

Title	Perivascular leukocyte clusters are essential for efficient activation of effector T cells in the skin.
Author(s)	Natsuaki, Yohei; Egawa, Gyohei; Nakamizo, Satoshi; Ono, Sachiko; Hanakawa, Sho; Okada, Takaharu; Kusuba, Nobuhiro; Otsuka, Atsushi; Kitoh, Akihiko; Honda, Tetsuya; Nakajima, Saeko; Tsuchiya, Soken; Sugimoto, Yukihiko; Ishii, Ken J; Tsutsui, Hiroko; Yagita, Hideo; Iwakura, Yoichiro; Kubo, Masato; Ng, Lai Guan; Hashimoto, Takashi; Fuentes, Judilyn; Guttman-Yassky, Emma; Miyachi, Yoshiki; Kabashima, Kenji
Citation	Nature immunology (2014), 15: 1064-1069
Issue Date	2014-09-21
URL	http://hdl.handle.net/2433/189891
Right	© 2014 Nature America, Inc.; 許諾条件により本文は2015- 03-22に公開.
Туре	Journal Article
Textversion	author

1 Perivascular leukocyte clusters are essential for efficient effector T cell activation in the

2 skin

3

- 4 Yohei Natsuaki^{1,13,15}, Gyohei Egawa^{1,15}, Satoshi Nakamizo¹, Sachiko Ono¹, Sho Hanakawa¹,
- 5 Takaharu Okada², Nobuhiro Kusuba¹, Atsushi Otsuka¹, Akihiko Kitoh¹, Tetsuya Honda¹,
- 6 Saeko Nakajima¹, Soken Tsuchiya³, Yukihiko Sugimoto³, Ken J. Ishii^{4,5}, Hiroko Tsutsui⁶,
- Hideo Yagita⁷, Yoichiro Iwakura^{8,9}, Masato Kubo^{10,11}, Lai guan Ng¹², Takashi Hashimoto¹³,
- 8 Judilyn Fuentes¹⁴, Emma Guttman-Yassky¹⁴, Yoshiki Miyachi¹, and Kenji Kabashima¹

9

- 11 Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
- ² Research Unit for Immunodynamics, RIKEN Research Center for Allergy and Immunology,
- 13 Kanagawa, Japan.
- ³ Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences,
- 15 Kumamoto University, Kumamoto, Japan.
- ⁴ Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation, Osaka,
- 17 Japan.
- ⁵ Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFReC), Osaka
- 19 University, Osaka, Japan.
- 20 ⁶ Departments of Microbiology, Hyogo College of Medicine, Hyogo, Japan.
- ⁷ Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan.
- ⁸ Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
- ⁹ Medical Mycology Research Center, Chiba University, Chiba, Japan
- 24 ¹⁰Laboratory for Cytokine Regulation, RIKEN center for Integrative Medical Science (IMS),
- 25 Kanagawa, Japan.
- 26 ¹¹ Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo
- 27 University of Science, Chiba, Japan
- ¹² Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and
- 29 Research), Biopolis, Singapore
- 30 ¹³ Department of Dermatology, Kurume University School of Medicine, Fukuoka, Japan.
- 31 ¹⁴Department of Dermatology, Icahn School of Medicine at Mount Sinai School Medical
- 32 Center, New York, NY.
- 33 ¹⁵ These authors contributed equally to this work.

35	Correspondence to	Kenii Kabachima	MD PhD
5 0	Correspondence to	Kenji Kabasiiina,	MID, FIID

- 36 Department of Dermatology, Kyoto University Graduate School of Medicine
- 37 54 Shogoin-Kawahara, Kyoto 606-8507, Japan
- 38 Phone: +81-75-751-3605; Fax: +81-75-761-3002
- 39 E-mail: kaba@kuhp.kyoto-u.ac.jp

It remains largely unclear how antigen-presenting cells encounter effector or memory T cells 41 efficiently in the periphery. Here we used a murine contact hypersensitivity model and 42 showed that upon epicutaneous antigen challenge, dendritic cells (DCs) formed clusters with 43 effector T cells in dermal perivascular areas to promote in situ proliferation and activation of 44 45 skin T cells in an antigen- and integrin LFA-1-dependent manner. We found that DCs accumulated in perivascular areas and DC clustering was abrogated by macrophage-depletion. 46 Interleukin 1α (IL- 1α) treatment induced the production of the chemokine CXCL2 from 47 dermal macrophages, and DC clustering was suppressed by blockade of either IL-1 receptor 48 (IL-1R) or CXCR2, the receptor for CXCL2. These findings suggest that dermal leukocyte 49 cluster is an essential structure for elicitation of the acquired cutaneous immunity. 50

52 Boundary tissues, including the skin, are continually exposed to foreign antigens, which must be monitored and possibly eliminated. Upon foreign antigen exposure, skin dendritic cells **5**3 54 (DCs), including epidermal Langerhans cells (LCs), capture the antigens and migrate to draining lymph nodes (LNs) where antigen presentation to naïve T cells occurs mainly in the 55 56 T cell zone. In this location naïve T cells accumulation in the vicinity of DCs is mediated by CCR7 signaling¹. The T cell zone in the draining LNs facilitates the efficient encounter of 57 58 antigen-bearing DCs with antigen-specific naïve T cells. 59 As opposed to LNs, the majority of skin T cells, including infiltrating skin T cells and skin resident T cells, have an effector-memory phenotype². In addition, antigen presentation to 60 skin T cells by antigen-presenting cells (APCs) is the crucial step in elicitation of acquired 61 62 skin immune responses, such as contact dermatitis. Therefore, we hypothesize that 63 antigen-presentation in the skin should be substantially different from that in LNs. Previous studies using murine contact hypersensitivity (CHS), as a model of human contact dermatitis, 64 have revealed that dermal DCs (dDCs), but not epidermal LCs, have a pivotal role in the 65 transport and presentation of antigen to the LNs³. In the skin, however, it remains unclear 66 which subset of APCs presents antigens to skin T cells, and how skin T cells efficiently 67 encounter APCs. In addition, dermal macrophages are key modulators in CHS response⁴, but 68 the precise mechanisms by which macrophages are involved in antigen recognition in the 69 skin have not yet been clarified. These unsolved questions prompted us to focus where skin T 70 cells recognize antigens and how skin T cells are activated in the elicitation phase of acquired 71 72 cutaneous immune responses, such as CHS. 73 When keratinocytes encounter foreign antigens, they immediately produce various pro-inflammatory mediators such as interleukin 1(IL-1) and tumor necrosis factor (TNF) in 74 an antigen-nonspecific manner^{5, 6}. IL-1 family proteins are considered important modulators 75 in CHS responses, because hapten-specific T cell activation was shown to be impaired in 76 77 IL-1 α and IL-1 β -deficient mice, but not in TNF-deficient mice⁷. IL-1 α and IL-1 β are 78 agonistic ligands of the IL-1 receptor (IL-1R). While IL-1α is stored in keratinocytes and secreted upon exposure to nonspecific stimuli, IL-1\beta is produced mainly by epidermal LCs 79 80 and dermal mast cells in an inflammasome-dependent manner via NALP3 and caspase 1/11 81 activation. Because these pro-inflammatory mediators are crucial in the initiation of acquired immune responses such as CHS, it is of great interest to understand how IL-1 modulates 82 83 antigen recognition by skin T cells. Using a murine CHS model, here we examined how DCs and effector T cells encounter 84

each other efficiently in the skin. We found that upon encounter with antigenic stimuli dDCs 85 formed clusters in which effector T cells were activated and proliferated in an 86 antigen-dependent manner. These DC-T cell clusters were initiated by skin macrophages via 87 IL-1R signaling and were essential for the establishment of cutaneous acquired immune 88 89 responses. 90 91 **RESULTS** 92 93 DC-T cell clusters are formed at antigen-challenged sites To explore immune cell accumulation in the skin, we examined the clinical and histological 94 features of elicitation of human allergic contact dermatitis. Allergic contact dermatitis is the 95 96 most common of eczematous skin diseases, affecting 15–20% of the general population worldwide⁸, and is mediated by T cells. Although antigens may be applied relatively evenly 97 over the surface of skin, clinical manifestations commonly include discretely distributed 98 small vesicles (Fig. 1a), suggesting an uneven occurrence of intense inflammation. 99 100 Histological examination of allergic contact dermatitis showed spongiosis, intercellular edema in the epidermis and co-localization of perivascular infiltrates of CD3+T cells and 101 spotty accumulation of CD11c⁺ DCs in the dermis, especially beneath the vesicles (**Fig. 1b**). 102 These findings led us to hypothesize that focal accumulation of T cells and DCs in the dermis 103 104 may contribute to vesicle formation in early eczema. To characterize the DC-T cell clusters in elicitation reactions, we obtained time-lapse 105 106 images in a murine model of CHS using two-photon microscopy. T cells were isolated from the draining LNs of 2, 4-dinitrofluorobenzene (DNFB)-sensitized mice, labeled and 107 108 transferred into CD11c-yellow fluorescent protein (YFP) mice. In the steady state, YFP⁺ dDCs distributed diffusely (Fig. 1c), representing nondirected movement in a random fashion, 109 110 as reported previously (Supplementary Fig. 1). After topical challenge with DNFB, YFP⁺ dDCs transiently increased their velocities and formed clusters in the dermis, with the clusters 111 becoming larger and more evident after 24 h (Fig. 1c and Supplementary Movie 1). At the 112 same time, transferred T cells accumulated in the DC clusters and interacted with YFP+ DCs 113 for several hours (Fig. 1d and Supplementary Movie 2). Thus, the accumulation of DCs and 114 T cells in the dermis is observed in mice during CHS responses. We observed that the 115 intercellular spaces between keratinocytes overlying the DC–T cell clusters in the dermis 116 117 were enlarged (Fig. 1e), replicating observations in human allergic contact dermatitis (Fig. 1b). 118

119	We next sought to determine which of the two major DC populations in skin, epidermal LCs
120	or dDCs, were essential for the elicitation of CHS. To deplete all cutaneous DC subsets,
121	Langerin-diphtheria toxin receptor (DTR) mice were transferred with bone marrow (BM)
122	cells from CD11c-DTR mice. To selectively deplete LCs or dDCs, Langerin-DTR or
123	C57BL/6 mice were transferred with BM cells from C57BL/6 mice or CD11c-DTR mice,
124	respectively (Supplementary Fig. 2a, b). We injected diphtheria toxin (DT) for depletion of
125	each DC subset before elicitation and found that ear swelling and inflammatory histological
126	findings were significantly attenuated in the absence of dDCs, but not in the absence of LCs
127	(Fig. 1f and Supplementary Fig. 2c). In addition, interferon (IFN)-γ production in skin T
128	cells was strongly suppressed in dDC-depleted mice (Fig. 1g). These results suggest that
129	dDCs, and not epidermal LCs, are essential for T cell activation and the elicitation of CHS
130	responses.
131	
132	Skin effector T cells proliferate in situ in an antigen-dependent manner
133	To evaluate the impact of DC-T cell clusters in the dermis, we determined whether T cells
134	had acquired the ability to proliferate via DC-T cell accumulation in the dermis. CD4+ or
135	CD8 ⁺ T cells purified from the draining LNs of DNFB-sensitized mice were labeled with
136	CellTrace TM Violet and transferred into naïve mice. Twenty-four hours after DNFB
137	application, we collected the skin to evaluate T cell proliferation by dilution of fluorescent
138	intensity. The majority of infiltrating T cells were CD44 ⁺ CD62L ⁻ effector T cells
139	(Supplementary Fig. 2d). Among the infiltrating T cells, CD8 ⁺ T cells proliferated actively,
140	whereas the CD4 ⁺ T cells showed low proliferative potency (Fig. 2a). This T cell
141	proliferation was antigen-dependent, because 2,4,6-trinitrochlorobenzene (TNCB)-sensitized
142	T cells exhibited low proliferative activities in response to DNFB application (Fig. 2a). In
143	line with this finding, the DC-T cell conjugation time was prolonged in the presence of
144	cognate antigens (Fig. 2b), and the T cells interacting with DCs within DC-T cell clusters
145	proliferated (Fig. 2c and Supplementary Movie 3). Our findings indicate that skin effector T
146	cells conjugate with DCs and proliferate in situ in an antigen-dependent manner.
147	
148	CD8 ⁺ T cell activation in DC-T cell clusters is LFA-1 dependent
149	A sustained interaction between DCs and naïve T cells, which is known as an immunological
150	synapse, is maintained by cell adhesion molecules ⁹ . Particularly, the integrin LFA-1 on T

cells binds to cell surface glycoproteins, such as intercellular adhesion molecule-1 (ICAM-1),

on APCs, which is essential for naïve T cell proliferation and activation during antigen

153	recognition in the LNs. To examine whether LFA-1-ICAM-1 interactions are required for
154	effector T cell activation in DC-T cell clusters in the skin, an anti-LFA-1 neutralizing
155	antibody, KBA, was intravenously injected 14 h after elicitation with DNFB in CHS. KBA
156	administration reduced T cells accumulation in the dermis (Fig. 3a). The velocity of T cells in
157	the cluster was $0.65 \pm 0.29 \mu m/min$ 14 h after DNFB challenge and increased up to 3-fold
158	$(1.64\pm1.54\mu\text{m/min})$ at 8 h after treatment with KBA, while it was not affected by treatment
159	with an isotype-matched control IgG (Fig. 3b). At the outside of clusters, T cells smoothly
160	migrated at the mean velocity of $2.95 \pm 1.19 \mu\text{m/min}$, consistent with previous results 10 , and
161	was not affected by control-IgG treatment (data not shown). Treatment with KBA also
162	attenuated ear swelling significantly (Fig. 3c), as well as IFN-γ production by skin CD8 ⁺ T
163	cells (Fig. 3d, e). These results suggest that DC-effector T cell conjugates are
164	integrin-dependent, similar to the DC-naïve T cell interactions in draining LNs.
165	
166	Skin macrophages are required for dDC clustering
167	We next examined the initiation factors of DC-T cell accumulation. dDC clusters were also
168	formed in response to the initial application of hapten (sensitization phase), but their number
169	was significantly decreased 48 h after sensitization, while DC clusters persisted for 48 h in
170	the elicitation phase (Fig. 4a and Supplementary Fig. 3a). These DC clusters were
171	abrogated 7 days after DNFB application (data not shown). These observations suggest that
172	DC-T cell accumulation is initiated by DC clustering, which then induces the accumulation,
173	proliferation and activation of T cells, a process that depends on the presence of
174	antigen-specific effector T cells in situ. DC clusters were also induced by solvents such as
175	acetone or adjuvants such as dibutylphthalic acid and Mycobacterium bovis BCG-inoculation
176	(Supplementary Fig. 3b, c). In addition, DC clusters were observed not only in the ear skin,
177	but also in other regions such as the back skin and the footpad (Supplementary Fig. 3d).
178	These results suggest that DC cluster formation is not an ear-specific event, but a general
179	mechanism during skin inflammation.
180	The initial DC clusters were not decreased in recombination activating gene 2
181	(RAG2)-deficient mice, in which T and B cells are absent, in lymphoid tissue inducer
182	cell-deficient <i>aly/aly</i> mice ¹¹ or in mast cell or basophil-depleted mice, using MasTRECK or
183	BasTRECK mice ^{12, 13} (Fig. 4b). In contrast, DC clusters were abrogated in C57BL/6 mice
184	transferred with BM from LysM-DTR mice, in which both macrophages and neutrophils

185	were depleted by treatment with DT (Fig. 4b, c). The depletion of neutrophils alone, by
186	administration of anti-Ly6G antibody (1A8), did not interfere with DC cluster formation (Fig.
187	4b), which suggested that macrophages, but not neutrophils, were required during the
188	formation of DC clusters. Of note, DC cluster formation was not attenuated by anti-LFA-1
189	neutralizing KBA antibody treatment (Supplementary Fig. 3e, f), suggesting that
190	macrophages-DCs interaction were LFA-1-independent. Consistent with the DC cluster
191	formation, the elicitation of the CHS response (Fig. 4d) and IFN- γ production by skin T cells
192	(Fig. 4e) were significantly suppressed in LysM-DTR BM chimeric mice treated with DT.
193	Thus, skin macrophages were required for formation of DC clusters, which was necessary for
194	T cell activation and the elicitation of CHS.
195	
196	Macrophages are required for perivascular DCs clustering
197	To examine the kinetics of dermal macrophage and DCs in vivo, we visualized them by
198	two-photon microscopy. In vivo labeling of blood vessels with tetramethylrhodamine
199	isothiocyanate (TRITC)-conjugated dextran revealed that dDCs distributed diffusely in the
200	steady state (Fig. 5a, left). After hapten-application to the ear of previously sensitized mice,
201	dDCs accumulated mainly around post-capillary venules (Fig. 5a, right and Fig. 5b).
202	Time-lapse imaging revealed that some of dDCs showed directional migration toward
203	TRITC-positive cells that were labeled red by incorporating extravasated TRITC-dextran
204	(Fig. 5c and Supplementary Movie 4). The majority of TRITC-positive cells were F4/80 ⁺
205	CD11b ⁺ macrophages (Supplementary Fig. 4a). These observations prompted us to examine
206	the role of macrophages in DC accumulation. We used a chemotaxis assay to determine
207	whether macrophages attracted the DCs. dDCs and dermal macrophages were isolated from
208	dermal skin cell suspensions and incubated in a transwell assay for 12 h. dDCs placed in the
209	upper wells efficiently migrated to the lower wells that contain dermal macrophages (Fig. 5d)
210	But this dDC migration was not observed when macrophages were absent in the lower wells
211	(Fig. 5d). Thus, dermal macrophages have a capacity to attract dDCs in vitro, which may
212	lead to dDC accumulation around post-capillary venules.
213	
214	IL-1α is required for DC cluster formation upon antigen challenge
215	We attempted to explore the underlying mechanism of DC cluster formation. We observed
216	that DC accumulation occurred during the first application of hapten (Fig. 4a), which
217	suggested that an antigen-nonspecific mechanism, such as production of the

218	pro-inflammatory mediator IL-1, may initiate DC clustering. Hapten-induced DC
219	accumulation was not decreased in NALP3- or caspase-1-11-deficient mice, but was
220	decreased significantly in IL-1R1-deficient mice, which lack a receptor for IL-1 α , IL-1 β , and
221	IL-1R antagonist, or after the subcutaneous administration of an IL-1R antagonist (Fig. 6a,b).
222	Consistent with these observations, the elicitation of CHS and IFN- γ production by skin T
223	cells were significantly attenuated in mice that lack both IL-1 α and IL-1 β (Fig. 6c, d). In
224	addition, the formation of dDC clusters was suppressed significantly by the subcutaneous
225	injection of an anti-IL-1 α neutralizing antibody, but only marginally by an anti-IL-1 β
226	neutralizing antibody (Fig. 6b). Because keratinocytes are known to produce IL-1α upon
227	hapten application ¹⁴ , our results suggest that IL-1α has a major role in mediating the
228	formation of DC clustering.
229	
230	M2 macrophages produce CXCL2 to attract dDCs
231	To further characterize how macrophages attract dDCs, we examined Il1r1 expression in
232	BM-derived M1 and M2 macrophages, classified as such based on the differential mRNA
233	expression of <i>Tnf</i> , <i>Nos2</i> , <i>Il12a</i> , <i>Arg1</i> , <i>Retnla</i> and <i>Chi313</i> (Supplementary Fig. 4b) ¹⁵ . We
234	found that M2 macrophages had higher expression of Il1r1 mRNA compared to M1
235	macrophages (Fig. 6e). We also found that the subcutaneous injection of pertussis toxin, a
236	inhibitory regulative G protein (Gi)-specific inhibitor, almost completely abrogated DC
237	cluster formation in response to hapten-stimuli (Fig. 6b) suggesting that signaling through
238	Gi-coupled chemokines was required for DC cluster formation.
239	We next used microarrays to examine the effect of IL-1 α on the expression of chemokines
240	in M1 and M2 macrophages. IL-1 α treatment did not enhance chemokine expression in M1
241	macrophages, whereas it increased Ccl5, Ccl17, Ccl22 and Cxcl2 mRNA expression in M2
242	macrophages (Supplementary Table 1). Among them, Cxcl2 expression was enhanced most
243	prominently by treatment with IL-1 α , a result validated by real-time polymerase chain
244	reaction (PCR) analysis (Fig. 6f). Consistently, Cxcl2 mRNA expression was significantly
245	increased in DNFB-painted skin (Supplementary Fig. 5a) and was not affected by
246	neutrophil depletion with 1A8 (Supplementary Fig. 5b, c). In addition, IL-1 α -treated dermal
247	macrophages produced Cxcl2 mRNA in vitro (Supplementary Fig. 5d). These results
248	suggest that dermal macrophages, but not neutrophils, are the major source of CXCL2 during
249	CHS. We also detected high expression of the mRNA for Cxcr2, the receptor for CXCL2, in
250	DCs (Supplementary Fig. 5e), which prompted us to examine the role of CXCR2 on dDCs.

The formation of DC clusters in response to hapten stimuli was substantially reduced by the 251intraperitoneal administration of the CXCR2 inhibitor SB265610 ¹⁶ (Fig. 6g). In addition, 252SB265610-treatment during the elicitation of CHS inhibited ear swelling (**Fig. 6h**) and IFN-y 253254production by skin T cells (**Fig. 6i**). Taken together, in the absence of effector T cells specific for a cognate antigen (i.e. in the 255 sensitization phase of CHS), DC clustering is a transient event, and hapten-carrying DCs 256 migrate into draining LNs to establish sensitization. On the other hand, in the presence of the 257 antigen and antigen-specific effector or memory T cells, DC clustering is followed by T cell 258accumulation (i.e. in the elicitation phase of CHS) (Supplementary Fig. 6). Thus, dermal 259 macrophages are essential for initiating DC cluster formation through the production of 260CXCL2, and that DC clustering plays an important role for efficient activation of skin T cells. 261262263 **DISCUSSION** 264Although the mechanistic events in the sensitization phase in cutaneous immunity have been 265 studied thoroughly over 20 years ^{17, 18}, what types of immunological events occur during the 266elicitation phases in the skin has remained unclear. Here we describe the antigen-dependent 267 induction of DC and T cell clusters in the skin in a murine model of CHS and show that 268 269

effector T cells-DCs interactions in these clusters are required to induce efficient antigen-specific immune responses in the skin. We show that dDCs, but not epidermal LCs, are essential for antigen presentation to skin effector T cells and they exhibit sustained association with effector T cells in an antigen- and LFA-1-dependent manner. IL-1a, and not the inflammasome, initiates the formation of these perivascular DC clusters.

270

271

272

273

274

275

276

277

278

279

280

281

282

283

Epidermal contact with antigens triggers release of IL-1 in the skin¹⁴. Previous studies have shown that the epidermal keratinocytes constitute a major reservoir of IL- $1\alpha^6$ and mechanical stress to keratinocytes permits release of large amounts of IL-1 α even in the absence of cell death 19 . The cellular source of IL-1 α in this process remains unclear. We show that IL-1 α activates macrophages that subsequently attract dDCs, mainly to areas around post-capillary venules, where effector T cells are known to transmigrate from the blood into the skin²⁰. In the presence of the antigen and antigen-specific effector T cells, DC clustering is followed by T cell accumulation. Therefore, we propose that these perivascular dDC clusters may provide antigen-presentation sites for efficient effector T cell activation. This is suggested by the observations that CHS responses and intracutaneous T cell activation were attenuated

284significantly in the absence of these clusters, in condition of macrophage depletion or inhibiting integrin functions, IL-1R signaling^{21, 22} or CXCR2 signaling²³. 285In contrast to the skin, antigen presentations in other peripheral barrier tissues is relatively 286 well understood. In submucosal areas, specific sentinel lymphoid structures called 287mucosa-associated lymphoid tissue (MALT), serve as peripheral antigen presentation sites²⁴, 288 and lymphoid follicles are present in the normal bronchi (bronchus-associated lymphoid 289 290 tissue; BALT). These structures serve as antigen presentation sites in non-lymphoid peripheral organs. By analogy, the concept of skin-associated lymphoid tissue (SALT) was 291 proposed in the early 1980's, based on findings that cells in the skin are capable of capturing, 292 processing and presenting antigens^{25, 26}. However, the role of cellular skin components as 293 antigen presentation sites has remained uncertain. Here we have identified an inducible 294structure formed by dermal macrophages, dDCs and effector T cells, which seem to 295accumulate sequentially. Because formation of this structure is essential for efficient effector 296 T cell activation, these inducible leukocyte clusters may function as SALTs. Unlike MALTs, 297 these leukocyte clusters are not found at steady state, but are induced during the development 298 of an adaptive immune response. Therefore, these clusters may be better named as inducible 299 SALTs (iSALT), similar to inducible BALTs (iBALT) in the lung²⁷. In contrast to iBALTs, we 300 could not identify naïve T cells or B cells in SALTs (data not shown), suggesting that the 301 leukocyte clusters in the skin may be specialized for effector T cell activation but not for 302 303 naïve T cell activation. Our findings suggest that approaches to the selective inhibition of this structure may have novel therapeutic benefit in inflammatory disorders of the skin. 304 305 306 307 ACKNOWLEDGEMENTS We thank Dr. P. Bergstresser and Dr. J. Cyster for critical reading of our manuscript. This 308 309 work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of 310 Education, Culture, Sports, Science and Technology of Japan. 311 312 **AUTHOR CONTRIBUTIONS** 313 Y.N., G.E., and K.K designed this study and wrote the manuscript. Y.N., G.E, S.N., S.O., S.H., 314

N.K., A.O., A.K., T.H., and S.N. performed the experiments and data analysis. S.T. and Y.S.

did experiments related to microarray analysis. J.F. and E. G-Y did experiments related to

immunohistochemistry of human samples. K.J.I, H.T., H. Y, Y. I., L.G.N., and M.K.

315

316

318	developed experimental reagents and gene-targeted mice. T.O., Y.M., and K.K. directed the
319	project and edited the manuscript. All authors reviewed and discussed the manuscript.
320	
321	
322	COMPETENG FINANCIAL INTERESTS
323	The authors declare no competing financial interests.
324	
325	
326	ACCESSION CODES
327	Microarray data have been deposited in NCBI-GEO under accession number GSE53680.
328	
329	

330	REFE	CRENCES
331	1.	von Andrian UH, Mempel TR. Homing and cellular traffic in lymph nodes. Nat Rev
332		Immunol 2003, 3 (11): 867-878.
333		
334	2.	Clark RA, Chong B, Mirchandani N, Brinster NK, Yamanaka K, Dowgiert RK, et al.
335		The vast majority of CLA+ T cells are resident in normal skin. J Immunol 2006,
336		176 (7): 4431-4439.
337		
338	3.	Wang L, Bursch LS, Kissenpfennig A, Malissen B, Jameson SC, Hogquist KA.
339		Langerin expressing cells promote skin immune responses under defined conditions. ${\cal J}$
340		Immunol 2008, 180 (7): 4722-4727.
341		
342	4.	Tuckermann JP, Kleiman A, Moriggl R, Spanbroek R, Neumann A, Illing A, et al.
343		Macrophages and neutrophils are the targets for immune suppression by
344		glucocorticoids in contact allergy. J Clin Invest 2007, 117(5): 1381-1390.
345		
346	5.	Sims JE, Smith DE. The IL-1 family: regulators of immunity. Nat Rev Immunol 2010,
347		10 (2): 89-102.
348		
349	6.	Murphy JE, Robert C, Kupper TS. Interleukin-1 and cutaneous inflammation: a
350		crucial link between innate and acquired immunity. J Invest Dermatol 2000, 114(3):
351		602-608.
352		
353	7.	Nakae S, Komiyama Y, Narumi S, Sudo K, Horai R, Tagawa Y, et al. IL-1-induced
354		tumor necrosis factor-alpha elicits inflammatory cell infiltration in the skin by
355		inducing IFN-gamma-inducible protein 10 in the elicitation phase of the contact
356		hypersensitivity response. Int Immunol 2003, 15(2): 251-260.
357		
358	8.	Thyssen JP, Linneberg A, Menne T, Nielsen NH, Johansen JD. Contact allergy to
359		allergens of the TRUE-test (panels 1 and 2) has decreased modestly in the general
360		population. Br J Dermatol 2009, 161 (5): 1124-1129.
361		
362	9.	Springer TA, Dustin ML. Integrin inside-out signaling and the immunological synapse.

Curr Opin Cell Biol 2012, **24**(1): 107-115.

364		
365	10.	Egawa G, Honda T, Tanizaki H, Doi H, Miyachi Y, Kabashima K. In vivo imaging of
366		T-cell motility in the elicitation phase of contact hypersensitivity using two-photon
367		microscopy. J Invest Dermatol 2011, 131(4): 977-979.
368		
369	11.	Miyawaki S, Nakamura Y, Suzuka H, Koba M, Yasumizu R, Ikehara S, et al. A new
370		mutation, aly, that induces a generalized lack of lymph nodes accompanied by
371		immunodeficiency in mice. Eur J Immunol 1994, 24(2): 429-434.
372		
373	12.	Sawaguchi M, Tanaka S, Nakatani Y, Harada Y, Mukai K, Matsunaga Y, et al. Role of
374		mast cells and basophils in IgE responses and in allergic airway hyperresponsiveness.
375		J Immunol 2012, 188 (4): 1809-1818.
376		
377	13.	Otsuka A, Kubo M, Honda T, Egawa G, Nakajima S, Tanizaki H, et al. Requirement
378		of interaction between mast cells and skin dendritic cells to establish contact
379		hypersensitivity. <i>PLoS One</i> 2011, 6 (9): e25538.
380		
381	14.	Enk AH, Katz SI. Early molecular events in the induction phase of contact sensitivity.
382		Proc Natl Acad Sci U S A 1992, 89 (4): 1398-1402.
383		
384	15.	Weisser SB, McLarren KW, Kuroda E, Sly LM. Generation and characterization of
385		murine alternatively activated macrophages. Methods Mol Biol 2013, 946: 225-239.
386		
387	16.	Liao L, Ning Q, Li Y, Wang W, Wang A, Wei W, et al. CXCR2 blockade reduces
388		radical formation in hyperoxia-exposed newborn rat lung. Pediatr Res 2006, 60(3):
389		299-303.
390		
391	17.	Honda T, Egawa G, Grabbe S, Kabashima K. Update of immune events in the murine
392		contact hypersensitivity model: toward the understanding of allergic contact
393		dermatitis. J Invest Dermatol 2013, 133(2): 303-315.
394		
395	18.	Kaplan DH, Igyarto BZ, Gaspari AA. Early immune events in the induction of allergic
396		contact dermatitis. <i>Nat Rev Immunol</i> 2012. 12 (2): 114-124.

398	19.	Lee RT, Briggs WH, Cheng GC, Rossiter HB, Libby P, Kupper T. Mechanical
399		deformation promotes secretion of IL-1 alpha and IL-1 receptor antagonist. J Immunol
400		1997, 159 (10): 5084-5088.
401		
402	20.	Sackstein R, Falanga V, Streilein JW, Chin YH. Lymphocyte adhesion to psoriatic
403		dermal endothelium is mediated by a tissue-specific receptor/ligand interaction. J
404		Invest Dermatol 1988, 91 (5): 423-428.
405		
406	21.	Kish DD, Gorbachev AV, Fairchild RL. IL-1 receptor signaling is required at multiple
407		stages of sensitization and elicitation of the contact hypersensitivity response. J
408		Immunol 2012, 188 (4): 1761-1771.
409		
410	22.	Kondo S, Pastore S, Fujisawa H, Shivji GM, McKenzie RC, Dinarello CA, et al.
411		Interleukin-1 receptor antagonist suppresses contact hypersensitivity. J Invest
412		Dermatol 1995, 105 (3).
413		
414	23.	Cattani F, Gallese A, Mosca M, Buanne P, Biordi L, Francavilla S, et al. The role of
415		CXCR2 activity in the contact hypersensitivity response in mice. Eur Cytokine Netw
416		2006, 17 (1): 42-48.
417		
418	24.	Brandtzaeg P, Kiyono H, Pabst R, Russell MW. Terminology: nomenclature of
419		mucosa-associated lymphoid tissue. Mucosal Immunol 2008, 1(1): 31-37.
420		
421	25.	Streilein JW. Skin-associated lymphoid tissues (SALT): origins and functions. J Invest
422		Dermatol 1983, 80 Suppl: 12s-16s.
423		
424	26.	Egawa G, Kabashima K. Skin as a peripheral lymphoid organ: revisiting the concept
425		of skin-associated lymphoid tissues. J Invest Dermatol 2011, 131(11): 2178-2185.
426		
427	27.	Moyron-Quiroz JE, Rangel-Moreno J, Kusser K, Hartson L, Sprague F, Goodrich S,
428		et al. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory
429		immunity. Nat med 2004, 10 (9): 927-934.
430		
431	28.	Kissenpfennig A. Henri S. Dubois B. Laplace-Builhe C. Perrin P. Romani N. et al.

432		Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize
433		lymph node areas distinct from slower migrating Langerhans cells. Immunity 2005,
434		22 (5): 643-654.
435		
436	29.	Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, et al. In vivo
437		depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous
438		cell-associated antigens. Immunity 2002, 17(2): 211-220.
439		
440	30.	Lindquist RL, Shakhar G, Dudziak D, Wardemann H, Eisenreich T, Dustin ML, et al.
441		Visualizing dendritic cell networks in vivo. <i>Nat immunol</i> 2004, 5 (12): 1243-1250.
442		
443	31.	Miyake Y, Kaise H, Isono K, Koseki H, Kohno K, Tanaka M. Protective role of
444		macrophages in noninflammatory lung injury caused by selective ablation of alveolar
445		epithelial type II Cells. <i>J Immunol</i> 2007, 178 (8): 5001-5009.
446		
447	32.	Hao Z, Rajewsky K. Homeostasis of peripheral B cells in the absence of B cell influx
448		from the bone marrow. J Exp Med 2001, 194 (8): 1151-1164.
449		
450	33.	Horai R, Asano M, Sudo K, Kanuka H, Suzuki M, Nishihara M, et al. Production of
451		mice deficient in genes for interleukin (IL)-1alpha, IL-1beta, IL-1alpha/beta, and IL-1
452		receptor antagonist shows that IL-1beta is crucial in turpentine-induced fever
453		development and glucocorticoid secretion. J Exp Med 1998, 187(9): 1463-1475.
454		
455	34.	Coban C, Igari Y, Yagi M, Reimer T, Koyama S, Aoshi T, et al. Immunogenicity of
456		whole-parasite vaccines against Plasmodium falciparum involves malarial hemozoin
457		and host TLR9. Cell Host Microbe 2010, 7 (1): 50-61.
458		
459	35.	Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid
460		crystals activate the NALP3 inflammasome. Nature 2006, 440(7081): 237-241.
461		
462	36.	Koedel U, Winkler F, Angele B, Fontana A, Flavell RA, Pfister HW. Role of
463		Caspase-1 in experimental pneumococcal meningitis: Evidence from pharmacologic
464		Caspase inhibition and Caspase-1-deficient mice. Ann Neurol 2002, 51 (3): 319-329.
465		

Tomura M, Honda T, Tanizaki H, Otsuka A, Egawa G, Tokura Y, *et al.* Activated regulatory T cells are the major T cell type emigrating from the skin during a cutaneous immune response in mice. *J Clin Invest* 2010, **120**(3): 883-893.

471	METHODS
472	Mice
473	Female 8- to 12-week-old C57BL/6-background mice were used in this study. C57BL/6N
474	mice were purchased from SLC (Shizuoka, Japan). Langerin-eGFP-DTR ²⁸ , CD11c-DTR ²⁹ ,
475	CD11c-YFP ³⁰ , LysM-DTR ³¹ , Rag2-deficient ³² , MasTRECK ^{12, 13} , BasTRECK ^{12, 13} ,
476	ALY/NscJcl- aly/aly^{11} , IL- $1\alpha/\beta$ -deficient ³³ , IL- $1R1$ -deficient ³⁴ , NLRP3-deficient ³⁵ , and
477	caspase-1/11-deficient mice ³⁶ were described previously. All experimental procedures were
478	approved by the Institutional Animal Care and Use Committee of Kyoto University Graduate
479	School of Medicine.
480	
481	Human Subjects
482	Human skin biopsy samples were obtained from a nickel-reactive patch after 48 h from
483	placement of nickel patch tests in patients with a previously proven allergic contact dermatitis.
484	A biopsy of petrolatum-occluded skin was also obtained as a control. Informed consent was
485	obtained under IRB approved protocols at the Icahn School of Medicine at Mount Sinai
486	School Medical Center, and the Rockefeller University in New York.
487	
488	Induction of contact hypersensitivity (CHS) response
489	Mice were sensitized on shaved abdominal skin with 25 μ l 0.5% (w/v)
490	1-fluoro-2,4-dinitrofluorobenzene (DNFB; Nacalai Tesque, Kyoto, Japan) dissolved in
491	acetone/olive oil (4/1). Five days later, the ears were challenged with 20 μl 0.3% DNFB. For
492	adoptive transfer, T cells were magnetically sorted using auto MACS (Miltenyi Biotec,
493	Bergisch Gladbach, Germany) from the draining LNs of sensitized mice and then transferred
494	1x 10 ⁷ cells intravenously into naïve mice.
495	
496	Depletion of cutaneous DC subsets, macrophages, and neutrophils
497	To deplete all cutaneous DC subsets (including LCs), 6-week-old Langerin-DTR mice were
498	irradiated (two doses of 550 Rad given 3 h apart) and were transferred with 1 x 10^7 BM cells
499	from CD11c-DTR mice. Eight weeks later, 2 µg diphtheria toxin (DT; Sigma-Aldrich, St.
500	Louis, MO) was intraperitoneally injected. To selectively deplete LCs, irradiated
501	Langerin-DTR mice were transferred with BM cells from C57BL/6 mice, and 1 μg DT was
502	injected. To selectively deplete dermal DCs, irradiated C57BL/6 mice were transferred with
503	BM cells from CD11c-DTR mice, and 2 µg DT was injected. For macrophage depletion,

504 irradiated C57BL/6 mice were transferred with BM cells from LysM-DTR mice and 800 ng DT was injected. For neutrophil depletion, 0.5 mg/body anti-Ly6G antibody (1A8, BioXCell, 505506 Shiga, Japan) were intravenously administered to mice 24 h before experiment. 507 Time-lapse imaging of cutaneous DCs, macrophages, and T cells 508 Cutaneous DCs were observed using CD11c-YFP mice. To label cutaneous macrophages in 509 510 vivo, 5 mg TRITC-dextran (Sigma-Aldrich) was intravenously injected and mice were left for 24 h. At that time, cutaneous macrophages become fluorescent because they incorporated 511 extravasated dextran. To label skin-infiltrating T cells, T cells from DNFB-sensitized mice 512were labeled with CellTracker Orange CMTMR (Invitrogen, Carlsbad, CA) and adoptively 513transferred. Keratinocytes and sebaceous glands were visualized with the subcutaneous 514injection of isolectin B4 (Invitrogen) and BODIPY (Molecular Probes, Carlsbad, CA), 515respectively. Mice were positioned on the heating plate on the stage of a two-photon 516microscope IX-81 (Olympus, Tokyo, Japan) and their ear lobes were fixed beneath a cover 517slip with a single drop of immersion oil. Stacks of 10 images, spaced 3 µm apart, were 518acquired at 1 to 7 min intervals for up to 24 h. To calculate T cell and DC velocities, movies 519 from 3 independent mice were processed and analyzed using Imaris 7.2.1 (Bitplane, South 520 Windsor, CT) for each experiment. 521 522 Histology and immunohistochemistry 523 For histological examination, tissues were fixed with 10% formalin in phosphate buffer saline, 524and then embedded in paraffin. Sections with a thickness of 5 µm were prepared and 525subjected to staining with hematoxylin and eosin. For whole-mount staining, the ears were 526 split into dorsal and ventral halves, and incubated with 0.5 M ammonium thiocyanate for 30 527 min at 37°C ³⁷. Then the dermal sheets were separated and fixed in acetone for 10 min at 528 -20°C. After treatment with Image-iT FX Signal Enhancer (Invitrogen), the sheets were 529 incubated with anti-mouse MHC class II antibody (eBioscience, San Diego, CA) followed by 530 incubation with secondary antibody conjugated to Alexa 488 or 594 (Invitrogen). The slides 531 532were mounted using a ProLong Antifade kit with DAPI (Molecular Probes) and observed 533under a fluorescent microscope (BZ-900, KEYENCE, Osaka, Japan). The number/size of DC clusters were evaluated in 10 fields of 1mm²/ ear and were scored according to the criteria 534535shown in Supplementary Fig. 5a.

537	
538	Cell isolation and flow cytometry
539	To isolate skin lymphocytes, the ear splits were put into digestion buffer
540	(RPMI supplemented with 2% fetal calf serum, 0.33 mg/ml of Liberase TL (Roche, Lewes,
541	UK), and 0.05% DNase I (Sigma-Aldrich)) for 1 hr at 37°C. After the incubation, the tissue
542	was disrupted by passage through a 70 µm cell strainer and stained with respective antibodies
543	For analysis of intracellular cytokine production, cell suspensions were obtained in the
544	presence of $10\mu\text{g/ml}$ of Brefeldine A (Sigma-Aldrich) and were fixed with Cytofix buffer,
545	permeabilized with Perm/Wash buffer (BD Biosciences) as per the manufacturer's protocol.
546	To stain cells, anti-mouse CD4, CD8, CD11b, CD11c, B220, MHC class II, F4/80, IFN-γ,
547	Gr1 antibodies and 7-amino-actinomycin D (7AAD) were purchased from eBioscience.
548	Anti-mouse CD45 antibody (BioLegend, San Diego, CA), anti-TCR-β antibody (BioLegend),
549	and anti-CD16/CD32 antibody (BD Biosciences) were purchased. Flow cytometry was
550	performed using LSRFortessa (BD Biosciences) and analyzed with FlowJo (TreeStar, San
551	Carlos, CA).
552	
553	Chemotaxis assay
554	Chemotaxis was performed as described previously with some modifications ³⁷ . In brief, the
555	dermis of the ear skin was minced and digested with 2 mg/ml collagenase type II
556	(Worthington Biochemical, NY) containing 1 mg/ml hyaluronidase (Sigma-Aldrich) and 100
557	$\mu g/ml$ DNase I (Sigma-Aldrich) for 30 min at 37°C. DDCs and macrophages were isolated
558	using auto-MACS. Alternatively, BM-derived DCs and macrophages were prepared. 1 x 10^6
559	DCs were added to the 5 μm pore-size transwell insert (Corning, Cambridge, MA) and 5 x
560	10^5 macrophages were added into the lower wells, and the cells were incubated at $37^{\circ}\mathrm{C}$ for
561	12 h. A known number of fluorescent reference beads (FlowCount fluorospheres, Beckman
562	Coulter, Fullerton, CA) were added to each sample to allow accurate quantification of
563	migrated cells in the lower wells by flow cytometry.
564	
565	Cell proliferation assay with CellTrace TM Violet
566	Mice were sensitized with 25 μ l 0.5% DNFB or 7% trinitrochlorobenzene (Chemical Industry
567	Tokyo, Japan). Five days later, T cells were magnetically separated from the draining LNs of
568	each group, and labeled with CellTrace TM Violet (Invitrogen) as per the manufacturer's
569	protocol. Ten million T cells were adoptively transferred to naïve mice, and the ears were

570	challenged with 20 µl of 0.5% DNFB. Twenty-four hours later, ears were collected and
571	analyzed by flow cytometry.
572	
573	In vitro differentiation of DCs, M1 and M2-phenotype macrophages from BM cells
574	BM cells from the tibias and fibulas were plated $5x10^6$ cells/ 10cm dishes on day 0. For DC
575	differentiation, cells were cultured at 37°C in 5% CO ₂ in cRPMI medium
576	(RPMI supplemented with 1% L-glutamine, 1% Hepes, 0.1% 2ME and 10% fetal bovine
577	serum) containing 10 ng/mL GM-CSF (Peprotech, Rocky Hill, NJ). For macrophages
578	differentiation, BM cells were cultured in cRPMI containing 10 ng/mL M-CSF (Peprotech).
579	Medium was replaced on days 3 and 6 and cells were harvested on day 9. To induce M1 or
580	M2 phenotypes, cells were stimulated for 48 h with IFN-γ (10 ng/mL; R&D Systems,
581	Minneapolis, MN) or with IL-4 (20 ng/mL; R&D Systems), respectively.
582	
583	In vitro IL-1\alpha stimulation assay of dermal macrophages
584	Dermal macrophages were separated from IL-1 α/β -deficient mice ³³ to avoid pre-activation
585	during cell preparations. Ear splits were treated with 0.25% trypsin/EDTA for 30 min at 37°C
586	to remove epidermis and then minced and incubated with collagenase as previously described.
587	CD11b ⁺ cells were separated using MACS and 2x10 ⁵ cells/well were incubated with or
588	without 10 ng/ml IL-1 α (R&D systems) in 96-well plate for 24 h.
589	
590	Blocking assay
591	For LFA-1 blocking assay, mice were intravenously injected with 100 µg anti-LFA-1
592	neutralizing antibody, KBA, 12-14 h after challenge with 20 µl 0.5% DNFB. For IL-1R
593	blocking, mice were subcutaneously injected with 10 µg IL-1R antagonist (PROSPEC, East
594	Brunswick, NJ) 5 h before challenge. For blocking of CXCR2, mice were intraperitoneally
595	treated with 50 µg CXCR2 inhibitor SB265610 ¹⁶ (Tocris Bioscience, Bristol, UK) 6 h before
596	and at hapten painting.
597	
598	Quantitative PCR analysis
599	Total RNA was isolated using an RNeasy Mini kit (Qiagen, Hilden, Germany). cDNA was
600	synthesized using a PrimeScript RT reagent kit (TaKaRa, Ohtsu, Japan) with random
601	hexamers as per the manufacturer's protocol. Quantitative PCR was carried out with a
602	LightCycler 480 using a LightCycler SYBR Green I master (Roche) as per the

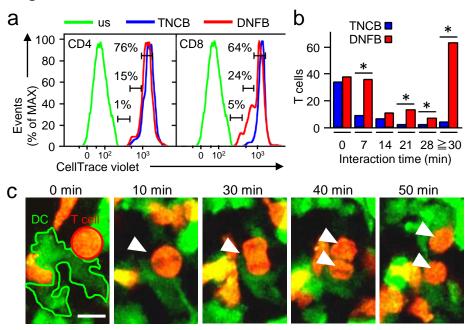
603 manufacturer's protocol. The relative expression of each gene was normalized against that of Gapdh. Primer sequences are shown in Supplementary Table 2. 604 605 606 Microarray analysis 607 Total RNA was isolated using the RNeasy Mini Kit (Qiagen) as per the manufacturers' protocol. An amplified sense-strand DNA product was synthesized by the Ambion WT 608 609 Expression Kit (Life Technologies, Gaithersburg, MD), and was fragmented and labeled by the WT Terminal Labeling and Controls Kit (Affymetrix, Santa Clara, CA), and was 610 hybridized to the Mouse Gene 1.0 ST Array (Affymetrix). We used the robust multi-array 611 average algorithm for log transformation (log2) and normalization of the GeneChip data. 612Microarray data have been deposited in NCBI-GEO under accession number GSE53680. 613 614General experimental design and statistical analysis 615For animal experiments, a sample size of three to five mice per group was determined on the 616basis of past experience in generating statistical significance. Mice were randomly assigned 617 to study groups and no specific randomization or blinding protocol was used. Sample or 618 mouse identity was not masked for any of these studies. Statistical analyses were performed 619 using Prism software (GraphPad Software Inc.). Normal distribution was assumed a priori for 620 all samples. Unless indicated otherwise, an unpaired parametric t-test was used for 621 622comparison of data sets. In cases in which the data point distribution was not Gaussian, a nonparametric t-test was also applied. P values of less than 0.05 were considered significant. 623 624625 626

627

Figure Legends

Figure 1: DC–T cell cluster formation is responsible for epidermal eczematous conditions. 628629 (a) Clinical manifestations of allergic contact dermatitis in human skin 48 h after a patch test with nickel. Scale bar = $200 \,\mu m$. (b) Hematoxylin and eosin, anti-CD3, and anti-CD11c 630 631 staining of the human skin biopsy sample from an eczematous legion. Asterisks and arrowheads denote epidermal vesicles and dDC-T cell clusters, respectively. Scale bar = 250 632μm. (c) Sequential images of leukocyte clusters in the elicitation phase of CHS. White circles 633 represent DC (green) and T cell (red) dermal accumulations. Scale bar = 100 µm. (d) A high 634magnification view of DC-T cell cluster in Fig.1c. Scale bar = $10 \,\mu\text{m}$. (e) Intercellular edema 635of the epidermis overlying DC-T cell cluster in the dermis. Keratinocytes (red) are visualized 636 with isolectin B4. The right panel shows the mean distance between adjacent keratinocytes 637above (+) or not above (-) DC-T cell cluster (n=20, each). Scale bar = $10 \, \mu m$. (f) Ear 638 639 swelling 24 h after CHS in subset-specific DC-depletion models (n = 5, each). *, P < 0.001. (g) The number (left) and the % frequency (right) of IFN-γ producing T cells in the ear 18 h 640 after CHS with or without dDC-depletion (n = 5, each). *, P < 0.05. 641 642 Figure 2: Antigen-dependent T cell proliferation in DC-T cell clusters. (a) T cell 643 proliferation in the skin. CD4⁺ and CD8⁺ T cells from DNFB- (red) or TNCB- (blue) 644sensitized mice were labeled with CellTraceTM Violet and transferred. The dilutions of tracer 645 in the challenged sites were examined 24 h later. (b) Conjugation time of DNFB- (red, n =646 647160) or TNCB-sensitized (blue, n = 60) T cells with dDCs 24 h after DNFB challenge. *, P < 0.05. (c) Sequential images of dividing T cells (red) in DC–T cell clusters. Green represents 648 649dDCs. Arrowheads represent a dividing T cell. 650Figure 3: LFA-1 is essential for the persistence of DC–T cell clustering and for T cell 651 652 activation in the skin. (a) DC (green) and T cell (red) clusters in the DNFB-challenged site before (0 h) and 9 h after KBA or isotype-matched IgG treatment. Scale bar = $100 \mu m$. (b) 653 Fold changes of T cell velocities in DNFB-challenged sites after KBA or control IgG 654treatment (n = 30, each). (c) Ear swelling 24 h after KBA (red) or control IgG (black) 655 treatment with DNFB challenge (n = 5, each). (d and e) IFN- γ production by CD8⁺ T cells (d) 656 and the number of IFN-y producing cells in CD4⁺ or CD8⁺ populations (e) in KBA (red) or 657control IgG (black) treated mice (n = 5, each). DNFB-sensitized mice were treated with KBA 658 or control IgG 12 h after DNFB challenge and the skin samples were obtained 6 h later. *, P 659

660 < 0.05. 661 662 Figure 4: Macrophages are essential for DC cluster formation. (a) Score of DC cluster number 24 h and 48 h after DNFB application in sensitization (red) or elicitation (green) 663 664 phase of CHS (n=4, each). (b) Score of DC cluster number in non-treated (NT) mice and DNFB-applicated-C57BL/6 (WT), Rag2-deficient, aly/aly, MasTRECK, BasTRECK, 665LysM-DTR, and 1A8-treated mice (n=4, each). *, P < 0.05. (c) DC clusters observed in 666 LysM-DTR BM chimeric mice with or without DT-treatment. Scale bar = $100 \,\mu m$. (d) Ear 667 swelling 24 h after DNFB application in LysM-DTR BM chimeric mice with (red) or without 668 (black) DT-treatment (n = 5, each). (e) The number (left) and the % frequency (right) of 669 IFN-γ producing CD8⁺ T cells in the ear 18 h after DNFB application in LysM-DTR BM 670 chimeric mice with (red) or without (black) DT-treatment (n = 5, each). *, P < 0.05. 671 672 Figure 5: Macrophages mediate perivascular DC cluster formation. (a) A distribution of 673 674dDCs (green) in the steady state (left) and in the elicitation phase of CHS (right). The white circles show DC clusters. Sebaceous glands visualized with BODIPY (green) are indicated by 675676 arrows. Blood vessels, yellow/red; macrophages, red. (b) A high magnification view of perivascular DC cluster. Scale bar = $100 \, \mu \text{m.}(c)$ Sequential images of dDCs (green) and 677678 macrophages (red) in the elicitation phase of CHS. The white dashed line represents the track of a DC. (d) Chemotaxis assay. % input of dDCs transmigrating into the lower chamber with 679 680 or without macrophages prepared from the skin. 681 **Figure 6:** IL-1α upregulates CXCR2 ligands expression in M2-phenotype macrophages to 682form DC clusters. (a) Scores of DC cluster numbers in NT or 24 h after hapten-painted sites 683 684in WT, IL-1R-, NALP3-, or caspase 1 (Casp1)-deficient mice (n=4, each). (b) Scores of DC 685cluster numbers in NT or 24 h after hapten-painted sites in isotype control IgG, 686 anti-IL-α antibody, anti-IL-1β antibody, IL-1R antagonist, or pertussis toxin (Ptx)-treated mice (n=4, each). (c, d) Ear swelling 24 h after DNFB application (c) and the number (left) 687 and the % frequency (right) of IFN-γ producing CD8⁺T cells in the ear 18 h after DNFB 688 application (d) in mice that lack both IL-1 α and IL-1 β (red) and WT (black) mice (n = 5, 689 690 each) which were adoptively transferred with DNFB-sensitized T cells. *, P < 0.05. (e, f) Relative amount of *Il1r1* and *Cxcl2* mRNA expression. Quantitative RT-PCR analysis of


mRNA obtained from M1 or M2-phenotype macrophages (e), cultured with (+) or without (-)

691

IL-1α (f) (n=4, each). (g) Scores of DC cluster numbers in NT or 24 h after hapten-painted sites in the presence (SB265610) or absence (vehicle) of a CXCR2 inhibitor (n=4, each). *, P < 0.05. (h, i) Ear swelling 24 h after DNFB application (h) and the number (right) and the % frequency (left) of IFN-γ producing CD8+ T cells 18 h after DNFB application (i) with (red) or without (black) SB265610-treatment (n = 5, each). *, P < 0.05.

Figure 1 HE CD3 CD11c b а **Epidermis** Dermis 24 h С 0 h 12 h d Ear swelling (Lum) 1200 - 1200 g е Intercellular gaps (μm) IFN-γ⁺ cells (x 10²) 1 2 2 4 3 2 1 IFN-γ+ cells (%) Sens LCs dDCs DC cluster DC cluster + Sens DC cluster -DT

Figure 2

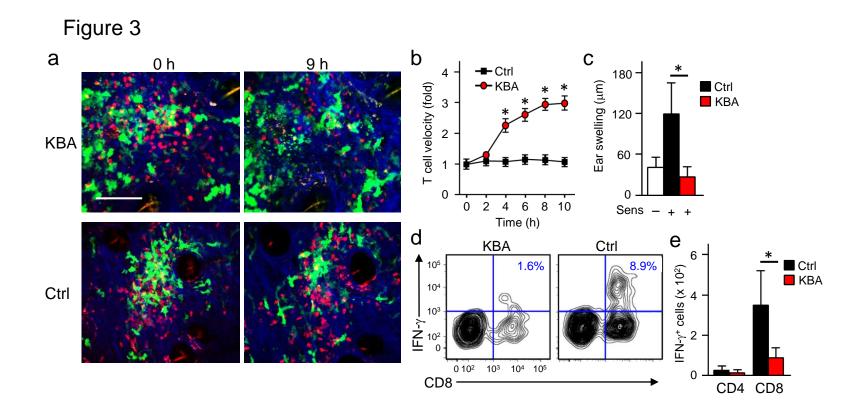
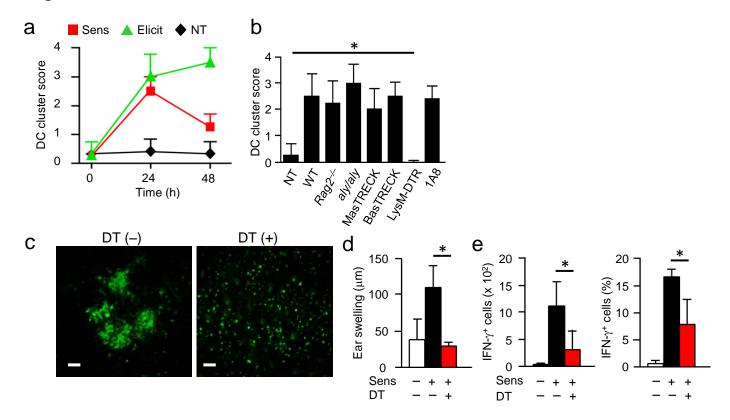
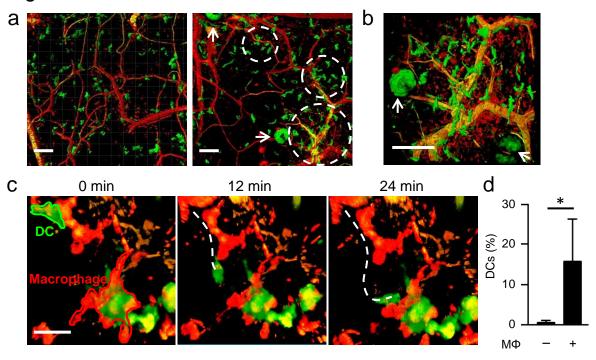
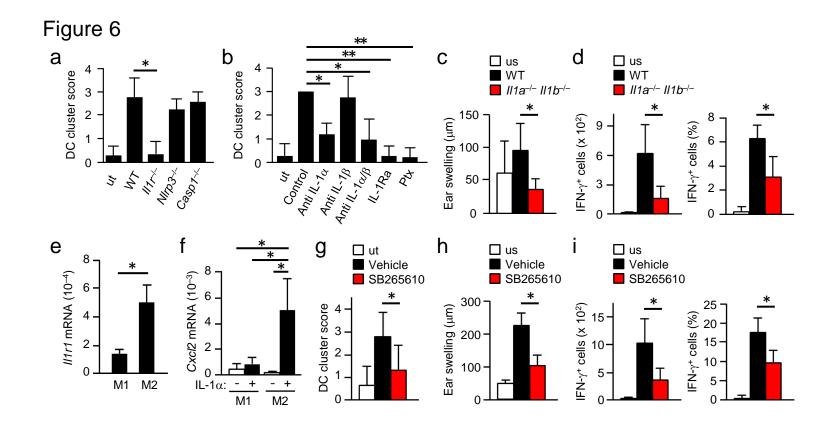
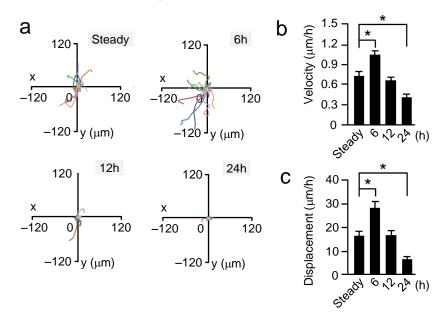
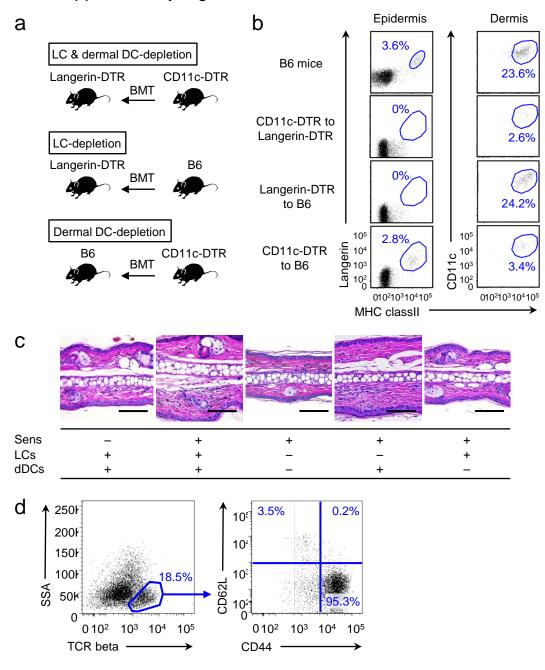
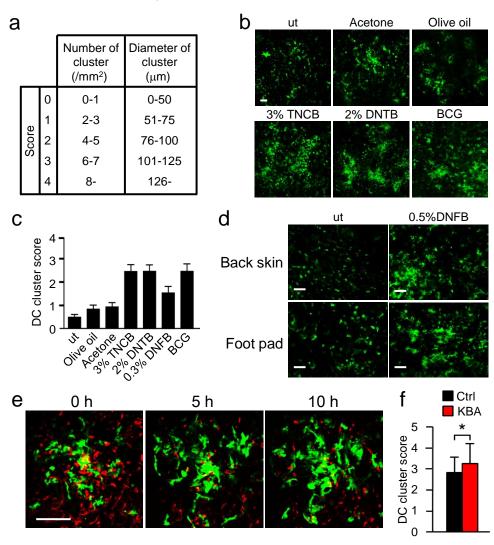


Figure 4


Figure 5

