 POS 17.1 � ND ND ND L
Uracil STD 111.020 NEG 7.2 � � L L L L
Urate STD 167.021 NEG 10.7 � M M L ND
Uridine STD 243.062 NEG 7.1 � � L L L L
4-Aminobenzoate STD 138.055 POS 7.2 � L L ND ND
Acetyl-CoA STD 810.133 POS 10.5 � ND ND L L
Biotin STD 245.095 POS 6.2 � ND ND ND L
CoA STD 768.122 POS 11.7 � ND ND L L
FAD STD 786.164 POS 9.4 � ND ND L L
HMG-CoA STD 912.165 POS 13.2 � ND ND L L
NAD+ STD 664.116 POS 11.9 � � R M M M H
NADH STD 666.132 POS 11.1 � � R L L L M
NADP+ STD 744.083 POS 14.4 � � R L L L L
NADPH STD 746.098 POS 14.8 � � R L L L L
Nicotinamide STD 123.055 POS 4.7 � � R M M M M
Pantothenate STD 220.118 POS 6.1 � � L L L M
GDP-glucose STD 606.084 POS 15.5 � � R � L L L M
UDP-acetyl-glucosamine STD 606.074 NEG 12.8 � � R � L L M M
UDP-glucose STD 565.048 NEG 13.9 � � R M M M H
UDP-glucuronate STD 579.027 NEG 16.5 � R � L L M ND
6-Phosphogluconate STD 275.017 NEG 15.0 � � R L L L L
Diphospho-glycerate STD 264.952 NEG 15.6 � � R H H L L
Fructose-1,6-diphosphate STD 338.989 NEG 15.5 � � R M M M M
Fructose-6-phosphate STD 259.022 NEG 13.3 � � R L L L M
Glucose-6-phosphate STD 259.022 NEG 14.2 � � R M M M M
Glyceraldehyde-3-phosphate STD 168.991 NEG 13.2 � � R L L L L
Glycerol-2-phosphate STD 171.006 NEG 12.2 � � R L L L M
Pentose-phosphate STD 229.012 NEG 13.0 � � R L L L M
Phosphoenolpyruvate STD 166.975 NEG 15.1 � � R L L L M
Phosphoglycerate STD 184.986 NEG 14.4 � � R M M L M
Sedoheptulose-7-phosphate STD 289.033 NEG 13.7 � � R L L L M
Trehalose-6-phosphate STD 421.075 NEG 14.7 � ND ND ND M
1,5-Anhydroglucitol STD 163.061 NEG 9.2 � M M L ND
Gluconate STD 195.051 NEG 11.4 � � R M M L L
Glucosamine STD 180.087 POS 11.6 � � M M ND L
Glucose STD 179.056 NEG 12.0 � � M M ND L
myo-Inositol STD 179.056 NEG 14.4 � � L L M L
N-Acetyl-D-glucosamine STD 222.097 POS 9.3 � � R M M L L
Quinic acid STD 191.056 NEG 10.4 � � L L L M
Trehalose STD 341.109 NEG 13.6 � ND ND ND H
2-Oxoglutarate STD 145.014 NEG 12.9 � � L L L L
Chenodeoxycholate STD 391.285 NEG 3.9 � M M L ND
cis-Aconitate STD 175.024 POS 15.5 � � L L L L
Citramalate STD 147.030 NEG 12.6 � � R � L L M M
Citrate STD 191.020 NEG 15.5 � � M L M M
Fumarate STD 115.004 NEG 13.1 � � R L L L L
Glutarate STD 131.035 NEG 12.0 � � L L L L
Glyceric acid STD 105.019 NEG 10.1 � L L L ND
Malate STD 133.014 NEG 13.3 � � R L L L L
Succinate STD 117.019 NEG 12.6 � � L L L L

Organic acids

Sugar and 
derivatives

Nucleotides

Nucleosides, 
nucleobases 
and derivatives

Vitamins, 
coenzymes

Nucleotide-
sugar 
derivatvies

Sugar 
phosphates
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Table 8. (continued) 

 

  

Table S2. continued

Category Name Status m/z Ionisation RT In fission 
yeast In blood RBC 

enriched
New blood 
component Blood RBC WBC Fission 

yeast

Arginine STD 175.119 POS 24.8 � � H M M H
Asparagine STD 131.046 NEG 12.4 � � L L L L
Aspartate STD 132.030 NEG 12.5 � � R L L M M
Glutamate STD 146.046 NEG 12.1 � � R M M M H
Glutamine STD 147.076 POS 12.2 � � H H M H
Histidine STD 156.077 POS 12.0 � � M M L H
Isoleucine STD 130.087 NEG 8.6 � � M M L L
Leucine STD 130.087 NEG 7.6 � � M M L L
Lysine STD 145.098 NEG 23.3 � � L L L L
Methionine STD 150.058 POS 8.7 � � M M M L
Phenylalanine STD 166.086 POS 7.3 � � H H M M
Proline STD 116.071 POS 10.2 � � H H H L
Serine STD 104.035 NEG 13.1 � � L L L L
Threonine STD 120.066 POS 11.7 � � M M M M
Tryptophan STD 205.097 POS 8.7 � � M M M M
Tyrosine STD 182.081 POS 10.3 � � M M L M
Valine STD 118.086 POS 9.8 � � M M M L
Betaine STD 118.086 POS 8.6 � � H H H L
Butyro-betaine STD 146.118 POS 10.9 � R M M M ND
Dimethyl-arginine STD 203.150 POS 20.0 � � L L L L
Dimethyl-histidine STD 184.108 POS 9.7 � ND ND ND M
Dimethyl-lysine STD 175.144 POS 19.2 � � � L L L L
Dimethyl-proline (stachydrine) STD 144.102 POS 7.9 � R H H M ND
Methyl-histidine STD 170.092 POS 10.2 � � L L L M
Methyl-lysine MS/MS 161.128 POS 22.1 � � M L L L
S-Methyl-ergothioneine STD 244.111 POS 7.9 � R L M L ND
Trimethyl-histidine (hercynine) MS/MS 198.124 POS 9.7 � � R � L L L M
Trimethyl-lysine STD 189.160 POS 20.7 � � R M M L L
Trimethyl-phenylalanine MS/MS 208.133 POS 5.4 � R � L L ND ND
Trimethyl-tryptophan (hypaphorine) STD 247.144 POS 6.0 � R � H H M ND
Trimethyl-tyrosine MS/MS 224.128 POS 7.5 � R � L L L ND
N-Acetyl-(iso)leucine STD 174.112 POS 4.4 � � � L L L L
N-Acetyl-arginine STD 217.130 POS 12.3 � � L L L M
N-Acetyl-aspartate STD 174.041 NEG 12.5 � � L L L L
N-Acetyl-glutamate STD 190.071 POS 11.6 � � � L L L M
N-Acetyl-ornithine STD 175.108 POS 11.1 � � L L L L
N2-Acetyl-lysine STD 189.123 POS 12.7 � � � L L ND L
N6-Acetyl-lysine STD 189.123 POS 10.5 � � � L L L M
2-Aminoadipate STD 162.076 POS 12.2 � � L L L L
Arginino-succinate STD 291.130 POS 14.2 � � L L L M
Citrulline STD 176.103 POS 13.0 � � M M M M
Creatine STD 132.077 POS 12.1 � R H H H ND
Creatinine STD 114.066 POS 6.9 � H H M ND
Deferrichrome STD 688.326 POS 5.9 � ND ND ND L
Ferrichrome STD 741.238 POS 4.7 � ND ND ND H
Glutamate methyl ester STD 162.076 POS 7.1 � � � L L L L
Hippurate STD 180.066 POS 4.4 � M L L ND
Histamine STD 112.087 POS 24.8 � � L L M L
Histidinol STD 142.097 POS 16.3 � ND ND ND M
Indoxyl-sulfate STD 212.002 NEG 4.9 � M M L ND
Kynurenine STD 209.092 POS 8.0 � L L L ND
Ornithine STD 131.083 NEG 20.8 � � L L L M
Phosphocreatine STD 212.043 POS 12.7 � R L L L ND
Quinolinic acid STD 166.015 NEG 12.7 � L L L ND
S-adenosyl-cysteine STD 371.113 POS 10.6 � ND ND ND L
S-Adenosyl-homocysteine STD 385.129 POS 11.2 � � R L L L M
S-Adenosyl-methionine STD 399.145 POS 14.2 � � R L L L L
Saccharopine STD 275.125 NEG 13.3 � ND ND ND L
Taurine STD 124.007 NEG 12.1 � M M H ND
Acetyl-carnitine STD 204.123 POS 8.5 � R H H H ND
Butyryl-carnitine STD 232.154 POS 6.2 � M M M ND
Carnitine STD 162.112 POS 10.9 � H H H ND
Decanoyl-carnitine STD 316.248 POS 4.2 � M M L ND
Dodecanoyl-carnitine STD 344.280 POS 3.8 � L L L ND
Hexanoyl-carnitine STD 260.186 POS 4.8 � L L L ND
Isovaleryl-carnitine STD 246.170 POS 5.4 � L L L ND
Octanoyl-carnitine STD 288.217 POS 4.1 � M L L ND
Propionyl-carnitine STD 218.139 POS 7.2 � R M M M ND
Tetradecanoyl-carnitine STD 372.311 POS 3.8 � R L L L ND
CDP-choline STD 489.115 POS 13.0 � � L L H L
Glycerophosphocholine STD 258.110 POS 12.1 � � M M H H
Ergothioneine STD 230.096 POS 12.1 � � R H H M M
Glutathione disulfide (GSSG) STD 613.159 POS 15.0 � � R H H H H
Ophthalmic acid STD 290.135 POS 11.2 � � R L M L M

��� ��� �� ��

Choline 
derivatives

Antioxidant

���������
�������������������������������	���
������������������������	���	��	��������

Standard amino 
acids

Methylated 
amino acids

 Acetylated 
amino acids

Other amino 
acid derivatives

Carnitines
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DISCUSSION AND PERSPECTIVES 

3.1 Comparison of human blood and fission yeast metabolomes 

During my graduate studies at Kyoto University I performed LC-MS-

based metabolomic analysis of human blood, plasma, and RBCs in comparison 

with previously published metabolomic results from the fission yeast, S. pombe 

(Pluskal, Nakamura, et al. 2010; Pluskal et al. 2011).  Analysis of the S. pombe 

metabolome was performed simultaneously, and results were consistent with 

those of previous reports.  This comparative study enabled me to learn which 

metabolomic features are conserved between these distantly related cellular 

systems.  The LC column employed in this study can separate hydrophilic 

compounds with high resolution, but is not appropriate for separating 

hydrophobic compounds; therefore, my data contain limited information on 

lipids, except for two choline derivatives, CDP-choline and 

glycerophosphocholine.  Also the detection range of the mass spectrometer 

was set to the range between 100 and 1000 m/z, thus compounds below 100 

Da (e.g. glycine, alanine) were not detected.  For this reason, conclusions 

regarding metabolite conservation should be restricted to hydrophilic 

compounds between 100 and 1000 Da. 

Thirty-two compounds were found in blood, but not in S. pombe (Figure 

11 p.21).  Metabolite compositions of blood and fission yeast are unexpectedly 

similar, with 76% of identified compounds present in both.  The WBC 

metabolome is also highly similar to those of RBCs and yeast.  However, 

metabolites mostly belonging to three categories (ten carnitines, six methylated 

amino acids, eight other amino acid derivatives) were not detected in S. pombe 
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(Table 6 p.22).  If I compare metabolites in the remaining 11 categories, only 8 

of 89 compounds were not present in S. pombe (caffeine, dimethyl-xanthine, 

urate, 4-aminobenzoate and UDP-glucuronate, 1,5-anhydroglucitol, 

chenodeoxycholic acid, and glyceric acid), therefore the overall similarity 

between the two metabolomes is over 90% (81/89×100).  Differences are 

mostly restricted to carnitines and amino acid derivatives. 

Overlap of the compounds detected in this study with that of the other 

RBC studies is rather large.  I could detect all metabolites reported in two 

recent metabolomics studies on RBC storage (Nishino et al. 2009; 

D’Alessandro et al. 2013) as well as 69 of 91 metabolites reported in a study on 

sickle RBCs (Darghouth, Koehl, Madalinski, et al. 2011).  Darghouth et al. used 

a C18 column enabling them to detect more hydrophobic compounds, while our 

method by using hydrophilic interaction chromatography enabled us to separate 

the polar compounds. 

Methyl-histidine is detected in plasma, RBCs, and fission yeast.  Human 

and fission yeast peaks are slightly offset by the retention time.  In humans 

methyl-histidine comes most likely from diet, anserine or balenine (methylated 

on imidazole ring, 1- or 3-methyl-histidine).  3-Methyl-histidine has been 

reported at 8 μM in plasma (Dohm et al. 1982).  In fission yeast samples it 

could be the N-Methyl-histidine, which is involved in the ergothioneine 

biosynthesis pathway.  In fission yeast methyl-histidine increases with lower 

glucose concentrations together with other ergothioneine biosynthesis pathway 

metabolites (Pluskal et al. 2011). 
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Many of the compounds detected in fission yeast, but not in blood in this 

study are known to be present at low concentrations in blood or in other tissues.  

For example, CoA has been reported to be involved in RBC membrane 

metabolism and at low concentrations  (~1 μM) (Arduini et al. 1992).  CTP, a 

compound involved in various metabolic pathways such as phosphatidylcholine 

or DNA synthesis, is absent in non-dividing RBC cells as reported (Traut 1994).   

Several metabolites are specific to fission yeast.  Fission yeast contains 

metabolic pathways absent in the human genome.  For example, histidinol is an 

intermediate in the histidine pathway and it was detected in fission yeast 

samples, but not in human samples.  Also fission yeast is capable of 

synthesizing ergothioneine (Pluskal et al. 2014), synthesis of which goes 

through the intermediate of dimethyl-histidine, detected in fission yeast samples 

only.   

Trehalose is a non-reducing disaccharide formed from two glucose units 

joined by a 1-1 alpha bond and can be synthesized by fission yeast.  In fission 

yeast the levels of trehalose increase in low glucose conditions (Pluskal et al. 

2011).  While humans do intake disaccharides with food, disaccharides are 

cleaved in the small intestine by disaccharidases to monosacharides.  

Concentrations in blood of disaccharides are less than a few μg/mL in adult 

blood.  Following a sucrose tolerance test blood glucose markedly increases, 

while blood sucrose levels are not substantially increased (Nakamura & 

Tamura 1972).  

Among the compounds not detected in the fission yeast are carnitine and 

its derivatives.  Carnitine is a trimethylbetaine of γ -amino-β- hydroxybutyric 
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acid with various functions in humans.  One of the functions is the transport of 

the fatty acids from cytosol compartment into mitochondria.  It also modulates 

the acetyl coenzyme A(CoA)/CoA ratio by acting as a reservoir for activated 

acetyl units (Rebouche & Seim 1998).  It has been shown that acyl-carnitines 

can be synthetized inside the RBC and used for the membrane phospholipids 

turnover (Arduini et al. 1992).  Budding yeast can not synthesize carnitine, but 

are capable of utilizing it for acetyl group transfer into mitochondria (Swiegers 

et al. 2001).  In fission yeast, after addition of carnitine I could not detect any 

carnitine acyl derivatives consistent with the absence of the carnitine utilizing 

genes (Sohn et al 2012).  

  
Figure 20.  Carnitine biosynthesis pathway 
Adapted from (Strijbis et al. 2010).  Boxes indicate in my data where metabolites were 
detected. 

Many bacteria and mammalian species can synthetize carnitine (Hulse 

et al. 1978; Strijbis et al. 2009).  The carnitine synthesis pathway can be found 

in Figure 20 p.45.  The precursor for carnitine synthesis is trimethyl-lysine and 

humans are known to be capable of synthesizing it or obtaining it from foods 

(Rebouche & Seim 1998).  While in human blood samples I could find in 
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addition to the trimethyl-lysine, butyrobetaine and carnitine itself, in fission 

yeast I could detect only trimethyl-lysine (Figure 20 p.45).  

In addition to carnitines, another group of metabolites not detected in 

fission yeast and detected only in human samples are creatine related 

compounds.  Both carnitines and creatine related compounds are related to 

energy production.  While high-energy demands in human tissues such as the 

brain and muscle require the presence of such specialized “energy” compounds, 

fission yeast apparently does not require them. 
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Figure 21. Fourteen compounds not yet reported in blood 
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I found 14 novel human blood compounds (Figure 21 p.47), ten of which 

were methylated or N-acetylated amino acids.  To my knowledge, there has 

been no report describing these as blood components.  Blood data presented in 

this report came from four healthy volunteers.  We further extended our 

analysis to more than 30 people (Chaleckis et al., manuscript in preparation), 

and these compounds were universally present, suggesting that their 

occurrence is neither accidental nor specific to certain dietary customs.  

Interestingly, ten of these compounds (GDP-glucose, UDP-acetyl-glucosamine, 

citramalate, dimethyl-lysine, trimethyl-histidine, N-acetyl-(iso)leucine, N-acetyl-

glutamate, N2-acetyl-lysine, N6-aceltyl-glutamate and glutamate methyl ester) 

were also present in S. pombe.  Their physiological roles can thus be further 

investigated using S. pombe as a model.  Eight compounds are RBC-enriched.  

RBCs may require UDP-acetyl-glucosamine, a nucleotide sugar and a 

coenzyme, as a signaling molecule of sugar metabolism, as in other eukaryotic 

cells, including S. pombe (Wellen & Thompson 2012).  UDP-glucuronic acid is 

synthesized in liver, binds to hormones or toxic compounds, and is also used 

for the synthesis of glucuronic acid-containing polysaccharides (Mulloy & 

Forster 2000; Tukey & Strassburg 2000).  It is not present in lower eukaryotes.  

Citramalate is an intermediate in bacterial glutamate degradation (Barker 1981).  

Citramalate and glutamate methyl ester are also present in S. pombe, but their 

physiological role is not understood.  Two acetylated amino acids N2-acetyl and 

N6-acetyl-lysine, are present in plasma and RBCs, as well as in S. pombe, but 

their biological role is little understood.  N-acetyl-glutamate is involved in the 

removal of waste from the body in the urine as it is an allosteric cofactor of 
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carbamyl phosphate synthetase I, the first enzyme in the urea cycle (Caldovic & 

Tuchman 2003). 

Five novel blood compounds are methylated amino acids, four of which 

are trimethylated and enriched in RBCs (histidine, phenylalanine, tryptophan, 

tyrosine).  While the presence in blood of some methylated amino acids such 

as trimethyl-lysine (Mizobuchi et al. 1990), dimethyl-proline (Lever et al. 1994) 

and S-methyl-ergothioneine (Klein et al. 2011) has been previously 

documented, their role is not well understood.  

Trimethyl-histidine (hercynine) is a precursor of ergothioneine, but 

humans do not synthesize ergothioneine; therefore this compound might be of 

dietary origin or possibly a degradation product of ergothioneine (Cheah & 

Halliwell 2012).  Trimethyl-histidine has been reported to be present in Boletus 

mushrooms (Barger & Ewins 1913).  RBCs, as well as other tissues, have been 

reported to have ergothioneine transporter (Gründemann et al. 2005; 

Gründemann 2012).  As revealed through genetic and metabolomic studies 

S. pombe can produce ergothioneine and as an intermediate trimethyl-histidine 

(Pluskal et al. 2014).  Further ergothioneine metabolite, S-methyl-ergothioneine, 

was detected in human as well as in fission yeast samples in klf1 mutant 

(Shimanuki et al. 2013).  S-methyl-ergothioneine was also shown to be present 

in deep sea sponge (Gross et al. 2004). 

Ergothioneine was discovered more than 100 years ago (Tanret 1909) 

and has been extensively researched ever since (Melville 1959; Cheah & 

Halliwell 2012).  First it was thought that ergothioneine is incorporated into RBC 

only during erythrogenesis (Melville 1959), but later it was shown that mature 
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erythrocytes also incorporate ergothioneine (Mitsuyama & May 1999).  

Ergothioneine is among the highly abundant compounds accumulated in RBCs, 

as detected by our method, but differences among individuals in the levels 

ranged more than 10 fold.  Ergothioneine concentrations in the RBC have been 

reported to be 10-960 mg/l (44-4200 μM) (Cheah & Halliwell 2012).  

In low glucose conditions, levels of ergothioneine and other methylated 

compounds increase in fission yeast (Pluskal et al. 2011).  Over 100 years of 

research on ergothioneine has not provided a clear answer on the role of this 

compound.  Ergothioneine and its metabolites are present in such distantly 

related organisms as human and fission yeast.  Also the fact that in fission 

yeast ergothioneine levels under stress conditions increase, suggest that this 

compound might also play a similar role in humans.  

Trimethyl-tryptophan (hypaphorine) was variable, and highly abundant in 

some RBC samples.  Trimethyl-tryptophan was originally discovered in the 

seeds of the Erythryna Hypaphorus (van Romburgh & Barger 1911).  

Structurally similar to indole acetic acid, it has been detected in fungi and 

shown to inhibit root hair elongation (Ditengou et al. 2000).  Trimethyl-

tryptophan has been reported to have sleep-inducing and sugar-lowering 

effects in mice (Ozawa et al. 2008; Chand et al. 2010).  In humans, it was 

reported to be present in milk and associated with legume consumption (Keller 

et al. 2013), but not previously detected in blood.  I could confirm the trimethyl-

tryptophan by obtaining a standard compound.  For trimethyl-tyrosine, trimethyl-

phenylalanine the standard compounds were not available, but I could confirm 

them by MS/MS analysis.  I could not find any biological reports on N-
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trimethylated tyrosine and phenylalanine.  Compounds enriched in the RBC 

could have a yet undiscovered influence on the RBC metabolism.  Metabolic 

changes in RBCs, as an oxygen supplier, could affect the whole organism. 

The high similarity of fission yeast and human blood metabolomes raises 

the possibility that S. pombe genetics might be useful to understand the role of 

certain metabolites, such as small anti-oxidants (ophthalmic acid, ergothioneine, 

and glutathione), which are enzymatically synthesized in S. pombe.  S-

adenosyl-homocysteine (SAH) and S-adenosyl-methionine (SAM), coenzymes 

involved in the methionine cycle, were also enriched in RBCs.  S-adenosyl-

methionine synthase has been reported in RBCs (Oden & Clarke 1983).  In 

RBCs, SAM has been shown to act as a coenzyme for protein carboxyl 

methylation (Perna et al. 1993), synthesis of phosphatidylcholine (Hirata & 

Axelrod 1978), and N-, O- and S-methyltransferase activities (Weinshilboum et 

al. 1999).  It remains to be determined how SAH and SAM in RBCs are 

involved in the production of methylated compounds.  We are particularly 

interested in determining whether levels of free methylated amino acids are 

controlled by SAM and SAH.  To this end, in the OIST G0 unit, a number of 

S. pombe mutants of methionine cycle enzymes were isolated and their 

metabolic profiles are currently being examined (T. Hayashi et al., unpublished 

results). 

Gluconate, which is not included in the current RBC models, was 

detected at quite high levels enriched in the RBCs.  It has been used in delivery 

of iron (Jaber et al. 2010), blood storage solutions (Burger et al. 2012), in vitro 

osmotic stress studies e.g. (Floride et al. 2008).  Gluconate has been reported 
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as tentatively identified in a RBC metabolomics study (Darghouth, Koehl, 

Madalinski, et al. 2011) and has been reported in plasma at a concentration 

less than 5 μM (Psychogios et al. 2011).  In RBC the source of glucuronate is 

not clear.  It has been shown that the rate of spontaneous hydrolysis of 6-

phosphogluconate increases sharply at high pH values (Bauer et al. 1983).  As 

HILLIC column solvent is pH 9.3, the gluconate could be a result of the 6-

phosphogluconate hydrolysis.  

ATP and glutathione were selectively enriched in RBCs (scarcely 

present in plasma), while glutamine was found in both plasma and RBCs in 

roughly equal amounts.  Eleven sugar phosphate compounds required for 

sugar and energy metabolism were all found in RBC-enriched fractions and 

also in S. pombe.  Similarly, all twelve nucleotides, four nucleotide-sugar 

derivatives, and five coenzyme NAD-related compounds were selectively 

enriched in RBCs.  Fifty-six percent of RBC-enriched compounds are energy-

related; these compounds are also found in S. pombe.  Three anti-oxidant 

compounds, glutathione, ergothioneine, and ophthalmic acid, were enriched in 

RBCs and abundant in S. pombe.  Glutathione and ophthalmic acid may be 

synthesized in RBCs, as the synthetic enzymes encoded by the human genes 

are present in RBCs (Hirono et al. 1996).  Aspartate and glutamate were 

selectively enriched in RBCs.  Both are excitatory neurotransmitters.  Inhibitory 

transmitters, GABA and glycine, are difficult to measure using our method.  

Glutamate may be partly utilized for the synthesis of glutathione (Whillier et al. 

2011).  These energy and anti-oxidant compounds are most likely essential for 
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maintaining RBCs during their relatively long lifespan of 120 days, and these 

compounds are also common to S. pombe. 

Among the fifteen high abundance blood compounds, however, 

S. pombe lacks six (40%) metabolites (acetyl-carnitine, carnitine, creatine, 

dimethyl-proline, trimethyl-tryptophan and urate), indicating that the most 

abundant compounds in blood are quite different from those of S. pombe.  

Conversely, among the 14 high abundance S. pombe compounds, only 2 

(trehalose, ferrichrome) were not present in human blood, indicating that 86% 

are also found in human blood.  I presume that the high abundance metabolites 

of S. pombe may be more ‘fundamental’ than those of blood, since S. pombe is 

a single-celled eukaryote.  Blood contains a multitude of specialized 

metabolites.  Carnitine is not strictly a metazoan compound, as it is also 

synthesized from lysine in Neurospora (Rebouche & Broquist 1976).  However, 

a great variety of carnitine derivatives (9) carrying different fatty acids might be 

a higher eukaryotic feature. 
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3.2 Conclusions 

Analysis of the RBC metabolome on the LC-MS platform optimized for 

polar metabolites revealed that 75% of the 133 metabolites detected in blood 

were also detected in fission yeast, yet at different levels.  From the 133 

metabolites detected in blood, 57 were more abundant in the RBC than in 

plasma.  Fourteen of these compounds were previously unreported such as 

trimethylated amino acids trimethyl-tryptophan, -phenylalanine, -tyrosine, 

histidine.  Highly abundant metabolites conserved between RBC and S. pombe 

exist, which seem to be implicated in structural maintenance, energy production 

and protection against stresses.   
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MATERIALS AND METHODS 

4.1 Chemicals and reagents 

Over 40 pure standards were obtained (listed in Table 9 p.55) in addition 

to the pure standards obtained for previous studies (Pluskal, Nakamura, et al. 

2010; Pluskal et al. 2011; Sajiki et al. 2013; Shimanuki et al. 2013). 

Table 9. List of analyzed standard compounds 

 

Compound Vendor Name Catalog #
1,5-Anhydroglucitol Wako 1,5-Anhydro-D-glucitol 016-13531

4-Aminobenzoate Sigma-Aldrich 4-aminobenzoic acid A9878

Acetyl-carnitine Sigma-Aldrich Acetyl-L-Carnitine Chloride 17-0200-7

Arginino-succinate Sigma-Aldrich Argininosuccinic acid disodium salt hydrate A5707

Butyro-betaine Sigma-Aldrich (3-Carboxypropyl)trimethylammonium chloride 403245

Butyryl-carnitine Wako Butyryl-L-Carnitine Chloride 17-0400-7

Caffeine Sigma-Aldrich Caffeine C0750

Carnitine Sigma-Aldrich L-Carnitine C0283

CDP-choline Sigma-Aldrich Cytidine 5�-diphosphocholine sodium salt dihydrate C0256

Chenodeoxycholate Sigma-Aldrich Chenodeoxycholic acid C9377

cis-Aconitate Sigma-Aldrich cis-Aconitic acid A3412

Creatine Wako Creatine A17477

Creatinine Wako Creatinine 033-04591

Decanoyl-carnitine Wako Decanoyl-L-Carnitine Chloride 17-1000-7

Dimethyl-proline (stachydrine) TCI Stachydrine Hydrochloride S0358

Dimethyl-xanthine Sigma-Aldrich 1,7-Dimethylxanthine D5385

Diphospho-glycerate Sigma-Aldrich 2,3-Diphospho-D-glyceric acid pentasodium salt D5764

Dodecanoyl-carnitine Wako Lauroyl-L-Carnitine Chloride 17-1200-7

Glyceraldehyde-3-phosphate Sigma-Aldrich DL-Glyceraldehyde 3-phosphate solution G5251

Glycerate Sigma-Aldrich DL-Glyceric acid hemicalcium salt hydrate G5000

Glycerophosphocholine Santa Cruz Bio sn-Glycero-3-phosphocholine sc-301813

Hexanoyl-carnitine Wako Hexanoyl-L-Carnitine Chloride 17-0600-7

Hippurate Sigma-Aldrich Hippuric acid 112003

Histamine Sigma-Aldrich Histamine H7125

Hypoxanthine Sigma-Aldrich Hypoxanthine H9377

Indoxyl-sulfate Sigma-Aldrich Indoxyl sulfate potassium salt I3875

Isovaleryl-carnitine Wako Isovaleryl-L-Carnitine Chloride 17-0550-7

Kynurenine Sigma-Aldrich L-kynurenine K8625

Methyl-histidine Sigma-Aldrich 1-Methyl-L-histidine 67520

myo-Inositol Wako myo- Inositol 092-00282

N-acetyl-aspartate Fluka N-Acetyl-L-aspartic acid 920

N-acetyl-D-glucosamine Sigma-Aldrich N-Acetyl-D-glucosamine A8625

N-acetyl-isoleucine Sigma-Aldrich N-ACETYL-L-ISOLEUCINE S783501

Octanoyl-carnitine Wako Octanoyl-L-Carnitine Chloride 17-0800-7

Phosphocreatine Wako Disodium Creatinephosphate Tetrahydrate 922-32-7

Propionyl-carnitine Wako Propionyl-L-Carnitine Chloride 17-0300-7

Quinolinic acid Wako 2, 3-pyridinedicarboxylic acid (Quinolinic acid) 174-00271

S-Methyl-ergothioneine Tetrahedron S-Methyl-L-ergothioneine THD-300

Sedoheptulose-7-phosphate Sigma-Aldrich D-Sedoheptulose 7-phosphate lithium salt 78832

Succinate Sigma-Aldrich Succinic acid S3674

Taurine Sigma-Aldrich Taurine T0625

Tetradecanoyl-carnitine Wako Myristoyl-L-Carnitine Chloride 17-1400-7

Trimethyl-tryptophan (hypaphorine) Research Plus Hypaphorine HCL 08-8016-17

UDP-glucuronate Sigma-Aldrich Uridine 5�-diphosphoglucuronic acid trisodium salt U6751

Urate Sigma-Aldrich Uric acid U0881

Uridine Sigma-Aldrich Uridine U3750

Table S3. List of analyzed standard compoundsa

������	��������������������������������������������������	�����
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4.2 Human subject characteristics 

Three healthy male and one female volunteer (23-33 years old) provided 

blood samples for the fission yeast and blood metabolome comparison study.  

Blood samples for metabolomic analysis were taken in the morning and 

subjects were asked not to eat breakfast to ensure at least 12 h of fasting prior 

to sampling. 

4.3 Ethics statement 

Written informed consent was obtained from all donors in accordance 

with the Declaration of Helsinki.  All experiments were performed in compliance 

with relevant Japanese laws and institutional guidelines.  All protocols were 

approved by the Ethical Committee on Human Research of Kyoto University 

Hospital and by the Human Subjects Research Review Committee of the 

Okinawa Institute of Science and Technology Graduate University (OIST). 

4.4 Blood sample preparation for metabolomic analysis 

The workflow of the blood metabolome samples preparation is shown in 

Figure 8 p.17. Blood samples for metabolomic analysis were drawn by 

venipuncture into 5 mL heparinized tubes (Terumo).  Immediately, 0.2 mL blood 

(8-12×108 RBC) were quenched in 1.8 mL −40° C 55% methanol.  The 

remainder of each blood sample was centrifuged at 120 x g for 15 min at room 

temperature to separate plasma and RBCs. After centrifugation, 0.2 mL of 

separated plasma and RBCs (14-20×108 RBC), respectively, were quenched in 

1.8 mL −40°C 55% methanol.  Ten nmol each of HEPES, 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid, and PIPES, piperazine-N,Nʹ-bis(2-



 

 57 

ethanesulfonic acid) were added to each sample to serve as standards.  After 

brief vortexing, samples were transferred to Amicon Ultra 10 kDa cut-off filters 

(Millipore, Billerica, MA, USA) to remove proteins and cell debris.  Following 

sample concentration by vacuum evaporation, each sample was re-suspended 

in 40 μL of 50% acetonitrile and 1 μL (equivalent to 5 μL of initial sample) was 

used for each injection into the LC-MS system. 

4.5 Isolation of lymphocytes and RBC by ficoll gradient 

 For isolation of leucocytes I employed Ficoll gradient centrifugation.  

Blood of two donors, 20 mL each, was collected into heparinized tubes 

(Terumo) and subsequently diluted with the same volume of PBS buffer.  

Diluted blood was carefully layered onto the same volume of Lympholite-H 

(Cosmo Bio, Tokyo, Japan) and centrifuged at room temperature for 20 min at 

800 x g.  Separated leucocytes were washed 3x in PBS (1 min, 350 x g, 4° C).  

After dilution, 0.2 mL of leucocytes (~5×107 cells) were quenched in 1.8 mL 

−40° C 55% methanol.  After addition HEPES and PIPES, samples were 

processed as described above.  Metabolites were isolated from 10 μL of 

leukocyte cell volume (assuming an individual leukocyte cell volume of 200 fL 

(Segel et al. 1981) and an estimated 5×107 cells per sample).  One μL of the 

metabolome sample was injected into the LC-MS system, corresponding to 

~0.25 μL leukocyte intracellular volume. 
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4.6 Fission yeast growth conditions and preparation for 
metabolomics analysis 

The wild-type heterothallic haploid 972 h- S. pombe strain (Gutz et al. 

1974) was used for metabolomic experiments.  Cells were cultivated at 26° C in 

minimal synthetic medium EMM2 (Mitchison 1970; Nurse 1975)  with 0.1% 

glucose (5.6 mM) content.  Limited glucose media were prepared by mixing 

regular EMM2 (2% glucose) medium with EMM2-G (0% glucose) in an 

appropriate ratio.  Preparation of fission yeast samples was done as described 

previously (Pluskal, Nakamura, et al. 2010).  Metabolites were isolated from 

30 μL of total S. pombe cell volume (S. pombe cell diameter 3.5 μm (Mitchison 

1957); cells grown at 5.6 mM glucose have lengths of 13 μm (Pluskal et al. 

2011), thus using a formula (Mitchison 1957), mean cell volume is 120 fL; total 

number of cells per sample 2.5×108).  LC-MS sample injections (1 μL) 

corresponded to ~0.75 μL S. pombe intracellular volume. 

4.7 LC-MS analysis 

LC-MS data were obtained using a Paradigm MS4 HPLC system 

(Michrom Bioresources, Auburn, CA, USA) coupled to an LTQ Orbitrap mass 

spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) as previously 

described (Pluskal, Nakamura, et al. 2010).  Briefly, LC separation was 

performed on a ZIC-pHILIC column (Merck SeQuant, Umeå , Sweden; 150 mm 

× 2.1 mm, 5 μm particle size).  Acetonitrile (A) and 10 mM ammonium 

carbonate buffer, pH 9.3 (B) were used as the mobile phase, with gradient 

elution from 80% A to 20% A in 30 min, at a flow rate of 100 μL mL-1.  Peak 

areas for metabolites of interest were integrated using MZmine 2 software 
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version 2.10 (Pluskal, Castillo, et al. 2010).  Detailed data analytical procedures 

and parameters were described previously (Pluskal, Nakamura, et al. 2010).  

Metabolites were initially identified by searching their m/z values in on-line 

databases (see text) or by predicting chemical formulae from mass spectra 

(Pluskal et al. 2012).  Identified peaks were verified by analyzing pure 

standards (STD category) to confirm their retention times, or in cases where 

pure standards were not available, by analyzing their fragmentation patterns 

(MS/MS category). 

4.8 Supplemental Material 

Raw LC-MS data in mzML format were submitted to the MetaboLights 

repository (URL: http://www.ebi.ac.uk/metabolights).  The accession number for 

the fission yeast and human blood metabolome comparison is MTBLS87, while 

that for metabolomic samples of a single individual’s blood donated 4 times 

within 24 h to determine RBC:plasma metabolite distribution is MTBLS88.  
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