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Bud dormancy is a critical developmental process for perennial plant survival, and also an important physiolog-
ical phase that affects the next season’s growth of temperate fruit trees. Bud dormancy is regulated by multiple
genetic factors, and affected by various environmental factors, tree age and vigor. To understand the molecular
mechanism of bud dormancy in Japanese apricot (Prunus mume Sieb. et Zucc.), we constructed a custom oligo
DNA microarray covering the Japanese apricot dormant bud ESTs referring to the peach (2 persica) genome
sequence. Because endodormancy release is a chilling temperature-dependent physiological event, genes show-
ing chilling-mediated differential expression patterns are candidates to control endodormancy release. Using
the microarray constructed in this study, we monitored gene expression changes of dormant vegetative buds of
Japanese apricot during prolonged artificial chilling exposure. In addition, we analyzed seasonal gene expression
changes. Among the 58539 different unigene probes, 2345 and 1059 genes were identified as being more than two-
fold up-regulated and down-regulated, respectively, following chilling exposure for 60 days (P < 0.05). Cluster
analysis suggested that the expression of the genes showing expression changes by artificial chilling exposure
were coordinately regulated by seasonal changes. The down-regulated genes included P mume DORMANCY-
ASSOCIATED MADS-box genes, which supported previous quantitative RT-PCR and EST analyses showing
that these genes are repressed by prolonged chilling exposure. The genes encoding lipoxygenase were markedly
up-regulated by prolonged chilling. Our parametric analysis of gene-set enrichment suggested that genes relat-
ed to jasmonic acid (JA) and oxylipin biosynthesis and metabolic processes were significantly up-regulated by
prolonged chilling, whereas genes related to circadian rhythm were significantly down-regulated. The results ob-
tained from microarray analyses were verified by quantitative RT-PCR analysis of selected genes. Taken together,
we have concluded that the microarray platform constructed in this study is applicable for deeper understanding
of the molecular network related to agronomically important bud physiology, including dormancy release.
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Introduction

Seasonal growth and developmental control allows
woody perennials to synchronize annual growth and to
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avoid injury from environmental stresses such as cold in
the winter. Dormancy is one such controlling mechanisms
that enable woody perennials to adapt to seasonal climate
changes. Furthermore, dormancy is an agronomically
important trait, influencing fruit production in temper-
ate woody deciduous perennials by promoting survival
during unfavorable climates, and affecting flowering and
subsequent vegetative growth in the following growing
season. Additionally, recent global climate changes, such
as global warming, are reported to affect the dormancy
release of fruit trees (Sugiura et al., 2007). Therefore, it
is necessary to investigate the genetic factors underlying
the control of dormancy. Elucidation of the molecular
basis of dormancy regulation in temperate fruit tree spe-
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cies could enable artificial control of dormancy through
cultural practices, and will be useful for rapid breeding
techniques such as marker-assisted selection.

The seasonal activity-dormancy phase transition of
vegetative growth of Japanese apricot (Prunus mume
Sieb. et Zucc.) occurs gradually, and as with other tem-
perate fruit trees, takes a long time. Although flowering
is often observed from February to March under field
conditions in Kyoto, vegetative bud flushing does not oc-
cur until April. Shoot growth cessation of long shoots is
observed from June, and the majority of long shoots have
stopped active growth by August; trees shed their leaves
by early December. When branches cut from trees are
incubated in forcing conditions, bud burst of long
branches collected in early June is observed. Bud burst
thenbecomesunstable, and fluctuates depending onshoots
and years when collected after late June and during sum-
mer. This suggests that these buds are facultatively dor-
mant (Yamane et al., 2008). In fact, a second flushing
of ‘Nanko’ trees under field conditions during summer
suggests that they are not completely dormant. However,
bud burst has never been observed in long branches col-
lected in autumn in any of our forcing conditions (Sasaki
et al., 2011; Yamane et al., 2008), suggesting that these
buds are constitutive dormant. Bud dormancy can be con-
sidered as the inability of a meristem to resume growth
under favorable conditions (Rohde and Bhalerao, 2007).
Lang (1987) and Lang et al. (1987) gave definitions of
dormancy as being paradormancy, endodormancy, and
ecodormancy. Both endodormancy and paradormancy
can be defined as a state induced by the perception of the
promoting environmental or endogenous signaling cue,
whether this originated solely within the meristem-
containing tissue (endodormant), or in a structure distinct
from the structure undergoing dormancy (paradormant).
Until the cessation of shoot growth, axillary buds were
undoubtedly in a paradormant state and unable to grow
because of apical dominance; however, after cessation of
growth until defoliation, axillary or lateral buds were nei-
ther defined as paradormant or endodormant in Japanese
apricot because the factors making the buds remain in
the dormant state are unclear. Although environmen-
tal or endogenous cues involved in the transition from
paradormancy to endodormancy are not well known, a
specific amount of chilling exposure is known to criti-
cally induce the shift of endodormancy to ecodormancy.
Ecodormancy is a state brought about by the limitation of
growth-promoting factors such as water and nutrients. In
Japanese apricot, the flower and vegetative buds of long
branches of ‘Nanko’ shift from endodormant to ecodor-
mant during December and January, respectively (Sasaki
et al., 2011; Yamane et al., 2006, 2008).

Bud phenology during dormancy consists of different
morphological and physiological events; these include
bud scale initiation, endodormancy, ecodormancy, bud
burst, and bud flushing. Of these, endodormancy release
is affected mainly by genotypically determined chilling

requirements, whereas bud flushing is affected mainly
by a heat requirement following chilling requirement
fulfillment. All these events are influenced by various
environmental factors, as well as by tree age and vigor
(Cooke et al., 2012; Rohde and Bharelao, 2007). Recent
genetic analysis conducted in Prunus fruit species, in-
cluding almond (P. dulcis) (Sanchez-Pérez et al., 2012),
apricot (P. armeniaca) (Campoy et al., 2011; Olukolu
et al., 2009), and peach (P, persica) (Fan et al., 2010),
demonstrated that both the chilling requirement and tim-
ing of blooming in the field showed quantitative inheri-
tance. These studies also identified various quantitative
trait loci (QTLs) affecting these traits. These findings
suggested that bud dormancy of Japanese apricot is also
controlled by numerous genes. A recent proteomic analy-
sis has revealed that many protein spots show differential
expression among different dormant stages of Japanese
apricot flower buds (Zhuang et al., 2013).

Yamane et al. (2008) searched for genes up-regulated
during endodormancy using the RNA subtraction tech-
nique and revealed that DORMANCY ASSOCIATED
MADS-box (DAM) genes are up-regulated during the
induction of endodormancy, and down-regulated during
endodormancy release (Yamane et al., 2008). Japanese
apricot DAMs (PmDAMI1-PmDAM6) were found to be
arranged in tandem arrays in the genome of Japanese
apricot (Sasaki et al., 2011). Expressional and trans-
genic analyses suggested that PmDAMs are candidates
that play a crucial role in the control of bud dormancy
in Japanese apricot (Sasaki et al., 2011; Yamane et al.,
2008). Furthermore, information is available for other
genes that have altered dormancy of Prunus, such as
Populus FLOWERING LOCUS T homolog (Srinivasan
et al.,, 2011). This suggests that genes in addition to
PmDAMSs are expected to be involved in bud dorman-
cy regulation of Japanese apricot. However, the whole
picture of the molecular basis of dormancy regulation in
Japanese apricot is still far from clear.

Large-scale measurements of gene expression using
microarrays have proven useful in the characterization
of molecular networks during dormancy in various plant
species including sessile oak [Quercus petraea (Matt.)
Liebl.] (Derory et al., 2006), poplar (Populus spp.) (Ko et
al.,2011; Ruttink etal.,2007), raspberry (Rubus idaeus L.)
(Mazzitelli et al., 2007), grapevine (Vitis riparia Michx.)
(Mathiason et al., 2009), blackcurrant (Ribes nigrum L.)
(Hedleyetal.,2010),and leafy spurge (Euphobia esulaL.)
(Dogramaci et al., 2010). A substantial amount of target
transcriptome is required for microarray-based gene ex-
pression analysis. Previously, we obtained expressed se-
quence tag (EST) information from Japanese apricot buds
at various dormant phases using 454-pyrosequencing
(Habu et al., 2012). As reported in other organisms, se-
quences assembled from the 454-pyrosequencing reads
were useful for designing probe sequences of microar-
rays (Bellin et al., 2009; Zenoni et al., 2011), and as
reference sequences for short-read sequencing (Fraser



J. Japan. Soc. Hort. Sci. 83 (1): 1-16. 2014 3

et al., 2011). As 454-pyrosequencing has proven very
useful for genome and transcriptome analyses, we at-
tempted in this study to construct a custom microarray
for the transcript profiling of Japanese apricot dormant
buds. To search for candidate genes involved in chilling
requirement fulfillment and endodormancy release, we
performed microarray and statistical analysis to identi-
fy genes showing expression changes during prolonged
artificial chilling exposure. Microarray analysis was also
used to monitor seasonal expression changes of the se-
lected genes. These analyses provide further our under-
standing of the dynamic molecular network regulating
Japanese apricot bud dormancy.

Materials and Methods

Construction of a custom 180-K microarray for transcript

profiling of Japanese apricot dormant buds

We previously obtained Japanese apricot bud ESTs
consisting of 28382 contigs and 85247 singletons from
vegetative and flower buds at 10 different dormant stages
(Habu et al., 2012). The 113629 unigenes obtained were
used for microarray probe selection using the Agilent
eArray application tool (https://earray.chem.agilent.
com/earray/, August 1, 2013) following the manufactur-
er’s instruction manual. We constructed 60K probes with
a length of 60 bases. We took into consideration lower
probe redundancy and increased coverage of probes to
the whole expressed genes in Japanese apricot dormant
buds by using trial-and-error approaches (as described in
the Results section).

RNA extraction and array hybridization

Field-grown Japanese apricot ‘Nanko’ trees (11
years old, seed-grafted) grown at Kyoto University
Experimental Farm, Kyoto, Japan, were used in this
study. Bud samples for the following two datasets were
collected. One-year-old long branches (> 50 cm) were
collected from three different trees in mid-November
2008, and used as biological replicates (Dataset 1: chill-
ing treatment). Collected branches were artificially de-
foliated and transferred to a growth chamber under a
9-h light/15-h dark photoperiod cycle at temperature
conditions of 12°C in the light and 6°C in the dark. The
basal parts of these branch cuttings were placed in wa-
ter. Vegetative buds were excised from the middle por-
tions of the branches 0, 40, and 60 days after treatment,
and immediately frozen in liquid nitrogen and stored at
—80°C until required. Sixty days of chilling treatment
were enough for vegetative buds of ‘Nanko’ to fulfill the
chilling requirements, whereas 0, and 40 days were in-
sufficient (Sasaki et al., 2011).

One-year-old long branches were collected monthly,
in the middle of each month, from June 2008 to March
2009 (Dataset 2: seasonal change). Vegetative buds were
excised from the middle portions of the branches, im-
mediately frozen in liquid nitrogen, and stored at —80°C
until required. Vegetative buds of ‘Nanko’ long branches

from July to January were considered to be endodormant
based on previous reports (Sasaki et al., 2011; Yamane
et al., 2008), even though the buds collected in these
months include both facultatively and constitutively
endodormant buds (see Introduction). The buds from
June were considered to be dormant due to apical dom-
inance, whereas buds from February and March were
ecodormant.

Total RNA was isolated from the buds as described
by Yamane et al. (2008). RNA concentration was mea-
sured by spectrophotometry (NanoDrop 1000; Thermo
Fisher Scientific, Waltham, MA, USA) and integrity was
assessed using a Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA). mRNA was labeled using the
Low Input Quick Amp Labeling Kit, One-Color (Agilent
Technologies) from total RNA (200 ng) according to
the manufacturer’s instructions. The labeled samples
were hybridized to the oligoarray slides using a Gene
Expression Hybridization Kit (Agilent Technologies) at
65°C for 17 h in an oven-chamber. Following hybridiza-
tion, arrays were washed with Gene Expression Wash
Buffer (Agilent Technologies) according to the man-
ufacturer’s instructions. The dried slides were scanned
using an Agilent scanner. Raw data from scanning of the
array were captured using Agilent Feature Extraction
Ver. 9.5.1 (Agilent Technologies).

Microarray data analysis

Data sets for each array were normalized and ana-
lyzed using the Subio software platform (Subio Inc.
Kagoshima, Japan). First, probes with low hybridization
signals were removed. Then, hybridization intensities
were log, transformed, and arrays were normalized by
global normalization, quantile normalization, and cen-
tering. For the samples in dataset 1 (three different time
points during chilling treatment), three technical repli-
cates (60K x 3 per sample) with three biological repli-
cates were averaged, whereas three technical replicates
were averaged for the samples in dataset 2 (10 different
seasonal time points). 7-tests were performed (P < 0.05)
to identify probes with significant differential expression
between each treatment in dataset 1. Cluster analysis of
the expression patterns for differentially expressed genes
was performed by Spearman correlation.

Analysis of Gene Ontology (GO) terms

Japanese apricot unigenes corresponding to each
probe loaded onto our constructed microarray were an-
notated using BLASTX (Altschul et al., 1990) against the
non-redundant protein database (nr) from the National
Center for Biotechnology Information (NCBI) (http://
blast.ncbi.nlm.nih.gov/, August 1, 2013), the Arabidopsis
protein database (TAIR9) (http://www.arabidopsis.org/
Blast/index.jsp, August 1, 2013), and peach (Prunus
persica) genome database (v1) (http://www.rosaceae.
org/species/prunus_persica/genome v1.0, August 1,
2013) (The International Peach Genome Initiative, 2013)
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Table 1. Primer sequences used for qRT-PCR.

Primer name Sequence (5’ to 3°)

PmLOX2(ppa001631)-F TTTGAAGAGGCTGGAAGGAA
PmLOX2(ppa001631)-R GACCCCAGGTGTTGAGAATG
PmLOX4(ppa001112)-F CGAAAGGAGGAACAGTGACC
PmLOX4(ppa001112)-R GGCACACCCCTACAAGTGAT
PmPRRS5(ppa002188)-F ATTCTCATCGGTCCATCCAA
PmPRRS5(ppa002188)-R TTATTCTGGGACGCTGCTCT
PmFKF1(ppa002863)-F GGCTGCATTCTCCTTCTCAG
PmFKF1(ppa002863)-R TGACCCCAAGCAAATTTAGG
PmTUB-F GTGTTGCCGAGGTGTTTTCT
PmTUB-R CTCCTTCATCGCCATCATCT
PmUBQ-F CGAACCCTAGCCGATTACAA
PmUBQ-R AGTGGTTCGCCATGAAAGTC

using an E-value cutoff set at 1 x e, For the GO an-
notation, Blast2GO software v2.4.8 (http://www.
blast2go.org, August 1, 2013) (Conesa et al., 2005) was
used with the nr annotations. Log, transformed values
of fold changes among the signals from the dataset 1
samples and the TAIR9 annotations were used for the
parametric analysis of gene set enrichment (PAGE) (Kim
and Volsky, 2005) conducted on agriGO (Du et al., 2010)
(http://bioinfo.cau.edu.cn/agriGO/, August 1, 2013)
web-based software using a P-value cutoff of 0.05.

Quantitative RT-PCR (qRT-PCR) analysis

For genes that showed differential expression among
the samples selected by microarray and statistical anal-
ysis, qRT-PCR was performed using LightCycler 480
(Roche, Basel, Switzerland), SYBR Green Master Mix
(Roche), and gene-specific primers (Table 1). For primer
design, the Japanese apricot EST database (JADB; Habu
et al., 2012) and the Primer3 web interface (http://www.
bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/,
August 1,2013) (Rozen and Skaletsky, 2000) were used.
The reaction mixture consisted of 1 x SYBR master mix,
500 nM each of forward and reverse primers, and cDNA
equivalent to 4 ng of total RNA, in 20-pL reaction vol-
umes. PCR was performed using a program of 45 cy-
cles at 95°C for 10 s, 57°C for 10 s, and 72°C for 20 s,
with initial heating at 95°C for 5 min. Dissociation curve
analysis was performed to confirm that fluorescence was
only derived from gene-specific amplification. As a ref-
erence, the accumulation of Japanese apricot TUBULIN
(PmTUB) transcript was monitored; ESTs corresponding
to PmTUB were highly accumulated in paradormant,
endodormant, and ecodormant buds at relatively similar
levels according to the JADB (Habu et al., 2012). In ad-
dition, Japanese apricot UBIQUITIN (PmUBQ) (Sasaki
etal., 2011) was used as a reference.

Results

Custom oligoarray construction
A total of 113629 unigenes previously obtained by
RNAseq analysis of Japanese apricot dormant buds

(Habuetal., 2012) were subjected to an Agilent eArray to
extract candidate probes for a custom 180K (60K x 3 rep-
licates) array. Among the 113629 unigenes, 93666 were
selected as 60 mer oligonucleotide probe candidates.
Next, redundant probes mapped to the same peach gene
locus were removed. Finally, we selected probes to cov-
er the 113629 unigenes putatively expressed in Japanese
apricot dormant buds as much as possible; this resulted in
58539 probes being selected. A further 88 probes, corre-
sponding to peach genes were designed using the Agilent
eArray. These were derived from the peach database
(http://www.rosaceae.org/gb/gbrowse/prunus_persica/,
August 1, 2013) (The International Peach Genome
Initiative, 2013), and included peach MADS-box genes,
circadian clock related genes, and genes involved in chro-
matin modification. Consequently, 58627 probes (58539
probes of Japanese apricot +88 probes of peach) were
selected for the microarray construction. These probes
were mapped to all 12 peach scaffolds without any biased
regions (Fig. 1), and matched to 17977 putative peach
mRNAs predicted by whole-genome peach sequencing,
which covered 62.7% of peach putative mRNAs. Among
the 58627 probes, 26008 probes were annotated in the
TAIR9 database (E-value cutoff = 1.0 x ¢7); these anno-
tated probes covered genes involved in various biologi-
cal processes (data not shown). Three replicates of each
probe [(58539 + 88) x 3] were loaded onto the 180K ar-
ray. In addition, fifteen probes corresponding to Japanese
apricot bud ESTs detected at higher levels were selected
as control probes, and ten replicates of each were loaded
onto the array.

Extraction of differentially expressed genes (DEGs) by

chilling treatment in dormant buds

In dataset 1 (chilling treatment), 5345 and 4781 genes
were found to be significantly up-regulated (> 2-fold) fol-
lowing 60 d chilling treatment in comparison to 0 d and
40 d chilling treatments, respectively (P < 0.05). Among
these, 2345 genes were significantly up-regulated in both
data comparisons. Conversely, 3489 and 3213 genes
were significantly down-regulated (> 2-fold) following
60 d chilling treatment when compared with 0 d and
40 d treatments, respectively. Among these, 1059 genes
were significantly down-regulated in both data compar-
isons. The 2345 up-regulated and 1059 down-regulated
genes identified in these comparisons were ranked based
on the fold changes of signal intensities at 60 d versus
0 d of chilling treatment. Probes up-regulated more than
10-fold are listed in Table 2. The two probes with the
greatest expression changes, Ume31635 and Ume13003,
corresponded to putative homologs of the Arabidopsis
genes At3g45140 and Atl1g72520, respectively. These
encode lipoxygenase (LOX) genes, namely LOX2 and
LOX4. LOXs catalyze the conversion of polyunsaturat-
ed fatty acids (lipids) into conjugated hydroperoxides, a
major step in fatty acid degradation. In addition, LOXs
are known to be involved in response to biotic and abiotic
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stresses, and the jasmonic acid (JA) biochemical path-
ways (Andreou and Feussner, 2009). Probes correspond-
ing to genes down-regulated more than 10-fold are listed
in Table 3. Prunus mume DORMANCY ASSOCIATED
MADS-box6 (PmDAM6) was one of the genes identified
as being highly down-regulated gene under prolonged
chilling treatment. Other probes that were annotated as
DAMs, including DAM1, 3, and 5 were also identified
as being significantly down-regulated in chilling treat-
ment (Table 3). When expression changes of all 20 DAM
annotated probes were focused on, they were down-
regulated by chilling exposure (Fig. 2A). They were
also down-regulated from autumn to spring (Fig. 2B).
The original data obtained in this study are accessible
through GEO Series accession number GSE49368 in
NCBI’s Gene Expression Omnibus (GEO, https://www.
ncbi.nlm.nih.gov/geo/, August 1, 2013).

Cluster analysis of 2345 up-regulated genes by pro-
longed chilling suggested that the monthly bud samples

fell into three groups (Fig. 3A). Similarly, cluster analy-
sis of the 1059 down-regulated genes suggested the same
grouping classifications for the monthly buds (Fig. 3B).
Group | contained bud samples collected from June to
October, group 2 contained those from November to
January, and group 3 contained those from February and
March. Many of the probes that were up-regulated by
prolonged chilling tended to be down-regulated in group
2, whereas the majority of the probes down-regulated by
prolonged chilling were up-regulated in group 2.

The genes up-regulated by prolonged chilling could
be divided into two major categories (Fig. 3A). Most
genes in category (a) were down-regulated in the group
1 months and up-regulated in March, whereas most genes
in category (b) were up-regulated in the group 1 months
and down-regulated in March. The genes down-regulated
by prolonged chilling could also be divided into two ma-
jor categories (Fig. 3B). Most genes in category (c) were
down-regulated in the group 1 and 3 months, whereas
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Fig. 2. Microarray results of the relative expression levels of genes annotated as DAMs. (A) dataset 1 (chilling treatment) (B) dataset 2 (seasonal
change). In legends, annotated gene name for each probe was indicated.

most genes in category (d) were up-regulated in the
group 1 months and down-regulated in group 3 months.

Functional categorization of the DEGs

Among the 58627 probes loaded onto the microarray,
26008 probes were annotated in the TAIR9 database
(E-value cutoff = 1.0 x ™) and used for PAGE, which is
a gene set enrichment analysis that takes expression in-
tensities into account. Forty-seven GO terms categorized
as biological processes (The Gene Ontology Consortium,
2000; Table4) were significantly over-represented
(P < 0.05) in genes up-regulated by 60 d chilling treat-
ment when compared with 0 and 40 d chilling treatment.
According to the GO terms selected, genes related to
jasmonic acid biosynthetic and metabolic processes, oxy-
lipin biosynthetic and metabolic processes, and cell-wall
modification were significantly up-regulated (Table 4).
Twenty GO terms were selected as being significantly

over represented (P < 0.05) in genes down-regulated by
60 d chilling treatment when compared with 0 and 40 d
of chilling treatment (Table 4). Most GO terms selected
were related to reproduction and flowering processes.
In addition, GO terms of photoperiodism and circadian
rhythm/rhythmic processes were also selected.

Verification of microarray analysis by qRT-PCR

As previously described, the two probes with the
highest up-regulation were homologues of Arabidopsis
LOX genes; these genes were assigned to the GO process
of the JA biosynthetic process (Table 5). Among the
probes assigned to oxylipin/JA biosynthetic/metabolic
processes, three probes, Ume31635, Umel3003, and
Ume55810, were detected as genes showing marked
up-regulation by chilling treatment (Table 5, Fig. 4A).
Ume31635 matched to Arabidopsis LOX2, whereas
Ume 13003 and 55810 matched to LOX4; both LOX2
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Fig. 3. Cluster analysis of up-regulated (A) and down-regulated (B) genes in Japanese apricot dormant buds by prolonged chilling. Monthly buds
were divided into three groups. The genes representing characteristic seasonal expression patterns were divided into categories (a) to (d), (a)
down-regulated in groups 1 and 2 months, and up-regulated in group 3 months, (b) up-regulated in group 1 months, and down-regulated in
group 2 months and March, (c) down-regulated in groups 1 and 3 months, and up-regulated in group 2 months, (d) up-regulated in groups 1 and
2 months, and down-regulated in group 3 months. (C) Seasonal dormancy status of axillary/lateral buds (Sasaki et al., 2011), and the season
when dormancy-related phenological characters are observed in Japanese apricot ‘Nanko’ in Kyoto, namely growth cessation and defoliation,

are indicated.

and LOX4 are involved in polyunsaturated fatty acid
catabolism and oxylipin/JA biosynthesis in Arabidopsis.
According to the microarray results, these genes were
slightly down-regulated from June to December, sub-
stantially up-regulated in January, and expressed at high-
er levels in February and March (Fig. 4B). To confirm the
microarray data and further characterize gene expression,
Japanese apricot unigenes corresponding to Ume31635
and Ume13003/Ume55810 (putative orthologs of peach
genes, ppa001631m and ppa001112m, respectively)
were selected and subjected to gqRT-PCR. As shown in
Figure 4C, PmLOX2, the ortholog of ppa001631m, was
substantially up-regulated by chilling accumulation,

whereas PmLOX4, the ortholog of ppa001112m, was
slightly up-regulated by 60 d chilling treatment relative
to 0 d and 40 d chilling treatments.

We also selected genes assigned to the GO terms of cir-
cadian rhythm/rhythmic process for qRT-PCR analyses
to further verify the microarray results (Table 5). These
GOs were chosen because they were identified as being
significantly over-represented in the down-regulated gene
list by our PAGE analysis. Eleven probes assigned to cir-
cadian rhythm/rhythmic process were selected (Table 5).
They showed constant expression at 0 d and 40 d chill-
ing treatment, and were down-regulated after 60 d chill-
ing treatment (Fig. 5A). They were up-regulated from
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Table 4. Gene ontology terms (biological process) selected by parametric analysis of gene set enrichment (PAGE) in dataset 1 (0, 40, 60 d cold

treatment).

GO term No. of IDs Description

0dto60d 40dto60d

Z-score P-value Z-score P-value

Up-regulated by 60 d of cold treatment compared to 0 and 40 d : top 20 (highest Z-score) GO terms out of 47 total GO terms (P < 0.05)

GO0:0010200 52 response to chitin 8.1 4.40E-16 7.9 2.20E-15
GO:0009695 19 jasmonic acid biosynthetic process 7.5 7.70E-14 5.6 2.50E-08
GO:0031408 21 oxylipin biosynthetic process 7.4 1.50E-13 5.6 2.20E-08
G0:0009743 102 response to carbohydrate stimulus 6.5 9.10E-11 52 2.40E-07
GO:0009694 21 jasmonic acid metabolic process 6.3 4.00E-10 4.8 2.00E-06
GO:0009611 81 response to wounding 6.3 3.20E-10 7.1 1.40E-12
GO0:0031407 23 oxylipin metabolic process 6.2 4.40E-10 4.8 1.40E-06
GO:0071554 86 cell wall organization or biogenesis 5.0 5.20E-07 5.5 3.10E-08
GO:0051707 231 response to other organism 4.9 1.00E-06 4.5 6.70E-06
GO:0009664 21 plant-type cell wall organization 4.9 8.00E-07 34 7.40E-04
GO:0071555 44 cell wall organization or biogenesis 4.7 2.80E-06 43 2.00E-05
G0:0009607 243 response to biotic stimulus 4.6 5.20E-06 4.5 6.80E-06
GO:0009605 179 response to external stimulus 4.5 6.60E-06 3.9 9.70E-05
G0:0006952 190 defense response 4.5 8.20E-06 4.1 4.30E-05
GO:0042545 13 plant-type cell wall modification 4.5 8.10E-06 2.9 3.30E-03
G0:0009620 59 response to fungus 4.4 9.10E-06 5.0 7.20E-07
GO0:0051704 295 multi-organism process 4.2 2.60E-05 3.9 8.20E-05
GO:0007166 88 cell surface receptor linked signaling pathway 4.0 7.80E-05 2.4 1.90E-02
GO:0071669 50 plant-type cell wall organization or biogenesis 3.7 1.90E-04 5.0 6.90E-07
G0:0044281 814 small molecule metabolic process 3.4 7.20E-04 9.2 0.00E + 00
Down-regulated by 60 d of cold treatment compared to 0 and 40 d : total 20 GO terms (P < 0.05)
G0:0010228 43 vegetative to reproductive phase transition of meristem  -3.9 8.20E-05 —4.2 2.70E-05
GO:0048573 23 photoperiodism, flowering -3.6 3.40E-04 -3.8 1.30E-04
GO0O:0009648 28 photoperiodism 3.4 5.70E-04 -3.9 9.40E-05
GO0:0042538 25 hyperosmotic salinity response -3.0 3.00E-03 2.3 2.20E-02
GO:0048511 30 rhythmic process -3.0 3.70E-02 -5.7 1.00E-08
GO0:0007623 30 circadian rhythm -3.0 3.70E-02 =57 1.00E-08
GO0:0003006 431 reproductive developmental process -2.9 4.60E-02 5.2 2.00E-07
G0:0000003 499 reproduction -29 4.30E-03 —4.4 1.00E-05
GO0:0048608 431 reproductive structure development -2.9 4.60E-02 5.2 5.80E-06
GO0:0051094 25 positive regulation of developmental process -2.9 3.30E-03 -2.0 4.90E-02
GO:0006972 28 hyperosmotic response -29 3.60E-03 -2.0 4.60E-02
GO0:0009791 507 post-embryonic development -2.9 3.60E-03 =57 1.10E-08
G0:0009908 176 flower development -2.8 5.10E-03 -5.0 5.00E-07
G0:0022414 492 reproductive process -2.8 5.30E-03 —4.6 4.80E-06
GO0:0048582 24 positive regulation of post-embryonic development 2.7 6.40E-03 -2.0 4.30E-02
GO:0048518 110 positive regulation of biological process -2.6 9.30E-03 -3.1 2.00E-03
G0:0006396 146 RNA processing -23 2.30E-02 -3.3 1.10E-03
G0:0048580 86 regulation of post-embryonic development 2.2 2.50E-02 -2.9 3.80E-03
GO:0071478 22 cellular response to radiation -2.0 4.90E-02 -3.1 1.70E-03
GO:0071482 22 cellular response to light stimulus 2.0 4.70E-02 -3.1 1.70E-03

June to July, down-regulated from summer to autumn,
slightly up-regulated in winter, and down-regulated
from January to March (Fig. 5B). Japanese apricot
unigenes corresponding to Ume20777 and Umel7499
(putative orthologs of peach genes, ppa002188m and
ppa002863m, respectively) were selected and sub-
jected to qRT-PCR. ppa002188m and ppa002863m
were orthologs of Arabidopsis PSEUDO RESPOSE

REGULATORS (PRRS) and FLAVIN-BINDING KELCH
REPEAT F-BOX (FKF1), respectively, and both of these
Arabidopsis genes were related to circadian clock con-
trolled genes (Table 5). As shown in Figure 5C, both
PmPRRS5 and PmFKF1, the ortholog of ppa002188m and
ppa002863m, respectively, were down-regulated by 60 d
chilling treatment relative to the 0 d and 40 d chilling
treatments.
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Table 5. The properties of probes belonging to the selected GO terms analyzed by PAGE (see Figs. 4 and 5).

measurement  Fold Change

Annotation using Arabidopsis thaliana (TAIR9) database

ID (0 dto 60 d) Privalue TAIR9 Description Gene ID E-value
1. GO terms: oxylipin/jasmonic acid biosynthetic/metabolic process
Ume31635 604.52 5.16E-14  LOX2 (LIPOXYGENASE 2) AT3G45140.1  6.00E-17
Umel3003 118.65 2.65E-19  lipoxygenase, putative AT1G72520.1  5.00E-11
Ume55810 64.61 4.69E-13  lipoxygenase, putative AT1G72520.1 0.03
Ume01721 4.50 2.36E-17  DADI (DEFECTIVE ANTHER DEHISCENCE 1) AT2G44810.1 0.002
Ume50019 421 2.26E-16  DADI (DEFECTIVE ANTHER DEHISCENCE 1) AT2G44810.1  6.00E-06
Ume24976 3.86 2.17E-11  LOX3 AT1G17420.1  1.00E-87
Ume23157 3.64 2.20E-09  lipoxygenase, putative AT1G72520.1  4.00E-53
Umel6784 3.27 8.99E-07  AOC4 (ALLENE OXIDE CYCLASE 4) AT1G13280.1  9.00E-32
Ume30264 3.22 2.54E-10 LOX3 AT1G17420.1  2.00E-50
Ume33131 3.19 9.64E-10 LOX3 AT1G17420.1 2.00E-24
Ume33113 3.10 1.93E-09  lipoxygenase, putative AT1G72520.1  2.00E-08
Umel4112 3.08 4.95E-09  lipoxygenase, putative AT1G17420.1  3.00E-14
Ume30834 3.07 1.14E-09 LOX3 AT1G17420.1  9.00E-35
Ume46289 3.02 7.35E-09  LOX3 AT1G17420.1  2.00E-36
Ume33118 2.92 1.97E-08  LOX3 AT1G17420.1  3.00E-12
Ume48452 2.85 2.26E-14  LOX3 AT1G17420.1 4.00E-13
Ume40396 2.57 1.24E-10  lipoxygenase, putative AT1G72520.1 0.007
Ume07899 2.53 6.38E-10  lipoxygenase, putative AT1G72520.1  8.00E-04
Umel8381 2.44 1.00E-08  LOX3 AT1G17420.1  5.00E-39
Ume46544 232 2.48E-09 LOX3 AT1G17420.1  1.00E-27
Ume44226 2.19 2.58E-09 LOX3 AT1G17420.1  1.00E-26
Umel0626 2.15 1.27E-08  LOX3 AT1G17420.1  8.00E-05
2. GO terms: circadian rhythm and rhythmic process
Ume20777  0.09947 1.85E-11  APRRS5 (ARABIDOPSIS PSEUDO-RESPONSE REGULATOR 5)  AT5G24470.1  3.00E-46
Ume17499 0.11289 7.23E-20  FKF1 (FLAVIN-BINDING, KELCH REPEAT, F BOX 1) AT1G68050.1  3.00E-69
Ume58335 0.11950 3.05E-19  APRRS5 (ARABIDOPSIS PSEUDO-RESPONSE REGULATOR 5)  AT5G24470.1  5.00E-14
Ume49834  0.14614 6.12E-14  FKF1 (FLAVIN-BINDING, KELCH REPEAT, F BOX 1) AT1G68050.1  1.00E-17
Ume21890  0.15323 2.50E-16  APRRS (ARABIDOPSIS PSEUDO-RESPONSE REGULATOR 5)  AT5G24470.1  4.00E-27
Ume50310  0.15476 1.80E-10  FKF1 (FLAVIN-BINDING, KELCH REPEAT, F BOX 1) AT1G68050.1  3.00E-33
Ume42634  0.31887 9.67E-10  CCR2 (COLD, CIRCADIAN RHYTHM, AND RNA BINDING 2)  AT2G21660.2  2.00E-11
Ume23393 0.43132 7.81E-13  PRR7 (PSEUDO-RESPONSE REGULATOR 7) AT5G02810.1  1.00E-21
Ume42235  0.43332 4.75E-15  PRR7 (PSEUDO-RESPONSE REGULATOR 7) AT5G02810.1  8.00E-22
Ume38487  0.44717 2.33E-12 PRR7 (PSEUDO-RESPONSE REGULATOR 7) AT5G02810.1  4.00E-16
Ume23054  0.46861 1.59E-10  APRR9 (ARABIDOPSIS PSEUDO-RESPONSE REGULATOR 9)  AT2G46790.1  5.00E-13
Discussion Arabidopsis and rice (Ma et al., 2005), it is readily ex-

We constructed a Japanese apricot custom oligoar-
ray (60 mer) containing 58627 independent bud ESTs
covering genes involved in numerous kinds of biolog-
ical processes. Although comprehensive transcriptomic
analysis techniques such as pyrosequencing (Habu et al.,
2012) and Illumina HiSeq sequencing (Shi et al., 2012)
have previously been employed in the study of Japanese
apricot, to our knowledge, this is the first report of the
use of microarray technology for comprehensive gene
expression analysis of Japanese apricot. The probes de-
rived from Japanese apricot dormant bud ESTs matched
approximately 60% of all predicted peach mRNAs (data
not shown). Considering that the ratios of expressed
genes range from 40 to 80% of all predicted genes in

pected that our microarray covered a high proportion
of genes expressed wholly in Japanese apricot dormant
buds.

Yamane et al. (2008) and Sasaki et al. (2011) reported
that six PmDAMs, PmDAMI1-PmDAMG6, were highly ex-
pressed in endodormant Japanese apricot vegetative buds,
and that their expression decreased during endodorman-
cy release. All PmDAMs were down-regulated by pro-
longed chilling exposure. To date, the expression patterns
of these genes have been more correlated with endodor-
mancy than any other Japanese apricot genes. We ana-
lyzed the expression changes of the probes annotated
as DAMs. Microarray analysis demonstrated that all 20
DAM annotated probes except for one probe, Ume57252,
were down-regulated by chilling exposure (dataset 1;
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Fig. 4. Expression analysis of selected genes classified within GO terms of oxylipin/jasmonic acid biosynthesis and metabolic process. A: Microarray

dataset 1 (chilling treatment). B: Microarray dataset 2 (seasonal

change). In A and B, three probes for further characterization (Ume 31635,

13003, and 55810; see text) are shown by bold lines whereas the other probes are shown by dotted lines. Properties of each probe are described
in Table 5. C: qRT-PCR analysis of two up-regulated candidate genes (PmLOX2 and PmLOX4) during chilling exposure. The mRNA expression
levels are normalized against those of either PmTUB (left) or PmUBQ (right). Mean and SE (n = 3) are derived from three biological replicates.

Fig. 2A). They were generally up-regulated during the
autumn and down-regulated during January when veg-
etative buds were released from endodormancy (dataset
2; Fig. 2B). These results very much coincided with the
previously reported qRT-PCR results (Sasaki et al., 2011)
and EST analysis (Habu et al., 2012) of PmDAMs, sug-
gesting that our constructed microarray is reliable for
monitoring the comprehensive expression changes of
bud-expressed genes. In addition to bud dormancy, the
microarray constructed in this study will also be appli-
cable for molecular studies aimed at understanding other
agronomically important bud physiologies, such as bud
phenology, cold hardiness, blooming, and bud abortion.
Seasonal expression analysis of 2345 up-regulated

and 1059 down-regulated genes by prolonged chilling
treatment suggested the seasonally controlled expression
patterns of these genes. Grouping patterns of months
by cluster analysis were discussed in association with
seasonal transitions of dormancy status and phenolog-
ical events related to dormancy (Fig. 3C; Sasaki et al.,
2011). Chilling-induced genes were down-regulated
during the late endodormant season (November—
January) and up-regulated in February; some of these
genes remained up-regulated in March, but others be-
came down-regulated. Chilling-repressed genes were
up-regulated during the late endodormant season, and
constantly down-regulated in the ecodormant season
(February—March). Theseresults suggest that genes show-
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Fig. 5. Expression analysis of selected genes classified within GO terms of circadian rhythm and rhythmic process. A: Microarray dataset 1 (chilling
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analysis of two genes (PmPRRS5 and PmFKF) during chilling exposure. The mRNA expression levels are normalized against those of either
PmTUB (left) or PmUBQ (right). Mean and SE (n = 3) are derived from three biological replicates.

ing prolonged chilling-mediated expression changes
also exhibited seasonally coordinated expression from
November to February; this coincides with bud phase
transition from endodormancy to ecodormancy in
Japanese apricot. The dynamic changes of the molecular
network among the genes in category (a) and (d) (Fig. 3),
which showed ecodormant bud-specific up-regulated and
down-regulated expressions, deserve to be further char-
acterized in order to understand the phase transition from
endodormancy to ecodormancy. It will be necessary to
understand ecodormancy rather than endodormancy to
control bud phenology in the field in Japanese apricot,
whose endodormancy is relatively shorter than other
deciduous fruit tree species.

Cluster analysis based on the expression profiles

demonstrated that monthly buds are divided into three
groups: June to October; November to January; and
February to March. Considering that buds from October
and November belong to different clades, temperature
changes in autumn rather than photoperiod changes ap-
pear to influence the expression changes of the DEGs.
One unexpected result was that buds collected in June
were included in the same clade as buds in October, when
they were in the deep endodormant period. We expect-
ed that buds in June were somehow qualitatively rath-
er than quantitatively different from those in October.
Nevertheless, the finding that expression patterns of
DEGs in June seem to be similar to those in October
suggests that buds from June to October were biologi-
cally similar at the molecular level. Cooke et al. (2012)
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mentioned that the transition from activity to dormancy
occurs gradually and takes a long time, and the mecha-
nisms underlying the process of dormancy induction in
trees have hardly been dissected. This study raised the
possibility that in Japanese apricot the onset of molecu-
lar network control to set buds in the endodormant state
starts during June, an earlier period than we expected.
However, because the seasonal transcriptome analysis
in this study did not use biological replicates, and the
activity-dormancy cycle can be affected by environmen-
tal factors, tree age and vigor, this possibility needs to be
verified by repeated year-round studies using substantial
biological replicates.

Among the 2345 genes up-regulated by prolonged
chilling, the most highly up-regulated gene was
PmLOX2. qRT-PCR analysis confirmed its up-regulation
by chilling treatment. PmLOX2 was down-regulated
during the late endodormant season and up-regulated
during January when phase transition of endodormancy
to ecodormancy occurs. Arabidopsis LOX2 encodes
a 13-lipoxygenase that converts linolenic acid to 13-
hydroperoxy linolenic acid and is involved in polyun-
saturated fatty acid catabolism. Reserve mobilization in-
cluding lipid catabolism could regulate dormancy release
and/or the germination of Arabidopsis seeds (Finkelstein
et al., 2008). On the other hand, a reaction catalyzed by
LOXs is a critical step for the jasmonic acid (JA) bio-
synthesis pathway (Andreou and Feussner, 2009). Our
gene set enrichment analysis suggested that oxylipin/JA
biosynthetic and metabolic processes were up-regulated
by prolonged chilling. However, our qRT-PCR analyses
suggested that PmLOX4 was not highly up-regulated by
chilling; this did not support the microarray results. In
addition, although some genes involved in JA biosyn-
thesis, such as DEFECTIVE ANTHER DEHISCENCE]
(DADI) and ALLENE OXIDE CYCLASE (AOC), were
up-regulated by chilling exposure (Table 5), expres-
sions of other genes for JA biosynthetic enzymes, such
as 12-oxophytodienoate reductase and allene oxide syn-
thase, were not significantly changed by chilling expo-
sure (data not shown). Thus, further expression studies of
genes involved in oxylipin/JA biosynthesis are required
in Japanese apricot dormant buds in order to further test
the involvement of JA signaling in chilling-induced dor-
mancy transition. So far, no reports have been published
that investigated internal JA contents in dormant buds,
and the effects of external JA application on bud dor-
mancy breaking of fruit tree species. Recently, Sakamoto
et al. (2010) reported that 9-hydroxy-10-oxo-12(Z),
15(Z)-octadecadienoic acid (KODA), one of the oxylip-
ins, was effective for promoting the endodormancy break
of flower buds of Japanese pear. Although our prelimi-
nary studies suggested no obvious effects of KODA on
the dormancy break of Japanese apricot (Yamane et al.,
In press), it would be interesting to investigate the inter-
nal oxylipin/JA contents in dormant buds, and the effects
of oxylipins on dormancy breaking of Japanese apricot.

Our PAGE analysis suggested that the GO processes
related to the transition from vegetative to reproduc-
tive, flowering, and reproductive processes were down-
regulated during prolonged chilling treatment. The
significant over-representation of these GOs probably
reflects the down-regulation of DAMs. DAMs belong
to a class of MADS-box genes, which are known as
flowering-related genes in Arabidopsis and categorized
in these GOs. In addition to these GOs, the GO processes
of circadian rhythm and rhythmic process were identified
as being down-regulated during prolonged chilling treat-
ment. Both microarray and qRT-PCR analyses demon-
strated that prolonged chilling down-regulated Japanese
apricot gene homologs of PRRS and FKFI, which are
known to be critical circadian clock and photoperiod-
related genes in Arabidopsis (reviewed by Song et al.,
2010). Some of the genes included within the GO cir-
cadian rhythm/rhythmic process classifications were
up-regulated from June to July, when axillary buds grad-
ually enter endodormancy, and down-regulated from
January to March, during the transition from endodor-
mancy to ecodormancy (Fig. 5B). Similar expression
patterns of PRRS5 and FKFI have been reported in oth-
er plant species. Populus PRR5 was highly expressed
following growth under short-day conditions (Ruttink
et al.,, 2007), and its expression in dormant buds de-
creased gradually during bud burst (Ibafiez et al., 2010).
Enhanced expression of PRRS5 delayed bud burst, sug-
gesting that PRRS is a candidate marker gene for the
depth of bud dormancy in Populus (Cooke et al., 2012).
In leafy spurge, FKFI was down-regulated in ecodor-
mant buds relative to endodormant buds (Dogramaci et
al., 2010). However, microarray analysis of pear dormant
buds suggested that PRR5 was highly expressed in eco-
dormant buds (February) relative to endodormant buds
(November) (Nishitani et al., 2012). Even though this dis-
crepancy suggested that clock gene expression changes
differ among plant species, recent findings from Populus
strongly suggest that the circadian clock-dependent mo-
lecular network affects growth cessation and winter dor-
mancy regulation (Cooke et al., 2012; Ibafiez et al., 2010;
Ruttink et al., 2007). Clock component genes are known
to be involved in temperature sensing in addition to pho-
toperiod sensing. Indeed, clock components play crucial
roles in the response to chilling-induced seed dorman-
cy break in Arabidopsis (Penfield and Hall, 2009), and
chilling-induced dormancy onset in chestnut (Castanea
sativa) (Ibanez et al., 2008; Ramos et al., 2005). Thus,
further studies focusing on the circadian-clock regulatory
network will be required for a fuller understanding of
the possible involvement of circadian-clock genes in the
dormancy regulation of Japanese apricot and other fruit
tree species.

In conclusion, this study provided transcript profiles of
Japanese apricot dormant buds in response to prolonged
chilling treatments. This work supported previous stud-
ies that PmDAMSs were highly down-regulated by chill-
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ing (Habu et al., 2012; Sasaki et al., 2011; Yamane et
al., 2008), suggesting their critical roles in dormancy
regulation. However, our knowledge about genetic and
molecular mechanisms regulating bud dormancy is still
very fragmentary. The significantly up-regulated and
down-regulated genes identified in this study are good
candidates for the control of chilling-mediated physio-
logical events in dormant buds. Further functional char-
acterization of each candidate gene and deciphering the
molecular interactions among candidate genes will be re-
quired to dissect how chilling temperature regulates bud
phenology events, including dormancy and bud break.

Important notes: During the preparation of this paper,
an article describing the whole genome sequencing of
P. mume was published (Zhang et al., 2012). In future,
whole genome sequence data incorporated with devel-
oping bioinformatics programs will strongly promote
omics studies in Japanese apricot and provide us with
new insights for understanding agronomically important
traits in the species.
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