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A mixed quantal-semiquantal theory is presented in which the semiquantal squeezed-state wave
packet describes the heavy degrees of freedom. Starting from the mean-field equations of motion
that are naturally derived from the time-dependent variational principle, we introduce the stochas-
tic particle description for both the quantal and semiquantal parts in an aim to take into account
the interparticle correlation, in particular the “quantum backreaction” beyond the mean-field ap-
proximation. A numerical application on a model of O2 scattering from a Pt surface demonstrates
that the proposed scheme gives correct asymptotic behavior of the scattering probability, with im-
provement over the mixed quantum-classical scheme with Bohmian particles, which is compre-
hended by comparing the Bohmian and the stochastic trajectories. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4897532]

I. INTRODUCTION

Mixed quantum-classical (MQC) dynamics have been a
subject of interest not only in chemical physics1–17 but also in
quantum gravity,18, 19 cosmology,20, 21 and measurement.22, 23

One major problem lies in the description of correlation be-
tween the two parts, in particular, the force from the delo-
calized quantal part to the localized classical part, that is, the
problem of “quantum backreaction.” It is intimately related
to the description of non-adiabatic transitions in which the
Born-Oppenheimer approximation breaks down, for instance,
near the conical intersections of adiabatic states. Many theo-
ries have been proposed, but the problem is normally of ap-
proximate nature.24–26 Thus, the assessment would be based
not only on the theoretical consistency but also on the practi-
cal accuracy in applications. In addition, simplicity for com-
putational implementation to realistic systems will be an im-
portant aspect.

In chemical physics, the quantum part usually represents
electrons or protons, and the classical part represents heav-
ier nuclei. For the latter, localized wave packet (WP) descrip-
tion, typically by Gaussian WPs,27, 28 is also useful. In recent
years, we have been studying a “semiquantal” (SQ) squeezed-
state WP theory for chemical problems, with applications to
hydrogen-bond (HB) structure and dynamics.29–36 The SQ
WP takes into account the zero-point energy (ZPE) fluctua-
tion and dynamic WP broadening, free of the ZPE leakage
problem,37, 38 in a canonical Hamiltonian form that realizes a
stable symplectic propagation. Thus, it properly describes the
WP delocalization over low-barrier HB, under-barrier shal-
low tunneling, and geometric isotope effects in HB structure.
For instance, the critical barrier height for the adiabatic pro-
ton transfer is ∼2 kcal/mol,39 which hinders the classical dy-
namics with the thermal energy of 300 K � 0.6 kcal/mol, but
can be properly treated by the WP delocalization. An exten-

a)E-mail: ando@kuchem.kyoto-u.ac.jp

sion to electron WPs with the valence-bond spin-couplings
was also examined,40, 41 and a combination of nuclear and
electron WPs was applied to liquid hydrogen.42, 43 In addi-
tion, the SQ WP can be regarded as a coherent-state basis
for the path-integral formulation of quantum propagator, for
which the initial value representation (IVR) has been demon-
strated applicable.44 Following these, we put forward in this
work a mixed quantal-semiquantal (MQSQ) theory. Related
to our previous works mentioned above, the simplicity for im-
plementations to realistic molecular systems will be the key
aspect.

We start with a MQSQ trial wave function and derive the
equations of motion (EOM) by the time-dependent variational
principle. The resulting EOM for the SQ part have the canoni-
cal Hamiltonian form for the center and width variables of the
WP. The quantal part follows a time-dependent Schrödinger
equation (TDSE), in which the potential energy function is av-
eraged over the SQ WP and thus includes the WP variables as
the time-dependent external parameters. The potential func-
tion for the evolution of the SQ part is an average over both
the SQ WP and quantal wave function, and thus we encounter
the problem of “backreaction.” To address this, we propose
in this work to exploit the theory of stochastic particle (SP)
dynamics.45–47 The SP dynamics are described by the stochas-
tic differential equations (SDE) whose Fokker-Planck form is
equivalent to the TDSE. We thus describe both the quantal
and SQ wave functions by the corresponding sets of SPs. By
assuming the pre-averaged form for the interaction between
the SPs, the interparticle correlation beyond the mean-field
approximation is described.

Section II describes the theory. Starting from a simple
factorized form of the wave function, the mean-field (MF)
limit is straightforwardly derived in Sec. II A. Then, in an
aim to take into account the interparticle correlation, the
SP descriptions are introduced in Sec. II B, which defines
the MQSQ-SP scheme. In Sec. II C, the MQC limit is de-
rived immediately by setting the point-particle (zero width)

0021-9606/2014/141(14)/144106/6/$30.00 © 2014 AIP Publishing LLC141, 144106-1
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limit of the SQ WP, thereby a combination of MQC and
SPs (MQC-SP) is naturally derived. Moreover, replacing the
SPs by Bohmian particles is straightforward, which gives
MQCB and MQSQ-B schemes. Relations to other methods
and the form of the wave function are discussed in Sec. II C.
Section III examines a numerical application to a model of
O2 scattering from a Pt surface. Section IV summarizes and
concludes.

II. THEORY

The coordinates of the quantal and SQ parts are repre-
sented by x and X. For simplicity, we consider the SQ WP of
the form48–50

χ�(X, t) = Nt exp

[
−

(
1

4ρ2
t

− i

¯

�t

2ρt

)

×(X − Qt )
2 + i

¯
Pt (X − Qt )

]
, (1)

in which Nt = 1/(2πρ2
t )1/4. The WP is characterized by a set

of time-dependent variables �t ≡ {Qt, Pt, ρ t, �t}, where Qt
and ρ t describe the WP center and width, Pt and �t are their
corresponding conjugate momenta. Generalization to a corre-
lated multi-dimensional WP, in which the variables are vec-
tors and matrices, has been implemented for a simulation of
liquid water,35 but the simpler form of Eq. (1) would be ap-
propriate for this first presentation.

A. The mean-field limit

For the total wave function, we set forth a factorized form

ψγ� (x,X, t) = χ�(X, t) ϕγ� (x, t) . (2)

The idea behind this factorization will be discussed below.
The subscript � indicates dependence on the variables that
characterize the SQ WP of Eq. (1). Similarly, γ consists of a
set of variables that characterize the quantal wave function ϕ;
in applications to the electronic wave function, they can be the
coefficients of molecular orbitals or configuration interaction,
the Thouless parameters for Slater determinant, or the elec-
tron WP variables. In some cases, ϕ may also depend para-
metrically on the SQ WP variables �. Recently, exact factor-
ization of molecular wave functions to electronic and nuclear
parts has been discussed.51, 52 The idea here is rather simple;
as we will take into account the interparticle correlation via
the combination with the SP description, the factorized form
Eq. (2), which naturally yields the mean-field equations as
described below, should be the appropriate starting point in a
sense to avoid double-counting of the correlation. (This could
be considered analogous to the standard quantum chemical
calculations that start with the mean-field Hartree-Fock model
followed by various electron-correlation methods.) We shall
come back to this matter in Sec. II C.

The time-dependence of the wave function ψ�γ is de-
scribed by the variables �t and γ t whose EOM are derived
from the time-dependent variational principle with the action

integral S = ∫ t2
t1

dt〈ψ(t)|i¯∂t − Ĥ |ψ(t)〉, in which

Ĥ = T̂x + T̂X + v(x,X) (3)

is the Hamiltonian with the kinetic energies T̂x and T̂X and
the potential energy v(x,X). With the trial wave function of
Eq. (2), the stationary condition of the action S with respect
to the variation of ϕ, δS/δϕ = 0, gives

i¯
∂

∂t
ϕγ�(x, t) = (T̂x + V (x; �t ))ϕγ�(x, t), (4)

in which V is the averaged potential over the SQ WP χ ,

V (x; �t ) =
∫

dX|χ�(X, t)|2v(x,X). (5)

Equation (4) has a form of TDSE affected by the external
time-dependent variables �t. The variation with respect to the
variables in χ , δS/δ� = 0, gives the EOM of the canonical
Hamilton form

Q̇ = ∂H̃

∂P
, Ṗ = −∂H̃

∂Q
, ρ̇ = ∂H̃

∂�
, �̇ = −∂H̃

∂ρ
, (6)

with the Hamiltonian in the extended phase-space �,

H̃ = P 2

2M
+ �2

2M
+ ¯2

8Mρ2
+ Uγ (�), (7)

in which M is the mass for X and

Uγ (�) =
∫

dx
∣∣ϕγ�(x)

∣∣2
V (x; �). (8)

B. Introducing stochastic particles

In Eq. (5), the SQ coordinate X is integrated to give
V (x; �), whereas in Eq. (8), both x and X are integrated to
give Uγ (�). Therefore, the dynamics of quantal and SQ parts
that follow Eqs. (4)–(7) are under the mutual “mean-field,”
which causes the problem of describing the “backreaction.”
To address this, we propose in this work to deploy the theory
of SP dynamics.45–47 The SP dynamics are described by the
SDE,

dxt = ¯
m

(∇xS + ∇xR)dt +
√
¯

m
dWt, (9)

in which m is the mass for x and Wt represents the standard
Wiener process. The SDE for the X part has the analogous
form, whose specific form for the SQ WP will be presented
in Eq. (12). The functions R and S are the real and imaginary
parts of ln ψ(x, X, t) = R(x, X, t) + iS(x, X, t), and are thus re-
lated to the amplitude and the phase, respectively. The factor
¯∇xS/m is called the “current” velocity, whereas ¯∇xR/m is
called the “osmotic” velocity. The former describes the net
flow of SPs following the wave function propagation. The
latter drives SPs toward the region of larger amplitude |ψ |2.
The third “stochastic” term describes the quantum diffusion
of SPs. These terms will be illustrated in Eq. (12) for the case
of SQ WP. The Bohmian theory employs only the current ve-
locity, dx/dt = ¯∇S/m, which corresponds to an assumption
that the osmotic and the stochastic terms balance to cancel.
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The energy for the SP ensemble is calculated from

〈E〉sp =
∫

dx

∫
dX e2R

×
[

(¯∇xS)2

2m
+ (¯∇XS)2

2M
+ VQ(x,X) + v(x,X)

]
,

(10)

in which VQ is the “quantum potential,”

VQ(x,X) = − ¯
2

2m

∇2
x eR

eR
− ¯2

2M

∇2
XeR

eR
. (11)

Equations (10) and (11) are thus essentially equivalent to
those in the Bohmian theory.

For the SQ WP of Eq. (1), the SDE is

dXt =
[

Pt

M
+ �t

M

(
Xt − Qt

ρt

)
− ¯

2Mρt

(
Xt − Qt

ρt

)]
dt

+
√
¯

M
dWt. (12)

The first two terms in the right-hand side correspond to the
current velocity originating from the phase of SQ WP. The
third term is the osmotic velocity from the Gaussian ampli-
tude of SQ WP. The first term P/M represents the ordinary ve-
locity of the WP center. The second term describes the breath-
ing velocity of WP width, �/M, scaled by a factor (X − Q)/ρ,
which indicates that the particles in the regions of WP tail
move faster than those near the WP center Q. This WP broad-
ening is enhanced for the case of smaller WP width ρ. The
third term is also scaled by the same factor (X − Q)/ρ, but has
the opposite sign from the second term, which thus pulls back
the SPs to the WP center. In the Bohmian theory, the osmotic
and the stochastic terms that contain ¯ are omitted. The in-
tegration over X in Eq. (10) gives the SQ Hamiltonian H̃ , in
which (P2 + �2)/2M results from (¯∇XS)2/2M and ¯2/8Mρ2

from the second term of VQ in Eq. (11). Therefore, the quan-
tum potential for the X part is included in H̃ . We thus find

〈E〉sp =
∫

dx e2r(x)

[
(¯∇xs(x))2

2m
− ¯

2

2m

∇2
x er(x)

er(x)

]
+ H̃ ,

(13)
in which the functions r(x, t) and s(x, t) are defined by ln
ϕ(x, t) = r(x, t) + is(x, t).

Equations (9) and (12) give the description equivalent to
that of the guide wave function ψ(x, X, t). Hence, as long as
we employ the original Eqs. (4)–(8), the SPs will still be under
the mutual mean-field. Now we propose to replace V (x; �) in
Eq. (4) by the bare v(x,X), and Uγ (�) in Eq. (7) by V (x; �),
in an aim to take into account the interparticle correlations.
Therefore, the calculation proceeds as follows. (i) We intro-
duce a set of SP pairs {(xα , Xα)}, α = 1, 2, ···, Nsp, distributed
according to the initial probability density |ψ(x, X, 0)|2. In
practice, a random number generator can be used similarly to
the Monte Carlo method. Each pair (xα , Xα) associates guide
wave functions ϕα and χα . (ii) We propagate them by

i¯
∂

∂t
ϕα(x, t) = (T̂x + v(x,Xα))ϕα(x, t), (14)

and Eq. (6) with

H̃α = P 2
α

2M
+ �2

α

2M
+ ¯2

8Mρ2
α

+ V (xα; �α), (15)

and (xα , Xα) by the SDE (9) with R and S replaced by rα and sα

from ln ϕα = rα + isα and the SDE (12) with the parameters
�α that describe χα . This scheme is denoted by MQSQ-SP.
The propagation by the mean-field Eqs. (4)–(8), MQSQ-MF,
conserves the total energy expectation

〈E〉mf = 〈ψ |Ĥ |ψ〉 = 〈ϕ|T̂x |ϕ〉 + H̃ . (16)

However, the conservation is lost once the SPs are introduced
via Eqs. (14) and (15). In this regard, parallel investigation of
these MQSQ-MF and MQSQ-SP will be useful in practical
studies. Note that the loss of energy conservation in MQSQ-
SP is solely due to the replacement of potential functions and
not to the SP description: if the SPs were propagated with the
guide wave functions from the MF Eqs. (4)–(8), the energy
of Eq. (13), which is equivalent to Eq. (16), conserves. The
energy conservation will be numerically examined in Sec. III.

C. Mixed quantum-classical limit and other methods

Before proceeding to the numerical application, we note
the relation between the MQSQ-SP and the MQC schemes.
By the classical point particle approximation for the heavy
part,

|χ�(X)|2 → δ(X − Qt ), (17)

we find V (x; �t ) → v(x,Qt ) in Eq. (5), and then Uγ (�) in
Eq. (8) is replaced by

Uγ (Q) =
∫

dx
∣∣ϕγQ(x)

∣∣2
v(x,Q). (18)

This has the form of ordinary potential energy surfaces (PES)
parameterized by the heavy particles coordinates Q. By intro-
ducing the Bohmian particles for the quantal x part and re-
placing the potential energy U by the bare v(x,X), a MQCB
scheme analogous to the previous ones10, 12 is obtained. We
also note that the present MQSQ-SP has some similarity to
the time-dependent quantum Monte Carlo method.53 The ap-
parent and most significant difference is in the deployment of
SQ WP.

Now we consider the form of the wave function and rela-
tion to other methods. A general wave function for the light-
heavy systems can be written as

ψ(x,X, t) =
∑

i

χi(X, t)ϕi(x; X), (19)

expanded in terms of the instantaneous adiabatic or dia-
batic states ϕi(x; X) that contain X as an external parame-
ter rather than the dynamical variable. The standard surface-
hopping method3 replaces χ i(X, t)ϕi(x; X) by ci(t)ϕi(x; X(t)),
where ci(t) is the coefficient for the ith state. The heavy par-
ticle trajectories X(t) are determined by the classical EOM
on a PES of a single state, but with instantaneous switches
(hops) among different states introduced with various rules.
Some related methods based on Eq. (19) first derive cou-
pled Schrödinger equations for the heavy part wave functions
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χ i(X, t), and then take the classical limit.11 Similarly, one can
derive the quantum Liouville equation for the reduced density
matrix and apply the partial Wigner transformation only to the
X part.8, 15 These methods based on Eq. (19) generally require
prior knowledge of the matrix 〈ϕi |Ĥ |ϕj 〉, the adiabatic PES,
and non-adiabatic couplings when the adiabatic states are em-
ployed. This causes some technical problems when contin-
uum states are involved and the number of bound states can
vary along the classical trajectories.7

Alternatively, one can start with a different factorization
of the polar form

ψ(x,X, t) = A(x,X, t) exp(iS(x,X, t)/¯), (20)

in which x and X are coupled in both the amplitude and phase
functions A and S. The Bohmian theory leads to coupled
EOM for x and X involving forces from the quantum poten-
tial VQ(x,X) of the form Eq. (11). Various approximations
are then introduced, for instance, by disregarding the quan-
tum forces that are proportional to 1/M10, 12 or by lineariz-
ing the quantum potential to avoid its singularity problem.17

The present MQSQ-SP scheme is closer to these Bohmian
approaches in that it does not require the prior construction
of PES. Although the starting ansatz of Eq. (2) is apparently
different, the resulting working equations include the MQCB
scheme as a classical point particle limit of Eq. (17). As noted
near Eq. (13), the effective Hamiltonian H̃ essentially in-
cludes the quantum potential for the heavy part.

III. APPLICATION

As a numerical demonstration, we study the same model
as in Refs. 7 and 12 for gaseous O2 collision to a Pt surface, a
prototype in which the ordinary MQC mean-field (MQC-MF)
method fails to describe the temporal splitting of the wave
function to trapped and scattered parts.

A. Model

The potential function is given by

v(x,X)= 1

2
M2X2+a[e−2b(x−c)−2e−b(x−c)]+Ae−B(x−X).

(21)
The first term is a harmonic binding potential of the heavy
particle X to the surface, the second term is a Morse potential
for the interaction between the light particle x and the surface,
and the third term is a repulsive interaction between the parti-
cles. For this v(x,X), the V of Eq. (5) is derived as

V (x; �) = 1

2
M2(Q2 + ρ2) + a[e−2b(x−c) − 2e−b(x−c)]

+A e−B(x−Q)+(Bρ)2/2. (22)

The initial wave function at t = 0 is set as a product of
the harmonic ground-state wave function for X and a Gaussian
WP for x centered at x = x0 with a width γ and the momentum
k0,

ψ(x,X, 0) = N exp

[
− MX2

2¯

]
exp

[
− (x − x0)2

γ 2
+ ik0x

¯

]
,

(23)
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FIG. 1. Scattering probability from the methods of full quantum mechan-
ics (QM), mixed quantal-semiquantal with stochastic particles (MQSQ-
SP), mixed quantum-classical with Bohmian particles (MQCB), and mixed
quantum-classical mean-field approximation (MQC-MF).

in which N = (2M/π2¯γ 2)1/4. The initial momentum k0
is specified by the energy E0 via k0 = −√

2mE0. We have
taken the numerical parameters from Ref. 12: m = 1 amu, M
= 10 amu,  = 5 × 1014s−1, A = 104 kJ/mol, B = 4.25Å−1,
a = 700 kJ/mol, b = 5.0Å−1, c = 0.7 Å, x0 = 6.0 Å, and
γ = 0.5 Å.

The quantum mechanical (QM) wave functions were
propagated using Cayley’s hybrid scheme with real-space
grids.54 Convergence and unitarity of the propagation were
confirmed with the grid lengths �x = 0.0178 Å, �X = 0.0159
Å, and the time step �t = 0.0124 fs. The trajectories of (Q,
P) and (ρ, �) conjugate pairs were propagated by Suzuki’s
symplectic fourth-order scheme.55 The transmission-free ab-
sorbing potential56 was applied to the scattered wave function
along x. The results presented in Figs. 1–3 are with the ab-
sorbing potential set at 81 Å <x < 91 Å, although converged
results were obtained with 45 Å <x < 51 Å. For the calcula-
tions in Fig. 4, it was set at 270 Å <x < 303 Å. For the num-
ber of SP pairs, convergence was found with Nsp = 2000. The
same number of Bohmian particles were used in the MQCB
calculation.

 0

 10

 20

 0  200  400

x α
 (

Å
)

Time (fs)

(b) stochastic

 10

 20

x α
 (

Å
)

(a) bohmian

FIG. 2. Sample (ten) trajectories of (a) Bohmian particles in MQCB and
(b) stochastic particles in MQSQ-SP.
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FIG. 3. Scattering probability from the methods of MQSQ-SP, MQCB,
MQSQ-B, and MQSQ-MF.

B. Results and discussion

Figure 1 presents the scattering probability defined by

Ps(t) =
∫ ∞

xs

dx

∫ ∞

−∞
dX |ψ(x,X, t)|2, (24)

with xs = 5.8 Å.7 (In practice, it was calculated from the in-
tegration over 0 < x < xs subtracted from unity, in order to
minimize the effect of the absorbing potential.) The MQSQ-
SP reproduces the correct asymptotic behavior, in contrast to
the MQC-MF and with improvement over the MQCB. How-
ever, the description of delayed initial increase of QM Ps(t),
due to the temporal resonance trapping by the heavy particle
excitation,7 was still incomplete. In this regard, an intrigu-
ing further test would be to introduce dissipation to the heavy
part.

In an aim to understand the improved description, we plot
in Fig. 2 sample trajectories of stochastic and Bohmian parti-
cles. The difference basically emerges from the osmotic term
¯∇R/m and the stochastic term

√
¯/m dW in Eq. (9); the

Bohmian dynamics do not involve them but only the current
velocity dxt = ¯∇S/m. This provides an understanding of the
more ballistic trajectories of Bohmian particles in Fig. 2(a).
However, further analysis revealed that the use of SPs alone
does not account for the difference, because a combination
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FIG. 4. Average total energies 〈E〉 for MQSQ-MF, MQSQ-SP, and MQCB
from Eqs. (16), (25) and (26). For MQSQ-SP and MQCB, the root-mean-
square (rms) deviations from the averages are also displayed.

of MQC and SP (MQC-SP) resulted in Ps(t) almost identical
to that from MQCB, which indicates that the combination of
MQSQ and SP is essential for the result in Fig. 1.

To gain further insight, we compare the primary results
in Fig. 1 from MQSQ-SP and MQCB with the other combi-
nations, MQSQ-B, MQC-SP, and MQSQ-MF. Figure 3 dis-
plays the computed scattering probabilities Ps(t) from these
schemes. (As noted, the result from MQC-SP was indistin-
guishable from that of MQCB, and thus was omitted.) The
rapid increase of Ps(t) from MQSQ-MF reflects the lack of
interparticle correlation. In this regard, the correlation is cer-
tainly included in MQCB and MQSQ-SP to better approxi-
mate the QM reference, as seen in Fig. 1. This aspect will be
related to the results of energy conservation described next.

Figure 4 displays the numerical results of energy conser-
vation for MQSQ-MF, MQSQ-SP, and MQCB. For MQSQ-
MF, the total energy was calculated from Eq. (16). For
MQSQ-SP, it was calculated from

〈E〉mqsq = N−1
sp

∑
α

〈ψα|Ĥ |ψα〉. (25)

The corresponding energy can be calculated also from the SP
ensemble with Eq. (13). However, because we explicitly cal-
culate the guide wave functions in this work, we employed
simpler and numerically robust Eq. (25). Similarly, the energy
of MQCB was calculated from

〈E〉mqc = N−1
bp

∑
α

(
〈ϕα|(Ĥ − T̂X)|ϕα〉 + P 2

α

2M

)
, (26)

in which Nbp is the number of Bohmian trajectories. As noted
in Sec. II, MQSQ-MF conserves the energy, which was nu-
merically confirmed in the figure. For MQSQ-SP and MQCB,
the energies conserve until the collision occurs at t � 100 fs.
Then, they begin to increase almost monotonically toward
asymptotes. The increases were up to 24 kJ/mol for MQSQ-
SP and 38 kJ/mol for MQCB, which are 3% and 5% of
a = 700 kJ/mol, the depth of the Morse potential for the inter-
action between the light particle and the surface in Eq. (21) as
a measure of energy range. These extra energies could have
accelerated the increase of scattering probability in compari-
son with the energy conserving MQSQ-MF case, but the re-
sults in Fig. 3 display the opposite, which indicates that both
MQSQ-SP and MQCB effectively include the interparticle
correlations, even though incompletely than the QM limit.

The increases in Fig. 4 are well-behaved without abrupt
divergence or intense oscillations, and the amounts were frac-
tional compared to the energy range involved in the pro-
cess. Thus, these would be possibly controllable in ways
analogous to, e.g., the momentum scaling prescription in the
surface-hopping methods, although details are open to exami-
nation. The root-mean-square deviations from the averages of
Eqs. (25) and (26) are also included in Fig. 4. The faster decay
for MQCB is due to the ballistic nature of the trajectories as
discussed with Fig. 2.

IV. CONCLUSION

We have formulated a MQSQ theory with a SP de-
scription of the interparticle correlation, and examined it
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numerically for a prototype model involving wave function
splitting. Its simplicity will be the key to implementing to
realistic molecular simulations. Despite the simplicity, the
results were encouraging, although a need for refining the de-
scription of interparticle correlation was still evident. We also
note that the model of Eq. (21) employs for the heavy part a
harmonic potential on which classical mechanics is patently
appropriate. More stringent tests should clarify the nature of
the present MQSQ scheme. Particularly interesting would be
the cases in which the quantum mechanical aspects of the
heavy part play some role, for instance, in the low-barrier HB
dynamics, the ZPE leakage in dissipative systems, and oth-
ers mentioned in Sec. I. Finally, as also noted in Sec. I, the
IVR propagator with the SQ WP is now applicable,44 which
will provide more flexible description of the wave function by
the proper inclusion of quantum phase. Its integration with the
present MQSQ formulation is a direction in which to proceed.
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