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Many organisms rely on a circadian clock system to adapt to daily and seasonal 

environmental changes. The mammalian circadian clock consists of a central clock in 

the suprachiasmatic nucleus that is tightly coupled and synchronizes other clocks in 

peripheral tissues1, 2. Plants also have a circadian clock, but plant circadian clock 

function has long been assumed to be uncoupled3. Only a few studies have been able to 

show a weak, local coupling among cells4, 5, 6, 7. Here, by implementing two novel 

techniques, we have performed a comprehensive tissue-specific analysis of leaf tissues, 

and we have discovered that the vasculature and mesophyll clocks asymmetrically 

regulate each other in Arabidopsis. The circadian clock in the vasculature has 

characteristics distinct from other tissues, cycles robustly without environmental cues, 

and affects circadian clock regulation in other tissues. Furthermore, we found that 

vasculature-enriched genes that are rhythmic are preferentially expressed in the 

evening, whereas rhythmic mesophyll-enriched genes tend to be expressed in the 

morning. Our results set the stage for a deeper understanding of how the vasculature 

circadian clock in plants regulates key physiological responses such as flowering time. 

 

To expedite tissue-specific analysis, we developed a technique to isolate three tissues of 

leaves with high spatiotemporal resolution. We based our strategy on a previously reported 

technique for mesophyll and vasculature isolation8. After optimizing the buffer and the 

isolation technique we were able to isolate all three major leaf tissues — mesophyll, 

vasculature, and epidermis —within 30 minutes (Fig. 1a and Extended Data Fig. 1a, b). 

Isolated tissues appeared to be highly purified when observed under the microscope (Fig. 1a). 

 

As different types of tissues have different gene-expression profiles, we applied 

Vandesompele’s method to identify appropriate reference gene sets9. Among our 10 



candidates, ASPARTIC PROTEINASE A1 (APA1) and ISOPENTENYL 

PYROPHOSPHATE:DIMETHYLALLYL PYROPHOSPHATE ISOMERASE 2 (IPP2) showed 

lower M values, suggesting stable expression in all tissues and time points (Extended Data 

Fig. 1c). We therefore used the geometric mean of APA1 and IPP2 as an internal control in 

our quantitative RT-PCR (qPCR) analysis. 

 

The purity of the isolated tissues was confirmed by detecting the expression of the 

tissue-specific markers LIGHT-HARVESTING CHLOROPHYLL B-BINDING 2.1 (Lhcb2.1)10, 

SULFATE TRANSPORTER 2;1 (Sultr2;1)11, and GC112 by qPCR over 24 h (Fig. 1b). In 

addition, the three primary vascular sub-tissues were identified by marker-gene-expression 

analysis13, suggesting that the isolated vasculature is intact (Extended Data Fig. 1d). The 

purity of vasculature was more than 90%, and that of mesophyll and epidermis was more 

than 80%, (Fig. 1c) indicating that the results from isolated tissues predominantly reflect the 

dynamics of the respective specialized cells therein. About 77% of total leaf mRNA was 

derived from mesophyll cells, whereas only about 8% and 15% of mRNA was derived from 

vasculature and epidermis, respectively (Fig. 1d and Extended Data Fig. 1e), suggesting that 

previous results of circadian clock studies that were primarily using whole leaves or whole 

plants as the RNA source mostly reflected circadian rhythms in mesophyll cells, and gene 

expression dynamics in minor tissues such as vasculature or epidermis were largely 

overlooked. 

 

We next examined the expression of TIMING OF CAB EXPRESSION 1 (TOC1) and 

CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), and that of stress-induced genes under long 

day (LD) conditions. In all three isolated tissues, 24 h oscillations of TOC1 and CCA1 

expression were detected, and these were consistent with the whole leaf, indicating that the 



isolation process did not affect the rhythms of clock genes (Extended Data Fig. 1f). Also no 

significant induction of stress-induced genes expression was observed (Extended Data Fig. 

1g). 

 

By applying the direct tissue isolation technique we investigated tissue-specific regulation of 

the Arabidopsis clock system. Wild-type plants were grown under LD and short day (SD) 

conditions, and whole leaves (W), mesophyll (M), and vasculature (V) from cotyledons were 

collected every four hours over two days. We then performed a time-course microarray 

analysis, and detected cycling genes and their diel phases, using the HAYSTACK14 algorithm 

with a <3% of false discovery rate (FDR) (Extended Data Fig. 2 and Supplementary Table 1). 

About 50% of the genes in the microarray were identified as cycling genes in each condition, 

and 96.3% of the genes in the microarray were identified as cycling genes under at least one 

condition tested, whereas only 10.5% of the genes in the microarray were oscillating together, 

suggesting tissue-specific and day-length-specific diel regulation (Extended Data Fig. 3a-c). 

We also detected 49 genes as new candidates for reference genes that do not cycle across any 

condition (Supplementary Table 2). The percentage of wave-shape model usage and that of 

cycling transcripts with specific amplitude were comparable among tissue and conditions 

(Extended Data Fig. 3d, e). 

 

We first confirmed that known tissue-specific-marker genes were correctly identified as such 

in our microarray analysis (Extended Data Fig. 4a, b and Supplementary Tables 3 and 4), and 

validated the geometric mean of APA1 and IPP2 as an appropriate reference for 

tissue-specific clock analyses (Extended Data Fig. 1c and 4c). In conclusion, we confirmed 

sufficient sensitivity and specificity in the microarray analysis, and defined two-fold changes 

that are significant differences. 



 

We next observed global gene-expression profiles in each tissue (Fig. 2a and Extended Data 

Fig. 5a, b). Highly expressed genes in vasculature at ZT16 (blue-colored genes) showed low 

expression levels in mesophyll, whereas genes that had lower expression in vasculature 

(green-colored genes) showed higher expression levels in mesophyll. In whole leaves, the 

gene-expression profile was pro-mesophyllic, consistent with our previous result that 

estimated about 80% of RNA in whole leaves came from mesophyll cells (Fig. 1d). Thus, we 

note that vasculature has inverse gene-expression profiles compared to whole leaf and 

mesophyll. 

 

The current circadian clock model consists of multiple interlocking loops15, 16. The morning 

loop consists of morning-expressed PSEUDO-RESPONSE REGULATORs (PRRs), LATE 

ELONGATED HYPOCOTYL (LHY) and CCA1, and the evening loop consists of 

evening-expressed EARLY FLOWERINGs (ELFs), LUX ARRHYTHMO (LUX) and TOC1. 

The core loop links these two loops. By comparing the arithmetic mean expression levels in 

the vasculature with those in whole leaves, we were able to define vasculature-rich genes and 

mesophyll-rich genes. We found that the morning loop consists of mesophyll-rich genes, 

whereas the evening loop consists of vasculature-rich genes (Fig. 2b). ELF4 expression is 

about 10-fold higher in vasculature, suggesting that the functional ELF3, ELF4, and LUX 

tripartite Evening Complex17, 18 resides primarily in vasculature, even though ELF3 has rather 

mesophyll-rich expression. Consistent with this result, Z-score profiles of mesophyll-rich 

genes (two-fold higher in whole leaf compared to vasculature) showed higher scores in the 

morning, indicating that mesophyll-rich genes tend to be expressed in the morning (Fig. 2c). 

Moreover, vasculature-rich genes (two-fold higher in vasculature compared to whole leaf) 

tend to be expressed in the evening of the corresponding day length (Fig. 2c). Interestingly, 



significantly enriched GO Slim terms were comprehensively different between 

mesophyll-rich and vasculature-rich genes, suggesting that the vasculature and mesophyll 

clocks have different functions (Extended Data Table 1). 

 

To ascertain whether different tissues have different phases, we examined PRR7, TOC1, and 

ELF4 as representative clock genes. Although the diel phases of these genes in the isolated 

tissues were not significantly shifted (Extended Data Fig. 5c), this was not the trend when 

comparing all cycling genes. Even accounting for phase randomization by noise, the ratio of 

phase-locked genes (±2 h) was reduced in vasculature versus whole leaf (V-W) and 

mesophyll versus vasculature (M-V), compared to whole leaf versus mesophyll (W-M), 

indicating that vasculature and mesophyll have relatively distinct global phases (Extended 

Data Fig. 5d, e). We then examined if the vasculature clock has characteristic regulatory 

targets. The p-value of each cycling gene was ranked from the largest to the smallest, and the 

percentage of overlapping genes (POG) was used to assess the percentage of genes that were 

shared as common targets of the clock in a specific tissue. Higher POGs were observed in 

W-M, and lower POGs were observed in V-W and M-V (Extended Data Fig. 5f), indicating 

that the vasculature clock has relatively distinct, characteristic regulatory targets. Consistent 

with this notion, we identified two novel vasculature-specific elements, that we named long 

day vasculature element (LVE: ACACGG) and short day vasculature element (SVE: 

GCGGGA), both of which showed a higher Z-score in vasculature but not in whole leaves 

and mesophyll (Extended Data Fig. 6). We also found that known elements such as the 

telo-box, starch box, and protein box19 were rather mesophyll-enriched elements (Extended 

Data Fig. 6). 

 



To support the results obtained from isolated tissues with a non-invasive observation of 

promoter activity, we next developed a tissue-specific luciferase assay (TSLA) for real-time 

monitoring of tissue-specific promoter activity. We combined the split-luciferase 

complementation assay for detecting protein-protein interactions20 and the AP1 complex, a 

heterodimer comprising Jun and Fos. The carboxy and amino-terminal fragments of firefly 

luciferase (cLuc and nLuc) were fused to the C-terminus of A-Fos21, the Fos leucine zipper 

with amphipathic acidic extension, and the c-Jun bZIP domain, respectively. [A-Fos]-cLUC 

(Ac) and [c-Jun bZIP domain]-nLUC (Jn) were then driven by tissue-specific and clock 

promoters, respectively (Fig. 3a). To spatiotemporally regulate the luciferase 

complementation, we used the TOC1 or CCA1 clock promoter and the SUCROSE-PROTON 

SYMPORTER 2 (SUC2) vasculature promoter to generate TOC1::Jn, CCA1::Jn and 

SUC2::Ac, respectively. Cauliflower mosaic virus (CaMV) 35S::Jn and CaMV 35S::Ac were 

used as controls. These constructs were transformed into Arabidopsis, resulting in the 

transgenic lines that we called CaMV 35S/SUC2-TSLA, TOC1/SUC2-TSLA, TOC1/CaMV 

35S-TSLA, CCA1/SUC2-TSLA, and CCA1/CaMV 35S -TSLA. Compared to TOC1::LUC 

and TOC1/CaMV 35S-TSLA, vasculature-specific luminescence was observed in 10-day-old 

TOC1/SUC2-TSLA seedlings under 12 h light 12 h dark (L/D) conditions (Fig. 3b-d). We 

also examined if the TSLA displayed rhythmic oscillations under free running conditions and 

confirmed that all lines tested except CaMV 35S/SUC2-TSLA oscillated with around 24 h 

period (Fig. 3e, f and Extended Data Fig. 7). The circadian phase of CCA1 was locked 

between CCA1/CaMV 35S-TSLA and CCA1/SUC2-TSLA, whereas for TOC1 TOC1/CaMV 

35S-TSLA was shifted earlier compared to TOC1/SUC2-TSLA. These results reconfirmed 

our conclusion that there are divergent properties of circadian clock regulation in the 

vasculature. 

 



The vasculature thus appears to have distinct gene-expression dynamics, with characteristic 

circadian phases and regulatory targets. To test if the vasculature clock is robust in plants, we 

examined TOC1 expression in whole leaves and vasculature under L/D and free running 

conditions (Fig. 4a). The amplitude of TOC1 oscillation under L/D was comparable between 

whole leaf and vasculature, being the ratio between amplitude in the vasculature with respect 

to the amplitude in whole leaf close to 1 (Extended Data Fig. 8a). By contrast, when plants 

were in free-running conditions, the amplitude of TOC1 in whole leaves damped rapidly 

already at the third cycle, whereas a more persistent circadian rhythm was still maintained in 

the vasculature (Fig. 4a). Therefore, every cycle under constant light conditions, the 

difference between the amplitudes in both tissues increased (Extended Data Fig. 8a). The 

robust circadian rhythm in the vasculature persisted for over one week. We also confirmed 

that the expression of other clock genes, such as CCA1 and ELF4, is also robust in the 

vasculature (Extended Data Fig. 8b, c). 

 

To test for asymmetric regulation between tissue-specific clocks, we produced a transgenic 

line whose vasculature clock was perturbed by overexpression of CCA1-GFP driven by 

SUC2 promoter (SUC2::CCA1). We crossed the SUC2::CCA1 line with the TOC1::LUC line, 

and observed a strong influence of the vasculature clock perturbation on the whole leaf 

TOC1::LUC luminescence (Fig. 4b and Extended Data Fig. 8d), even though the RNA 

contribution ratio of vasculature is less than 10% (Fig. 1d and Extended Data Fig. 1e). We 

then monitored TOC1 expression in isolated mesophyll and vasculature under free running 

conditions. As shown in Fig. 4c, robust TOC1 expression in wild type vasculature was still 

observed, but it was weaker in whole leaves and mesophyll. When the vasculature clock was 

perturbed by SUC2::CCA1 under the same conditions, TOC1 expression was perturbed not 

only in vasculature but also in mesophyll, indicating the dominance of the vasculature for 



clock regulation in the mesophyll (Fig. 4c). We also used CHLOROPHYLL A/B BINDING 

PROTEIN 3 (CAB3)::CCA1 for mesophyll clock perturbation22, 23. In contrast to 

SUC2::CCA1, dysfunction of the mesophyll circadian clock affected circadian rhythms only 

in mesophyll, and TOC1 expression in the vasculature still oscillated persistently. Thus, at 

least in this condition, asymmetric dominance of the vasculature clock over the mesophyll 

clock was revealed. 

 

Finally, we investigated whether the vasculature clock can affect a physiological response. In 

plants, the circadian clock and photoperiodism are tightly coupled, and many clock mutations 

affect photoperiodic flowering24. We therefore generated a set of transgenic lines that express 

CCA1-GFP driven by different tissue-specific promoters that we had already tested in a 

previous study22, 23, 25 (Extended Data Fig. 9). Among them, only CCA1::CCA1 and 

SUC2::CCA1 showed a late-flowering phenotype under flowering inductive LD (Fig. 4d). In 

addition, the expression levels of FLOWERING LOCUS T (FT)26, 27 were quite consistent 

with the flowering phenotypes (Fig. 4d). Hence, the vasculature clock regulates a whole plant 

physiological response by regulating the dynamics of FT (Fig. 4e). 

 

By combining two powerful tools for tissue-specific analysis, a rapid, direct tissue isolation 

method and the TSLA, we have been able to investigate the tissue-specific regulation of the 

Arabidopsis circadian clock system. 

 

We have demonstrated that the vasculature clock system is distinct and robust; moreover, it is 

able to control neighboring mesophyll cell gene expression and a physiological response. In 

that sense, the vasculature and mesophyll clocks in Arabidopsis constitute a layered clock 

system such as central and peripheral clocks in mammals1, 2, or evening cells and morning 



cells in Drosophila28 (Fig. 4e). 

 

Our findings can explain specific functions of the clock in vasculature and mesophyll, but 

additional tissue-specific analysis with high spatiotemporal resolution will be required to 

elucidate the contributions of as-yet undefined clock genes to the robustness and sensitivity 

of the hierarchical circadian clock circuitry that we have uncovered. 
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Figure legends 

Figure 1 | Direct tissue isolation from cotyledons. 

a, Schematic drawings of the tissue-isolation strategy and isolated mesophyll (left), 

vasculature (middle), and epidermis (right) visualized by dark field microscopy. See Methods 

online for the detailed protocol. Bar=250 µm. b, Expression analysis of Lhcb2.1, Sultr2;1, and 

GC1 as mesophyll-, vasculature-, and epidermis markers, in the isolated tissues from 

10-day-old seedlings grown under long day conditions. ZT; Zeitgeber time. The figure shows 

representative qPCR results from the three independent biological repeats. c, d, Purities of the 

isolated tissues (c) and contribution ratios of each of them to whole leaf mRNA (d) are 

estimated using the data in Fig. 1b. See Methods online for details. Mean±SEM (n=14). 

 

Figure 2 | Vasculature and mesophyll have different gene expression profiles. 

a, Relative gene expression levels in whole leaf, mesophyll and vasculature under LD. Blue 

and green colored genes indicate higher and lower expression than average in the vasculature 

at ZT16, respectively. As an example, the red line highlights ELF4 expression profile. b, 

Color code expression level representation of the clock genes in the circadian clock model. 

Mesophyll- and vasculature-rich genes are defined based on arithmetic mean expression 

levels and frequencies. See Methods online for the detailed definition. c, Z-score profiles of 

mesophyll-rich genes (upper panel) and vasculature-rich genes (lower panel) across the entire 

day. Dotted horizontal lines indicate threshold, (FDR<3%). See Methods online for details. 

 

Figure 3 | Tissue-specific luciferase assay (TSLA). 

a, Schematic drawings of the TSLA strategy. b-d, Luminescence images of TOC::LUC (b), 

TOC1/SUC2-TSLA (c) and TOC1/CaMV 35S-TSLA (d) seedlings grown under L/D for 10 

days. Right panels shows enlarged cotyledons surrounded by white boxes. Bar=1 cm (left) and 



1 mm (right). e, f, Real time monitoring of the luminescence of 10-day-old TOC1/SUC2-TSLA 

#3 (n=6) and TOC1/CaMV 35S-TSLA #3 (n=12) seedlings (e), and CCA1/SUC2-TSLA #12 

(n=14) and CCA1/CaMV 35S-TSLA #2 (n=12) seedlings (f) under L/D and free-running 

conditions. Mean±SD. cps; counts per second. Signals after subtraction of background noise 

are shown. 

 

Figure 4 | The vasculature clock is robust and dominant to other clocks. 

a, TOC1 expression in whole leaf and vasculature under L/D and continuous light 

free-running conditions. Days 5 to 9 and day 12 are shown. Mean±SEM (days 5-9, n=3, and 

day 12, n=4). b, Luminescence of TOC1::LUC (n=22) and TOC1::LUC; SUC2::CCA1 #18 

(n=24) seedlings grown under L/D and continuous light free-running conditions. Days 5 to 9 

are shown. Mean±SD. c, TOC1 expression in whole leaf, mesophyll, and vasculature from 

10-day-old wild type, CAB3::CCA1 and SUC2::CCA1 seedlings. Plants were grown under 

L/D for 5 days and then transferred into free-running conditions and analyzed. Mean±SEM 

(n=3). d, Flowering time and FT expression analysis under LD. Mean±SD (n=12). Promoters 

of 3-KETOACYL-COA SYNTHASE 6 (CER6), UNUSUAL FLORAL ORGAN (UFO), and 

TERPENE SYNTHASE-LIKE SEQUENCE-1,8-CINEOLE (TPS-CIN) were used as 

epidermis-, shoot apical meristem-, and hypocotyl/root promoters, respectively22. FT 

expression was detected at ZT16 of LD grown 10-day-old seedlings. Mean±SD (n=3). a, c, d, 

The gene expression was checked by qPCR. e, Our model proposes that vasculature (phloem 

companion cells) clock and mesophyll clock asymmetrically affect each other in leaves. 

Through long and short-distance signaling, the vasculature clock regulates the mesophyll 

clock and photoperiodic flowering. 

 

 



Online only Methods 

Plant material and growth conditions. 

All wild type and transgenic lines were Arabidopsis thaliana ecotype Columbia-0 (Col-0). 

Seeds were surface-sterilized and sown on 0.8% agar plates containing Murashige and Skoog 

medium with 0.5% sucrose. Plants were grown under LD (16 h light and 8 h dark, 56 µmol 

m-2 s-1), SD (8 h light and 16 h dark, 84 µmol m-2 s-1), and L/D (12 h light and 12 h dark, 84 

µmol m-2 s-1) conditions at 22 °C for nine to ten days. Transgenic plants were generated using 

the floral dipping method. Flowering times were scored by determining the number of total 

leaves when the first flower opened. 

 

Tissue isolation 

For mesophyll isolation, 20 to 30 Arabidopsis cotyledons were put on labeling tape (Shamrock 

Scientific Specialty Systems, Inc) and the epidermis was peeled off using Scotch tape (3M). 

After trimming of the labeling tape, the cotyledons were dropped into a 1.5 mL centrifuge tube 

containing 1 mL of enzyme solution (0.75 % Cellulase Onozuka R-10 (Yakult), 0.25 % 

Macerozyme R-10 (Yakult), 0.4 M Mannitol, 5 mM MES-KOH (pH 5.6), 8 mM CaCl2). The 

tube was slowly rotated by inversion for 20 min at room temperature, and then the content was 

passed through a 30-100 µm nylon mesh to remove debris. The filtrate was centrifuged for 5 

min at 100 rpm at 4°C. The supernatant was removed and the tubes were frozen in liquid 

nitrogen. 

For vasculature and epidermis isolation, six 1.5 mL centrifuge tubes were filled with 1 mL of 

enzyme solution (the same used for mesophyll isolation). Cotyledons were cut and 20~30 were 

dropped into each tube (120 to 180 cotyledons were needed in total). The tubes were placed in 

a sonicator (Bioruptor UCD-250 (Cosmo Bio)) and sonicated gently (Level “L”, means lower 

output). The contents of each tube were spread on a petri dish. Under a stereomicroscope, 



vasculature and epidermis were sorted and collected using two needles. Tissues were frozen in 

liquid nitrogen and dropped into 1.5 mL tubes. 

 

Real-time PCR analysis 

Total RNA was extracted using an RNeasy Plant Mini Kit (Qiagen) and reverse-transcribed 

using Transcriptor First Strand cDNA Synthesis Kit (Roche) according to manufacturer's 

instructions. Real-time gene expression was analyzed with a CFX96 Real-Time PCR 

Detection System (Bio-Rad). The geometric mean of APA1 and IPP2 was used as a control. 

Specific sequences for each primer pair were: 

APA1-RT-F, 5'- TCCCAAGATCCAGAGAGGTC; 

APA1-RT-R, 5'- CTCCAGAAGAGTATGTTCTGAAAG; 

IPP2-RT- F, 5'- GTATGAGTTGCTTCTCCAGCAAAG; 

IPP2-RT-R, 5'- GAGGATGGCTGCAACAAGTGT; 

Lhcb2.1-RT-F, 5'- TTGGTGTATCCGGTGGTGGCC; 

Lhcb2.1-RT-R, 5'- GTCCGTACCAGATGCTTTGAGGAGTAGA; 

Sultr2;1-RT-F, 5'- GGTGTTGAGCTAGTGATCGTTAACCCG; 

Sultr2;1-RT-R, 5'- CCCGTAACACAACTGGTCCTTTGA; 

GC1-RT-F, 5'- TCGTCCAAGAATCAATTGTGGGC; 

GC1-RT-R, 5'- GTGTTGCCGGAGGTTCCCGG; 

TOC1-RT-F, 5'- GCCTCTTCGCACCAACGAGCT; 

TOC1-RT-R, 5'- TCAGCAAGTCCTAGCATGCGTCT; 

CCA1-RT-F, 5'- GAGGCTTTATGGTAGAGCATGGCA; 

CCA1-RT-R, 5'- TCAGCCTCTTTCTCTACCTTGGAGA; 

IRX3-RT-F, 5'- GATCGCTGCTAATCTCCGGC; 

IRX3-RT-R, 5'- TCAGAGGCTTTGGCTCTTCA; 



WOX4-RT-F, 5'- CAAAGCAGCTTCACGACCAC; 

WOX4-RT-R, 5'- TCTCCACCATTGGTTCTCTCATA; 

AtHB8-RT-F, 5'- ACCAGGGGAATTTGGCTACC; 

AtHB8-RT-R, 5'- CCGCAATGGACAATAATCCAGC; 

GFP-RT-F, 5'- GAGCTGAAGGGCATCGACTT; and 

GFP-RT-R, 5'- TTCTGCTTGTCGGCCATGAT. 

The following thermal cycling profile was used, 

APA1, 95˚C for 10 s, ~40 cycles of 95˚C for 8 s, 66.6˚C for 15 s and 72˚C for 15 s; 

IPP2, 95˚C for 10 s, ~40 cycles of 95˚C for 8 s, 69.4˚C for 15 s and 72˚C for 15 s; 

Lhcb2.1, Sultr2;1, GC1, TOC1, IRX3, WOX4, and AtHB8, 95˚C for 60 s, ~40 cycles of 95˚C 

for 10 s, 60˚C for 15 s and 72˚C for 15 s; 

CCA1, 95˚C for 60 s, ~40 cycles of 95˚C for 10 s, 60˚C for 15 s and 72˚C for 7 s; 

COR15A and ADH1, 95˚C for 10 s, ~40 cycles of 95˚C for 10 s, 68.4˚C for 15 s and 72˚C for 

15 s; 

RD29A, 95˚C for 10 s, ~40 cycles of 95˚C for 10 s, 70˚C for 15 s and 72˚C for 15 s; and 

GFP, 95˚C for 60 s, ~45 cycles of 95˚C for 10 s, 62˚C for 15 s and 72˚C for 15 s. 

The primer sequences and reaction conditions for FT were previously described8. 

Each sample is run in technical triplicate to reduce experimental errors. Error bars were 

calculated from the result of biological replicates (in most case biological triplicates). Data 

were analyzed using CFX manager (Bio-Rad). 

 

Estimation of purity and the contribution ratio 

For whole leaf, mesophyll, vasculature, and epidermis samples, gene-expression levels W, M, 

V, and E of n time points (in this case, 18 time points including 6 time series with biological 

triplicate) are measured. The contribution ratio of each tissue at a given time, CV(i), CE(i), and 



CM(i), was calculated (Equation 1). To circumvent the effect of outlier, trimmed k time points 

are used. The Cv(i) and CE(i) were defined as the reciprocal of the concentration ratio. CW(i) was 

always 1 by definition. 

(𝑖𝑖 ∈ [1,𝑛𝑛],𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑛𝑛𝑐𝑐(0.1𝑛𝑛),𝑋𝑋 = {𝑀𝑀,𝑉𝑉,𝐸𝐸}): 

𝐶𝐶𝑉𝑉(𝑖𝑖) =
𝑊𝑊(𝑖𝑖)

𝑉𝑉(𝑖𝑖)
                                                    (1.1) 

𝐶𝐶𝐸𝐸(𝑖𝑖) =
𝑊𝑊(𝑖𝑖)

𝐸𝐸(𝑖𝑖)
                                                    (1.2) 

𝐶𝐶𝑀𝑀(𝑖𝑖) = 1 −
𝑊𝑊(𝑖𝑖)

𝑉𝑉(𝑖𝑖)
−
𝑊𝑊(𝑖𝑖)

𝐸𝐸(𝑖𝑖)
                              (1.3) 

The contribution ratio of each tissue was calculated by using the trimmed mean (Equation 2). 

𝐶𝐶𝑋𝑋 =
1

𝑛𝑛 − 2𝑘𝑘
� 𝐶𝐶𝑋𝑋(𝑖𝑖)

𝑛𝑛−𝑘𝑘

𝑖𝑖=𝑘𝑘+1

                              (2) 

The purity of each tissue at a given time P(i) was also calculated (Equation 3). These were 

calculated by subtracting the contamination ratio in each tissue. 

(𝑖𝑖 ∈ [1,𝑛𝑛],𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑛𝑛𝑐𝑐(0.1𝑛𝑛),𝑋𝑋 = {𝑀𝑀,𝑉𝑉,𝐸𝐸}): 

𝑃𝑃𝑉𝑉(𝑖𝑖) =
𝑉𝑉(𝑖𝑖)

𝐸𝐸(𝑖𝑖)
                                                    (3.1) 

𝑃𝑃𝐸𝐸(𝑖𝑖) =
𝐸𝐸(𝑖𝑖)

𝑉𝑉(𝑖𝑖)
                                                    (3.2) 

𝑃𝑃𝑀𝑀(𝑖𝑖) = 1 −
𝑀𝑀(𝑖𝑖)

𝑉𝑉(𝑖𝑖)
−
𝑀𝑀(𝑖𝑖)

𝐸𝐸(𝑖𝑖)
                              (3.3) 

The purity of each tissue was calculated by using the trimmed mean (Equation 4). 

𝑃𝑃𝑋𝑋 =
1

𝑛𝑛 − 2𝑘𝑘
� 𝑃𝑃𝑋𝑋(𝑖𝑖)

𝑛𝑛−𝑘𝑘

𝑖𝑖=𝑘𝑘+1

                              (4) 

 

Microarray analysis 



From Arabidopsis seedlings grown under LD and SD for nine days, whole leaf, mesophyll, 

and vasculature were isolated every four hours over two days. Total RNA was extracted using 

an RNeasy Plant Mini Kit (Qiagen) according to manufacturer's instructions. Experimental 

procedures and quality controls for microarray analysis were performed by the Laboratory of 

Cellular Biochemistry at the University of Tokyo, Japan. RIN values of whole leaf, 

mesophyll, and vasculature samples were 7.3±0.2, 7.1±0.3, and 6.4±0.3, respectively. 

Labeled cRNA was hybridized onto an Affymetrix Genechip® Arabidopsis Gene 1.0 ST 

Array using recommended procedures for hybridization, washing, and staining. The 

GeneChips were scanned, and data were normalized by the GCRMA method with R and 

Bioconductor29. Since the ST array does not include any mismatch (MM) probe sets, which 

are needed for GCRMA normalization, we applied antigenomic probe sets instead of MM 

probe sets. Normalized data were then analyzed with the HAYSTACK algorithm to identify 

the best-fit model, phase-of-expression, and to estimate a p-value and false-discovery rate 

(FDR) for each gene. 

 

In the global gene expression analysis, GCRMA normalized log2 scale data were 

preprocessed by mean centering. Then the average expression level in the vasculature at ZT0 

or ZT16 was set to 0. (Fig. 2a and Extended Data Fig. 5a, b). Global gene expression analysis 

was carried out with Subio Platform V1.15.4276 (Subio Inc., Amami, Japan). 

 

For the definition of mesophyll- and vasculature-rich genes, arithmetic mean expression 

levels of whole leaf and vasculature were calculated. Definitions of vasculature-rich genes 

used in Fig. 2b are as follow: 

[W × 2 < V, LD and SD], Average expression in vasculature is two-fold higher than in whole 

leaf both under LD and SD conditions; 



[W × 2 < V, LD or SD], Average expression in vasculature is higher than in whole leaf both 

under LD and SD conditions, and is two-fold higher either under LD or SD conditions; and 

[W < V, LD and SD], Average expression in vasculature is higher than in whole leaf both 

under LD and SD conditions. 

Mesophyll-rich genes had opposite definitions. 

 

In Fig. 2c, mesophyll- and vasculature-rich genes were defined as having two-fold higher or 

lower expressions in whole leaf compared to vasculature. 

 

A Z-score indicates how many standard deviations a value is from the mean (in this case how 

many genes which have a specific phase bin are enriched or diluted than expected from all 

non-biased cycling genes). 

 

For the percentage of overlapping genes (POG) analysis, the p-value of each cycling gene 

was obtained from the HAYSTACK analysis. Cycling genes were ranked by their p-values 

and the POGs between tissues were calculated for the top 100 to 11,000 genes. 

 

For the motif analysis, the combination of 2 day-length conditions and 3 tissues, with the 24 

phases of the day, created 144 independent phase bins, each is containing hundreds of co- 

regulated genes. The list of genes in each phase bin served as the input for the enumerative 

promoter- searching tool ELEMENT14 (http://www.mockler.org), which identified 

overrepresented 3-8mer ‘‘words’’ in 500bp of the upstream promoter regions. 

 

Plasmid construction 

For TOC1::LUC, the 3′ UTR of TOC1 was amplified by PCR from a Col-0 genomic DNA 



using the following primers: 

TOC1 3′-UTR-F, 5′-AGTCGACTGGATCCGGTACCAGATACACCAAG; and 

TOC1 3′-UTR-R, 5′-GCGGCCGCGAATTCGGGAGCGATTATATATAAT. 

The amplified fragment was cloned into the KpnI site of pENTR1A (no ccdb) plasmid using 

an In-Fusion HD Cloning Kit (TaKaRa). In the same way, the coding sequence of LUC plus, 

the 2,068bp of TOC1 promoter region and the nosT were cloned step-by-step using the KpnI 

or XbaI sites of the plasmid. PCR primers were: 

LUCplus-F, 5′- AGTCGACTGGATCCGGTACCATGGAAGACGCCAAAAACAT; 

LUCplus-R, 5′- TTCTTGGTGTATCTGCTTTACACGGCGATCTTTCCGC; 

TOC1-promoter-F, 5′-AGTCGACTGGATCCGGTACCCTTCTCTGAGGAATTTCATC; 

TOC1-promoter-R, 5′-TTTGGCGTCTTCCATGATCAGATTAACAACTAAAC; 

nosT-F, 5′-GCCGCACTCGAGATATCTAGAATCGTTCAAACATTTGGCAA; and 

nosT-R, 5′-TACAAGAAAGCTGGGTCTAGAGATCTAGTAACATAGATGAC. 

After sequencing, this construct was recombined with pFAST-G0130. 

These constructs were introduced into wild type cells, and transgenic plants were selected by 

fluorescence of T1 seeds. 

 

For tissue-specific luciferase reporter constructs, 240bp of the bZIP domain of chicken c-Jun 

and 291bp of A-Fos were amplified by linker-adaptor PCR using the following primers: 

Jun-F, 

5′-AAAGGTACCATGTACCCATACGATGTTCCAGATTACGCTCGGATCAAGGCGGA

GAGG; 

Jun-R, 5′- 

AAAGGTACCTCCTCCTCCTCCACTTCCTCCTCCTCCACTAAATGTTTGCAACTGCT

GCG; 



A-Fos-F, 5′-AAAGGTACCATGGACTACAAGGACGACGATGAC; and 

A-Fos-R, 5′- 

AAAGGTACCTCCTCCTCCTCCACTTCCTCCTCCTCCACTATCAGGGATCTTGCAGG

C. 

The amplified fragments were cloned into the KpnI site of pPZP211/NP/nosT31 and 

pPZP211/NP/35S-nosT (pPZP211/c-Jun, pPZP211/A-Fos, pPZP211/35S::c-Jun and 

pPZP211/35S::A-Fos). The N-terminus LUC plus (1-416 a.a.) and C-terminus LUC plus 

(397-550 a.a.) were then PCR amplified and cloned into the SacI site of the pPZP211/c-Jun, 

pPZP211/A-Fos, pPZP211/35S::c-Jun and pPZP211/35S::A-Fos, respectively (pPZP211/Jn, 

pPZP211/Ac, 35S::Jn and 35S::Ac). PCR primers were: 

nLUC-F, 5′-AAAAGAGCTCATGGAAGACGCCAAAAACATAAAG; 

nLUC-R, 5′-AAAAGAGCTCTTATCCATCCTTGTCAATCAAGGC; 

cLUC-F, 5′-AAAAGAGCTCATTATGTCCGGTTATGTAAACAATCC; and 

cLUC-R, 5′-AAAAGAGCTCTTACACGGCGATCTTTCCGC. 

The 2,068bp TOC1 promoter region, 1,134bp CCA1 promoter region, and the 3,498bp SUC2 

promoter region were amplified by PCR from Col-0 genomic DNA using the following 

primers: 

TOC1-promoter-F, 5′- AAAAAAGCTTCTTCTCTGAGGAATTTCATCAAAC; 

TOC1-promoter-R, 5′- AAAAAAGCTTGATCAGATTAACAACTAAACCCAC; 

CCA1-promoter-F, 5′- AAAAAAGCTTATCAAAGGAGGAAGAAGAAG; 

CCA1-promoter-R, 5′- AAAAAAGCTTCACTAAGCTCCTCTACAC; 

SUC2-promoter-F, 5′- AAAAAAGCTTTTTGTCATACATTTATTTGCCACAAG; and 

SUC2-promoter-R, 5′- AAAAAAGCTTATTTGACAAACCAAGAAAGTAAGAAAAAA. 

The amplified fragments were cloned into the HindIII or SalI site of pPZP211/Jn, and 

pPZP211/Ac (TOC1::Jn, CCA1::Jn and SUC2::Ac). 



These constructs were introduced into wild type, and transgenic plants were selected on 

plates containing kanamycin. T1 plants harboring Jn or Ac were crossed to establish plants 

for the TOC1/SUC2-TSLA, TOC1/CaMV 35S-TSLA, CCA1/SUC2-TSLA, CCA1/CaMV 

35S-TSLA, and CaMV 35S/SUC2-TSLA. 

 

For tissue-specific promoter (TSP)::CCA1-GFP constructs, the coding sequence of GFP was 

amplified by PCR using the following primers: 

GFP-F, 5′- CCCGAGCTCATGGTGAGCAAGGGCGAGGA; and 

GFP-R, 5′- CGACGAGCTCTTACTTGTACAGCTCGTCCA. 

The amplified fragment was digested with SacI and cloned into pPZP211/NP/nosT 

(pPZP211/NP/GFP). The tissue-specific promoters used in a previous study were amplified 

by PCR using the following primers: 

CCA1-promoter-F, 5′- AAAAAAGCTTATCAAAGGAGGAAGAAGAAG; 

CCA1-promoter-R, 5′- AAAAAAGCTTCACTAAGCTCCTCTACAC; 

CAB3-promoter-F, 5′- AAAACTCGAGGCCAAGTTCTATCTGTTTGTAA; 

CAB3-promoter-R, 5′- AAAAGTCGACTGAAACTTTTTGTGTTTTTTTTTTTTTTTG; 

SUC2-promoter-F, 5′- AAAAAAGCTTTTTGTCATACATTTATTTGCCACAAG; 

SUC2-promoter-R, 5′- AAAAAAGCTTATTTGACAAACCAAGAAAGTAAGAAAAAA; 

CER6-promoter-F, 5′- AAAAAAGCTTACTAAAAATTAAGGGAACTTGTC; 

CER6-promoter-R, 5′- AAAAAAGCTTCGTCGGAGAGTTTTAATGTATAATTG; 

UFO-promoter-F, 5′- AAAAAAGCTTACATATGTACTAGACGCAAATAATG; 

UFO-promoter-R, 5′- AAAAAAGCTTTTTAGCTGAAAAATGAAAAGATTTGG; 

TPS-CIN-promoter-F, 5′- AAAACTCGAGTTCCAACAAGGGCAGGAAATC; and 

TPS-CIN-promoter-R, 5′- 

AAAAGTCGACTGATTTAGTAGACTATTCTCTTATTCGTGGC. 



The amplified fragments were digested with HindIII (CCA1, SUC2, CER6, and UFO 

promoter) or XhoI/SalI (CAB3 and TPS-CIN promoter), and cloned into pPZP211/NP/GFP 

(pPZP211/NP/TSP-GFP). 

Finally the coding sequence of CCA1 was amplified from the Col-0 cDNA library using the 

following PCR primers: 

CCA1-F, 5′- AAAGGTACCATGGAGACAAATTCGTCTGG; and 

CCA1-R, 5′- AAAAAGGTACCTGTGGAAGCTTGAGTTTCCAAC. 

The amplified fragment was digested with KpnI and cloned into pPZP211/NP/TSP-GFP. 

The resulting constructs were introduced into wild type plants by Agrobacterium-mediated 

transformation. Transgenic plants were selected on agar plates containing 25 µg/mL 

kanamycin in the media. 

 

Detection of bioluminescence 

Two-week-old plants were sprayed with 2.5 mM luciferin (Biosynth) prepared in 0.005% 

(v/v) Triton X-100 (Sigma-Aldrich), and transferred to light/dark conditions one day before 

imaging. For photon counting, the emitted luminescence was recorded using a 

photomultiplier-tube-based bioluminescence monitoring system32. For luminescence imaging, 

the luminescence was observed using a LAS4000 system (Fujifilm). 

 

Accession numbers 

Sequence data from this article can be found in The Arabidopsis Information Resource (TAIR) 

databases under the following accession numbers: ACT2 (At3g18780), TUB5 (At1g20010), 

UBQ10 (At4g05320), APX3 (At4g35000), EF1α (At1g07940), IPP2 (At3g02780), ATX3 

(At3g61740), RPT1a (At1g53750), TRX3 (At5g42980), APA1 (At1g11910), Lhcb2.1 

(At2g05100), Sultr2;1 (At5g10180), GC1 (At1g22690), SUC2 (At1g22710), IRX3 



(At5g17420), WOX4 (At1g46480), AtHB8 (At4g32880), COR15A (At2g42540), ADH1 

(At1g77120), RD29A (At5g25310), ENODL9 (At3g20570), FT (At1g65480), CAB3 

(At1g29910), CA1 (At3g01500), KAN1 (At5g16560), TOC1 (At5g61380), CCA1 

(At2g46830), LHY (At1g01060), ELF3 (At2g25930), ELF4 (At2g40080), LUX (At3g46640), 

PRR7 (At5g02810), PRR9 (At2g46790), CER6 (At1g68530), UFO (At1g30950), and 

TPS-CIN (At3g25820 / At3g25830). 
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Extended Data Table 1 | GO Slim term enrichment analysis 

p-values are obtained based on Fisher’s exact test. Lower p-value indicate nonrandom 

correlation between whole genome and mesophyll- or vasculature-rich genes. 

 



Extended Data Figure 1 | Optimization and validation of gene expression analysis in 

isolated tissues.  

a, b, Relationship between enzyme concentration and opacity of the enzyme solutions (a) or 

processing time for vasculature and epidermis isolation (b). Higher concentrations of enzyme 

(>2%) lead to lower handling ability during tissue isolation because of its opacity (gray box). 

Mean±SD (n=6). c, The expression levels of the 10 reference genes in whole leaves, 

mesophyll, and vasculature were detected under long day (LD) and short day (SD) conditions, 

and then the average expression stabilities M were calculated according to Vandesompele’s 

method9. We chose ACTIN2 (ACT2), TUBULIN5 (TUB5), POLYUBIQUITIN10 (UBQ10), 

ELONGATION FACTOR1α (EF1α), ASCORBATE PEROXIDASE 3 (APX3)33, and 

ISOPENTENYL PYROPHOSPHATE:DIMETHYLALLYL PYROPHOSPHATE ISOMERASE 2 

(IPP2)33 as commonly used reference genes, and we also chose ARABIDOPSIS TRITHORAX 

3 (ATX3), REGULATORY PARTICLE TRIPLE-A 1A (RPT1a), THIOREDOXIN 3 (TRX3), and 

ASPARTIC PROTEINASE A1 (APA1) based on microarray analysis19. d, The expression of 

tissue-specific marker genes was detected in vasculature from plants grown under LD for 10 

days. Sultr2;1 was used as a marker of phloem companion cell. WUSCHEL RELATED 

HOMEOBOX 4 (WOX4) and HOMEOBOX GENE 8 (AtHB8) were used as markers of 

procambium/cambium. IRREGULAR XYLEM 3 (IRX3) was used as a marker of xylem. Gene 

expression levels were calculated relative to Lhcb2.1 expression. e, Total RNA was extracted 

from 10 cotyledons and 10 vasculatures grown under LD for 10 days. Extracted RNA was 

quantified and RNA content per single cotyledon and vasculature was estimated. n=23. f, 

Expression of TOC1 and CCA1 in whole leaves, mesophyll, vasculature, and epidermis. 

Plants were grown under LD for 10 days, and whole leaves, mesophyll, vasculature, and 

epidermis were collected and/or isolated every four hours. g, The expression level of the 

stress-induced genes (COLD-REGULATED 15A (COR15A), ALCOHOL DEHYDROGENASE 



1 (ADH1), and RESPONSIVE TO DESSICATION 29A (RD29A)) in isolated mesophyll and 

vasculature with or without 50 µg/ml of α-Amanitin (an inhibitor of RNA polymerase II). d, f, 

g, The geometric mean of APA1 and IPP2 was used as a control. Mean±SEM (n=3). 

 

Extended Data Figure 2 | Models used to identify cycling transcripts.  

Models used in the HAYSTACK analysis were named Spike, Rigid, Cos, Mt, AsyMt1, 

AsyMt2, hBox, Box1, Box1.5, and Box2. All models are shifted in 1 h increments, and diel 

peak at ZT0 (black) and ZT2 (gray) are shown as examples. Underlined models were used in a 

previous study19. 

 

Extended Data Figure 3 | Number of cycling genes, percentage of adopted models, and 

relationship between amplitude and genes called cycling in each condition.  

a, b, Number of genes that cycle under LD or SD in each tissue. c, Percentage of genes called 

cycling in a number of conditions. 4% of genes were not rhythmic in any condition. The 

remaining 96% of genes were broken down by the number of conditions for which they were 

called cycling. d, Frequency of model name adopted by the HAYSTACK analysis. Mt, 

AsyMt1, and AsyMt2 are integrated as Mt; and hBox, Box1, Box1.5, and Box2 are integrated 

as Box. e, Comparison of the percentage of genes called cycling versus genes not called 

cycling, by amplitude. Amplitude was estimated by dividing the maximum by the mean 

expression value across the time course. 

 

Extended Data Figure 4 | Validation of the sensitivity and specificity of the microarray 

analysis. 

a, b, Expression profiles of mesophyll- (a) and vasculature-specific marker genes (b) under LD 

(left) and SD (right). CAB3, CARBONIC ANHYDRASE 1 (CA1)34, and KANADI 1 (KAN1) 



were applied as mesophyll markers. SUC2, FT, and EARLY NODULIN-LIKE PROTEIN 9 

(ENODL9)35 were applied as vasculature markers. c, Diel and inter-tissue variations in the 

expression of the reference genes APA1 and IPP2. 

 

Extended Data Figure 5 | Relative gene expression levels, percentage of phase shift genes 

and percent of overlapping genes.  

a, b, Relative gene expression levels in whole leaf, mesophyll, and vasculature under SD (a) 

and LD (b). The average expression level in vasculature at ZT16 (a) and ZT0 (b) was set to 0. 

Blue and green colored genes indicate higher and lower expression than average, respectively. 

c, Gene expression patterns of the PRR7, TOC1, and ELF4 in whole leaf, mesophyll, and 

vasculature under LD and SD. d, Percentage of genes showing a given phase shift when 

comparing two given tissues under LD and SD. Phase shifts plotted as positive are phase delay. 

e, Phase shift topology graph with phase shift of the target tissue on the y-axis and the reference 

tissue phase bin on the x-axis. Heatmap indicates percent of genes that are rhythmic between 

both conditions. f, Percentage of overlapping genes (POG) between any two tissues under LD 

and SD. The p-value resulting from the HAYSTACK analysis was used for gene ranking. 

 

Extended Data Figure 6 | Z-score profiles of cis-regulatory elements in each tissue.  

Z-score profiles of the long day vasculature element (LVE), short day vasculature element 

(SVE), evening element (EE), Gbox, telo-box (TBX), starch box (SBX), and protein box 

(PBX) under LD and SD are shown. The horizontal dotted line indicates the threshold 

(FDR<1%). 

 

Extended Data Figure 7 | Luciferase complementation assay of TOC1/CaMV 35S-, 

TOC1/SUC2-, CCA1/CaMV 35S-, CCA1/SUC2-, and CaMV 35S/SUC2-TSLA.  



a-c, Real time monitoring of the luminescence of 10-day-old TOC1/SUC2-TSLA #2 (n=9) and 

TOC1/CaMV 35S-TSLA #4 (n=12) (a), CCA1/SUC2-TSLA #11 (n=18) and CCA1/CaMV 

35S-TSLA #1 (n=12) (b), and CaMV 35S/SUC2-TSLA #9 (n=12) (c) seedlings under L/D or 

free-running conditions. CT; circadian time. Signals after subtraction of background noise are 

shown. Mean±SD. cps; counts per second. cp30s; counts per 30 second. d, Period length of the 

TSLA lines shown in Fig. 3e, f and Extended Data Fig. 7a, b are calculated by the FFT-NLLS36. 

Mean±95% confidence interval. 

 

Extended Data Figure 8 | Clock genes expression in whole leaf and vasculature under 

L/D and continuous light free-running conditions. 

a, Ratio between the amplitude in the vasculature with respect to amplitude in whole leaf 

extracted from Fig. 4a (V(Peak-Trough)/W(Peak-Trough)). Mean±SEM. b, c, TOC1, ELF4, 

and CCA1 expression under L/D and free-running conditions in whole leaves (b) and 

vasculature (c). Plants were entrained for 5 days and shifted into continuous light condition for 

1 week. ZT; Zeitgeber time. CT; circadian time. Mean±SD (n=3). To validate the robustness of 

each gene, the highest expression level in each gene in each tissue is set to 1. d, Ratio between 

the amplitude of TOC1::LUC with respect the amplitude of TOC1::LUC; SUC2::CCA1 #18 

extracted from Fig. 4b. Mean±SEM. 

 

Extended Data Figure 9 | Organ- and tissue-specific expression of CCA1-GFP driven by 

tissue-specific promoters. 

Expression levels of CCA1-GFP in a specific organ (a) and tissue (b). Plants were grown for 

10 days under L/D condition and seedlings were separated into each organ and tissue at ZT0. 

Based on contamination rate obtained from Fig. 1d, cross-contamination adjusted signals were 

shown (b). For the CCA1-GFP detection, GFP expression was measured by qPCR and the 



geometric mean of APA1 and IPP2 was used as a control. The highest values are set as 1. 

Mean±SEM (n=3). 
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Extended Data Figure 1
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Extended Data Figure 51 Relative gene expression levels, percentage of phase shif1 genes and percent of overlapping genes. 
a, b, Relative gene expression levels in whole lcat: mesophyll, and vasculaturc under SD (a) ai1d LD (b). The average expression level in vasculature at ZT 16 
(a) and ZTO (b) was set to 0. Blue and green colored genes indicate higher and lower expression than average. respectively. c, Gene expression patterns of 1he 
PRR7. TOC!, and ELF4 in whole leaf, mesophyll. and vasculature under LO and SD. d, Perccmage of genes showing a given phase shilt when comparing two 
g iven 1issues under LO and SD. Phase shills plotted as positive are phase delay. c, Phase shitl topolog_v graph with phase shitl of the target tissue on the y-axis 
and the reference tissue phase bin on the x-axis. Heatmap indicates percent of genes that arc rhythmic between both condit ions. f, Percentage of overlapping 
genes ( POG) between any two tissues under LO and SD. The p-value resulting from the HAYSTACK analys is was used fo r gene ranking. 
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Extended Data Figure 6 I Z-score profiles of cis-regulatory elements in each tissue. 

Z-score profiles of the long day vasculature element (LYE), short day vasculature element (SVE), evening 
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shown. The horizontal dotted line indicates the threshold (FDR< l %). 
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Extended Data Figure 91 Organ- and tissue-specific expression of CCA J-GFP driven by tissue-specific promoters. 
Expression levels of CCA 1-GFP in a specific organ (a ) and tissue (b ). Plants were grown for I 0 days under LID condit ion and seedlings were separated into each 
organ and ti ssue at ZTO. Based on con tarn ination rate obtained from Fig. Id, cross-contamination adj usted s igna ls were shown (b ). The geometric mean of APA 1 
and JPP2 was used as a control. The highest values are set as I . Mean±SEM (n=3). 



Extended Data Table 1 I Gene ontology slim term enrichment analysis 

Whole genome Mesophyll-rich genes Vasculature-rich genes 

Functional category Gene count Gene count Pvalue Gene count Pvalue 

Other cellular processes 13639 160 5.01 x 10 
-7 

129 0.808 

Other metabolic processes 12844 159 7.56 x 10 
-9 

107 0.995 

Unknown biological processes 9047 35 1 80 0.913 

Protein metabolism 4970 36 0.929 32 0.999 

Response to stress 4092 56 5.48 x 1 ff
4 

49 0.0948 

Developmental processes 3844 47 0.0138 50 0.0278 

Response to abiotic or biotic stimulus 3739 73 2.88 x 1ff
11 

43 0.174 

Other biological processes 3555 43 0.0217 57 1.72 x 1 ff
4 

Transport 3497 68 2.14 x 1ff
10 

42 0.113 

Cell organization and biogenesis 3328 43 0.00752 27 0.894 

Transcription,DNA-dependent 2547 15 0.970 20 0.893 

Signal transduction 2002 17 0.613 20 0.526 

DNA or RNA metabolism 919 0 1 6 0.898 

Electron transport or energy pathways 592 25 1.46 x 1 ff
10 

4 0.843 
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