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Abstract  Upon the biological self-assembly, the number of accessible translational 

configurations of water in the system increases considerably, leading to a large gain in water 

entropy. It is important to calculate the solvation entropy of a biomolecule with a prescribed 

structure by accounting for the change in water-water correlations caused by solute insertion. 

Modeling water as a dielectric continuum is not capable of capturing the physical essence of 

the water-entropy effect. As a reliable tool, we propose a hybrid of the angle-dependent 

integral equation theory combined with a multipolar water model and the morphometric 

approach. Using our methods wherein the water-entropy effect is treated as the key factor, we 

can elucidate a variety of processes such as protein folding, cold, pressure, and heat 

denaturating of a protein, molecular recognition, ordered association of proteins such as 

amyloid-fibril formation, and functioning of ATP-driven proteins. 

 

Keywords  Solvation entropy, Biological self-assembly, Protein folding, Protein 

denaturation, Molecular recognition, ATP-driven protein, Integral equation theory, 
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Introduction 

 

The structures formed by the biological self-assembly are collapsed by the application of high 

pressures (Yoshidome et al. 2009). Typical examples are denaturation of a protein, dissociation 

of filamentous actin (F-actin) into actin monomers, and destruction of amyloid fibril. At low 

temperatures, the power of forming the structures becomes considerably weaker (Yoshidome 

and Kinoshita 2012). For example, a protein is unfolded and the binding of myosin to F-actin 

is weakened. This weakening is also relevant to the following: Upon temperature lowering, the 

solubility of methane increases, the critical micelle concentration becomes higher, and the 

average size of micelles for nonionic amphiphilic molecules becomes smaller. These 

phenomena are suggestive that there are common features of the biological self-assembly and 

a certain physical factor universally plays a dominant role as the driving force. What is this 

physical factor? 

It is often claimed that the formation of intramolecular or intermolecular hydrogen bonds 

by biomolecules derive the biological self-assembly. However, they accompany the break of 

biomolecule-water hydrogen bonds. The energy decrease and increase arising from the 
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formation and break, respectively, are rather compensating. The electrostatic attractive 

interaction between oppositely charged groups of a biomolecule or biomolecules is also 

considered to be important. Though it is quite strong and long ranged in vacuum, it becomes 

orders of magnitude weaker and shorter ranged in aqueous solution (0.15M-NaCl solution in 

biological systems) due to the screening effects by water molecules and counter-ions 

(Kinoshita and Harano 2005). 

In the present article, we review the results of our studies and point out that the physical 

factor mentioned above is the entropic effect originating from the translational displacement of 

water molecules which coexist with biomolecules in the system (Kinoshita 2009a). In 

particular, the gain in the translational entropy of water due to the biomolecule-water-water 

triplet and higher order correlations (i.e., the reduction in water crowding) is the most 

important. The principal topic is protein folding and unfolding, but the qualitative aspects of 

the conclusions are also applicable to such processes as molecular recognition and association 

of proteins. The water-entropy effect plays imperative roles even in the functioning of 

ATP-driven proteins such as unidirectional movement of myosin along F-actin (Amano et al. 

2010) and protein flux through a chaperonin system (Amano et al. 2011). As an important 

example, we revisit our rotational mechanism for the -subunit in F1-ATPase. 

 

 

Protein folding in aqueous solution under physiological condition 

 

Protein folding occurs with the system pressure and volume kept almost unchanged 

(Yoshidome et al. 2008). Hence, we consider the constant-volume condition. Let A (A is a 

thermodynamic quantity) be “A of the native state” minus “A of the unfolded state”. The 

free-energy change for the system upon protein folding F can be expressed as 
 

F=EITSI+=EI+EV TSI −T∆SV (=EV−T∆SV),                       (1) 
 

where EI and SI denote the protein intramolecular energy and entropy, respectively, and EV, SV, 

and  denote the solvation energy, entropy, and free energy, respectively, and T is the absolute 

temperature (=EV−TSV).  takes a large, positive value: In this sense, water destabilizes the 

native state. This is because EV is positive and very large. Inversely, EI is negative and very 

large. EV and EI are rather compensating, but “EV+EI” takes a positive value. It is 

apparent that SI is negative because the folding accompanies a conformational-entropy loss. 

For F to become negative, a factor surpassing “EI+EV TSI” is required: It is SV that 

takes a large, positive value. Protein folding is driven by a large water-entropy gain. Many of 

the donors and acceptors for intramolecular hydrogen bonds (e.g., N and O, respectively) are 

buried in the interior due to the water-entropy effect after the break of hydrogen bonds with 

water molecules (e.g., COW and NHW; W denotes a water molecule). There is no problem 

if intramolecular hydrogen bonds (e.g., COHN) are formed. However, such formation is not 

always realized, giving rise to a positive value of “EV+EI”. 
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The validity of the above picture of protein folding has been supported by the novel 

experiment by Terazima et al. where apoplastocyanin (apoPC) is made to fold at 298 K 

(Yoshidome et al. 2008). The folding accompanies the significantly large increase in enthalpy 

(corresponding to “EV+EI”), 870 kJ/mol. In conventional experiments, a protein is 

denatured at a high temperature and the changes in enthalpy and specific heat upon thermal 

denaturation are measured. Assuming that the specific-heat change is constant against T, they 

estimate the changes in enthalpy and entropy upon protein folding of the system at 298 K, 

H298 and S298, using the thermodynamic equations. However, the specific-heat change upon 

the denaturation, which is positive, increases to a considerably large extent as T becomes 

lower. The conventional assumption tends to estimate that both H298 and S298 are negative 

(Kinoshita 2009b). The experiment by Terazima et al. is free from this type of problem. 

 

 

Entropic excluded-volume effect 

 

Why does a large gain in water entropy occur upon protein folding? To answer this question, 

we explain the excluded-volume effect (Kinoshita 2009a) using simplified geometries. As 

shown in Fig. 1(a), the presence of a large particle, a solute molecule, in small particles 

forming the solvent generates a space from which the centers of small particles are excluded. 

Upon the contact of a pair of large particles illustrated in Fig. 1(b), the two excluded spaces 

overlap, and the total volume available to the translational displacement of small particles 

increases by the volume of this overlapped space. A denser layer of small particles is formed 

near a large particle (see “Importance of solute-water many-body correlations”). Upon the 

contact, part of the small particles within the dense layers is released to the bulk, with the 

result that the system pressure remains roughly unchanged. The contact leads to an increase in 

the number of accessible translational configurations of small particles and to a resultant gain 

of the translational entropy of small particles. The large particles are driven to contact each 

other. Since this effect is induced even when all of the particles are hard bodies with no soft 

interaction potentials (all of the allowed system configurations share the same energy and the 

system behavior becomes purely entropic in origin), it is called “entropic excluded-volume 

effect”. This effect is dependent not only on the excluded volume but also on the area and 

curvature of the surface that is accessible to the centers of small particles. It is also influenced 

by the structure of small particles confined by large particles. An elaborate 

statistical-mechanical theory (e.g., an integral equation theory) shows that an interaction, 

which reaches several times of the diameter of small particles, is entropically induced between 

large particles (Kinoshita 2009a). 

The entropic excluded-volume effect plays important roles in a colloidal suspension 

(Kinoshita 2006). When colloidal particles with highly charged surfaces (e.g., polystyrene 

microspheres) are immersed in salt solution with appropriately low salt concentration (e.g., 

0.01M-NaCl), due to the screening of the surface charges, the interaction between colloidal 

particles can be described by nearly hard-sphere potential in a sea of salt solution: Water 
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molecules need not explicitly be treated. The hard-sphere diameter is roughly equal to the 

diameter of the particle itself plus the Debye length that is much larger than several times of 

the molecular diameter of water. For a colloidal suspension containing these particles of 

significantly different sizes, where the number density of larger particles is much lower than 

that of smaller particles, we can take the view that the larger particles generate excluded 

volumes for the smaller particles. The salt solution can be regarded as inert background. In 

biological systems, however, this simple treatment is no more acceptable for the following 

reason. A biomolecule such as a protein is characterized by the heterogeneity that it comprises 

nonpolar groups as well as positively and negatively charged groups. Moreover, the charges 

are screened by water molecules and counter-ions. The concentration of NaCl is 0.15M that 

is over an order of magnitude higher than 0.01M. Consequently, biomolecules or their 

portions can approach each other up to a separation that is smaller than several times of the 

diameter of water molecules. They can even contact each other. The presence of water 

molecules must explicitly be taken into account. Water molecules and biomolecules as solutes 

correspond to “small particles” and “large particles”, respectively. In fact, we have shown that 

the water-entropy effect is usually dominant in biological systems (Kinoshita 2009a). 

When the shape of solutes is highly aspherical (e.g., long cylinders, thin discs, etc.), the 

entropic excluded-volume effect exhibits very interesting behavior. For example, among the 

four contact manners of solutes shown in Fig. 2, manner 4 maximizes the volume of the 

overlapped space and the entropic gain of solvent molecules. Hence, the solvent forces the 

solutes to contact each other in manner 4. Thus, regular or orderly contacts or association of 

solutes in specific manners are driven by the solvent-entropy effect (Kinoshita 2004). The 

translational displacement of solutes, which is also important, favors the dispersion of solutes. 

This is the effect of entropy of mixing which competes with the excluded-volume effect. If the 

solute concentration is low, the former dominates. If it becomes sufficiently high, the latter 

becomes substantially larger. 

 

 

Thermodynamics of apoplastocyanin folding 

 

The formation of a helical structure by a portion of the backbone occurs in the -helix (Fig. 

3(a)) and a lateral contact of portions of the backbone occurs in the -sheet (Fig. 3(b)), leading 

to a significantly large decrease in the total excluded volume for water molecules. At the same 

time, the intramolecular hydrogen bonds, which compensates for the break of hydrogen bonds 

with water molecules, can also be assured. Thus, these two secondary structures are very 

advantageous units. When side chains are closely packed (Fig. 3(c)), the decrease in the total 

excluded volume is quite large. Protein folding can be characterized by the formation of as 

much -helix and -sheet as possible and the close packing of the backbone and side chains 

with a variety of geometric features (Yasuda et al. 2010). Using a tube model mimicking the 

backbone or its portion, some other groups (Snir and Kamien 2007; Hansen-Goos et al. 2007; 

Poletto et al. 2008) have examined which of the -helix and the -sheet is more stabilized 
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when the density and molecular diameter of the solvent are varied as important parameters. 

The solvent-entropy effect is treated as the key factor. However, the effect of the side-chain 

packing specific to their geometric features cannot be argued with the tube model. The 

adoption of the polyatomic structure is crucial in the argument. 

The experimental study by Terazima et al. for apoPC (with 99 residues) folding and our 

theoretical analysis have shown that the water-entropy gain upon the folding reaches 670kB 

(kB is the Boltzmann constant). The analysis for apoPC folding has been performed using the 

hybrid of an integral equation theory and the morphometric approach which is described in the 

next section. The water-entropy gain upon protein folding is given by “SV of the native state” 

minus “SV of the unfolded state”. The results obtained can be summarized as follows 

(Yoshidome et al. 2008): The large gain in water entropy is ascribed primarily to the reduction 

in the excluded volume generated by the protein; the water-entropy gain, which is attributable 

to the change in the surface properties (e.g., the ASA), makes no essential contributions to the 

net gain; and the rotational-entropy gain of water is only 5% of the net gain. The large gain in 

water entropy cannot be elucidated by the classical picture that the amount of water structuring 

near nonpolar groups decreases upon protein folding. 

In the original Asakura-Oosawa (AO) theory (Asakura and Oosawa 1958), “large 

particles” and “small particles” corresponded to colloidal particles and macromolecules, 

respectively, and the solvent was regarded as inert background. (Minton et al. (Ellis and 

Minton 2003) has also been treating the solvent as inert background). We can apply the AO 

theory to protein folding by considering water molecules to be the small particles: Since the 

AO theory considers only the excluded-volume term of the protein-water pair correlation 

component (see “Importance of solute-water many-body correlations”), the water-entropy gain 

is simply given by kBSVex where S is the number density of bulk water and Vex (0) is 

the change in the excluded volume generated by the protein. According to this equation, the 

water-entropy gain upon apoPC folding is only 180kB, indicating an unacceptable 

underestimation. (The AO mechanism has been rederived by Vrij (Vrij 1976) using a different 

approach.) 

 

 

Hybrid of integral equation theory and morphometric approach 

 

The solvation entropy SV (0), a loss of solvent entropy upon solute insertion, is an essential 

quantity in elucidating the biological self-assembly. Any theory in which water is regarded as a 

dielectric continuum is not capable of accounting for the entropic excluded-volume effect. It is 

critical to treat water as a system consisting of “particles with finite sizes”. In physical 

analyses focused on the effect of the translational displacement of water molecules, water can 

often be modeled as hard spheres (Harano and Kinoshita 2005; Kinoshita 2009a). However, 

when the temperature dependence of the effect is crucial as in the case of cold denaturation of 

a protein (Yoshidome and Kinoshita 2012) or when a number of rather compact structures are 

compared in terms of the stability in aqueous solution (Yasuda et al. 2011; Yasuda et al. 2012), 
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a suitable molecular model must be employed for water. A problem in such cases is that the 

calculation of SV for a large, polyatomic solute like a protein is a formidable task. We have 

solved this problem by combining an integral equation theory with the morphometric approach 

(MA). SV is fairly insensitive to the solute-water interaction potential while EV and  are not 

(Yoshidome et al. 2008; Yoshidome et al. 2012). Therefore, a protein can be modeled as a set 

of fused hard spheres just for calculating its SV. 

The idea of the MA is to express SV by the linear combination of only four geometric 

measures of a solute molecule (Roth et al. 2006): 
 

SV/kB=C1Vex+C2A+C3X+C4Y.                                                (2) 
 

Here, Eq. (2) is referred to as the morphometric form, Vex is the excluded volume, A is the 

solvent-accessible surface area, and X and Y are the integrated mean and Gaussian curvatures 

of the accessible surface, respectively. The solvent-accessible surface is the surface that is 

accessible to the centers of solvent molecules. SV is influenced not only by Vex but also by the 

other three geometric measures. In the MA, the solute shape enters SV only via the four 

geometric measures. Therefore, the four coefficients (C1C4) can be determined in simple 

geometries. They are calculated from the values of SV for hard-sphere solutes with various 

diameters immersed in the solvent. (The morphometric form can also be applied to /(kBT) of 

a solute in hard-sphere solvent and /(kBT) of a nonpolar solute in water.) 

The procedure of calculating SV of a protein with a prescribed structure comprises the 

following four steps (Mishima et al. 2012). 
 

(1) SV of a hard-sphere solute with diameter dU is calculated. The values of SV are prepared for 

sufficiently many different values of dU (e.g., 0dU30dS; dS is the diameter of solvent 

molecules). In principle, any statistical-mechanical theory or computer simulation can be 

employed for this calculation. We use the radial-symmetric integral equation theory and 

the angle-dependent integral equation theory (ADIET) for simple-fluid solvent (e.g., 

hard-sphere solvent) and for water with a molecular model, respectively. It is important to 

include sufficiently small values of dU especially for water (Yoshidome and Kinoshita 

2012). 

(2) The four coefficients are determined by the least square fitting applied to the following 

equation for hard-sphere solutes (i.e., Eq. (2) applied to hard-sphere solutes): 
 

SV/kB=C1(4R3/3)+C2(4R2)+C3(4R)+C4(4), R=(dU+dS)/2.                   (3) 
 

(3) The four geometric measures of a protein (Vex, A, X, and Y) with a prescribed structure are 

calculated. The x-y-z coordinates of the protein atoms are used as part of the input data to 

account for the polyatomic structure at the atomic level. The diameter of each atom is set 

at the sigma value of the Lennard-Jones potential parameters. 

(4) SV of a protein with a prescribed structure is obtained from Eq. (2) in which the four 

coefficients determined in step (2) are used. The computation time required in steps (3) 

and (4) is shorter than 1 sec on our workstation even for a very large protein. 
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The ADIET is a statistical-mechanical theory for molecular liquids (Kusalik and Patey 1988a; 

Kinoshita 2008). In this theory, a multipolar model is employed for water. For example, a 

water molecule is modeled as a hard sphere with diameter dS=0.28 nm in which a point dipole 

and a point quadrupole of tetrahedral symmetry are embedded. The effect of the molecular 

polarizability is taken into account using the self-consistent mean field (SCMF) theory. At the 

SCMF level the water-water many-body induced interactions are reduced to pairwise additive 

potentials involving an effective dipole moment. We have shown that the ADIET (Kinoshita 

2008) predominates over the reference interaction site model (RISM) and related theories 

(Hirata and Rossky 1981; Perkyns and Pettitt 1992) in the elucidation of hydrophobic 

hydration. Although the integral equation theory implemented by Lado et al. (Giacometti et al. 

2010) is angle dependent, its details are somewhat different from the version which has been 

used by Patey et al. (Kusalik and Patey 1988b) and our group. The rotational-invariant 

expansion which is considerably more convenient is not employed in Lado’s version. 

The four coefficients calculated are dependent on the solvent species, thermodynamic 

state (e.g., temperature and pressure) of the solvent, and the method employed in step (1). 

When the solvent is a simple fluid, SV of a protein can directly be calculated using the 

three-dimensional integral equation theory. Even in such cases, the hybrid of the 

radial-symmetric integral equation theory and the MA gives the results with errors smaller 

than 1% and computation time that is four orders of magnitude shorter (Roth et al. 2006). 

The high reliability of our hybrid method in calculating SV has been demonstrated in the 

following examples: quantitative reproduction of the experimentally measured changes in 

thermodynamic quantities upon apoPC folding; elucidation of the molecular mechanisms of 

pressure (Harano et al. 2008; Yoshidome et al. 2009) and cold (Oshima et al. 2009; 

Yoshidome and Kinoshita 2012) denaturating of proteins; proposal of a reliable measure of the 

thermal stability of proteins (Oda et al. 2011); structural stability of membrane proteins 

(Yasuda et al. 2012); development of a free-energy function capturing the features of the 

native fold for discriminating it from a number of misfolded decoys (Yasuda et al. 2011); 

development of a reliable method of characterizing the native-structure models of a protein 

determined through the X-ray crystallography and NMR experiments combined with structure 

calculations (Mishima et al. 2012); and prediction of the so-called hot spots (i.e., residues 

accounting for the majority of the protein-protein binding free energy despite that they 

comprise only a small fraction of the protein-protein interface) in protein-protein complexes 

(Oshima et al. 2011). 

We have recently extended the MA to a multi-component solvent (Kodama et al. 2011). 

The extended version will be useful for analyses on the salt (e.g., NaCl) and cosolvent (e.g., 

sugar) effects. We note that the solvent-entropy effect is influenced by cosolvents. For 

example, the solubility of hydrophobic solutes exhibits a significant decrease upon salt 

addition to water, and the native state of a protein is more stabilized by addition of sugars such 

as sucrose and glucose. 

 



 8 

 

Importance of solute-solvent many-body correlations 

 

SV comprises the solute-solvent pair correlation component and solute-solvent-solvent triplet 

and higher-order (solute-solvent many-body) correlation component. Each solvent molecule 

generates an excluded volume for the other solvent molecules (see Fig. 4(a)), giving rise to the 

entropic correlations among solvent molecules (i.e., solvent crowding). This is the origin of 

the many-body correlations. Changes in the translational freedom of each individual solvent 

molecule and in solvent crowding occur upon solute insertion. A difference between the pair 

and many-body correlations is as follows. When a solvent molecule contacts the solute as 

illustrated in Fig. 4(b), an overlap of the excluded volumes generated by the solvent molecule 

and the solute occurs. The total volume available to the other solvent molecules increases by 

the overlapped volume. The translational freedom of the solvent molecule in contact with the 

solute is restricted (effect 1), but that of the other solvent molecules is increased (effect 2). 

Effect 1 originates from the pair correlation while effect 2 is ascribed to the many-body 

correlations. Due to effect 2, sufficiently many solvent molecules are driven to contact the 

solute, leading to the formation of a denser layer of solvent molecules near the solute. The 

structure of the layer is determined by the interplay of these two opposing effects. At low 

pressures, solvent crowding is not serious and effect 2 is not very important, with the result 

that the number of solvent molecules in contact with the solute is not large. At high pressures, 

by contrast, effect 2 becomes essential due to the severe solvent crowding, and considerably 

more solvent molecules are driven to contact the solute. When the solute possesses a flexible, 

polyatomic structure as in the case of a protein, its structure is changed to the one with a much 

larger solvent-accessible surface area and an excluded volume kept sufficiently small: i.e., the 

pressure-denatured structure (Yoshidome et al. 2009). 

Using an integral equation theory, we can decompose SV into the pair correlation and 

many-body correlation components (Yoshidome et al. 2009). Each of the pair correlation and 

many-body correlation components can further be decomposed into the excluded-volume term 

(term 1) and the solvent-accessible-surface term (term 2; dependent on A, X, and Y) using Eq. 

(2). The solvent molecules near the solute contribute to term 2 while those in the bulk 

contribute to term 1. There are the four constituents of SV: terms 1 and 2 of the pair correlation 

component and terms 1 and 2 of the many-body correlation component. Term 1 of the pair 

correlation component represents a decrease in the total volume available to each solvent 

molecule in the bulk. Term 1 of the many-body correlation component represents an increase 

in solvent crowding in the bulk. Term 2 of the pair correlation component is related to an 

increase in translational and orientational restrictions for each solvent molecule near the solute. 

Term 2 of the many-body correlation component is discussed in the next paragraph. 

The coefficients in the morphometric forms for the pair correlation and many-body 

correlation components of SV/kB (note the minus sign) are dependent on the reduced number 

density of the bulk solvent, SdS
3 (dS is the diameter of solvent molecules). The dependence of 

the first and second coefficients on SdS
3 for hard-sphere solvent (/(kBT)= SV/kB) is shown in 
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Fig. 5. (The value of SdS
3 for water at ambient temperature and pressure is 0.7317.) For both 

term 1 and term 2, the many-body correlation component is far larger than the pair correlation 

component. Moreover, it is much more strongly dependent on SdS
3, which is a reflection of 

the strong dependence of solvent crowding on SdS
3. Term 2 of the many-body correlation 

component is attributable to the following two factors: the structuring of solvent molecules 

near the solute (factor 1); and reduction in solvent crowding originating from “an increase in 

translational restriction for each solvent molecule near the solute” and from “the translational 

structuring of solvent molecules near the solute” (factor 2). It is interesting to note that factor 2 

makes a positive contribution to SV. Its physical interpretation is the following: As the 

solvent-accessible surface increases, the number of solvent molecules in contact with the 

solute becomes larger, leading to a positive value of term 2 of the many-body correlation 

component as well as a negative value of term 2 of the pair correlation component (see Fig. 4). 

C2
Multi is negative because factor 2 is larger than factor 1 making a negative contribution to SV. 

If the AO theory is applied to the present system, all of C1
Multi, C2

Pair, and C2
Multi are set at zero. 

When hard-sphere solvent is replaced by water, the behavior of C1
Multi, C2

Pair, and C2
Multi 

becomes quantitatively different but qualitatively similar at ambient temperature. The change 

in the rotational freedom of water molecules upon solute insertion is also included in SV. 

However, this change does not possess the excluded-volume term. The insertion reduces the 

translational and rotational freedoms of water molecules, causing losses of translational and 

rotational entropies of water, respectively. Only the water molecules near the solute undergo 

the rotational reduction, while the translational reduction reaches the water molecules far from 

the solute as well. The loss of the translational entropy is substantially larger than that of the 

rotational entropy. 

 

 

Comparison with other methods for biomolecular solvation 

 

Biomolecular solvation has also been investigated by some other groups at the atomic level. 

For example, the RISM and related theories are useful in analyses on the water-entropy effect. 

However, even their three-dimensional versions (Beglov and Roux 1997; Yoshida et al. 2009; 

Palmer et al. 2010), which have been shown to be far superior to the one-dimensional versions, 

are incapable of reproducing the pressure and temperature dependences of the effect. They fail 

to elucidate cold and pressure denaturating of proteins: A protein is not denatured at low 

temperatures and the pressure-denatured structure is more stable than the native structure even 

at low pressures. Moreover, they considerably underestimate the entropic gain of water upon 

protein folding (Imai et al. 2007). The molecular dynamics (MD) simulation combined with a 

new solution theory in the energy representation developed by Matubayasi et al. (Karino and 

Matubayasi 2011) is far more efficient than the standard MD simulation and potentially a 

reliable tool in studies on biomolecular solvation. However, it is still much more laborious 

than the integral equation theories. The great advantages of our hybrid method, which 

distinguishes it from these methods, are as follows: (i) The computation time required is orders 
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of magnitude shorter; and (ii) the solvation entropy can be decomposed into physically 

insightful constituents using the morphometric approach and the physical origin of any result 

can be clarified. 

 

 

Rotational mechanism for -subunit in F1-ATPase 

 

The  subunit in the 33 complex taken from F1-ATPase has been shown to exhibit a rotation. 

During one hydrolysis cycle of ATP comprising the three processes, ATP binding, hydrolysis 

of ATP into ADP and Pi, and dissociation of ADP and Pi, the  subunit rotates by 120 (see Fig. 

6). It is desired for a protein or a complex of proteins that the backbones and side chains be 

tightly packed to maximize the water entropy. However, this is not always possible. Even in 

cases where the overall tight packing is not achievable, there are certainly the portions that can 

be tightly packed. It is important to pack such portions preferentially. In our view, such 

inhomogeneity of the packing structure plays essential roles in the rotation mechanism for the 

 subunit. 

We consider state A shown in Fig. 6 where ATP is bound to the  subunit named TP, ATP 

that is ready to be hydrolyzed into ADP and Pi is bound to the  subunit named DP, and 

nothing is bound to the  subunit named E (only Pi remains within E). The three  subunits 

are named TP, DP, and E, respectively. TP and DP are in closed conformations while E 

takes an open conformation. We define the following three groups, “group I: , E, E, and 

TP”, “group II: , TP, TP, and DP”, and “group III: , DP, DP, and E” (see state A in Fig. 

6). The structures of the 33 complex before and after the 120 rotation of the  subunit are 

the same. We emphasize that the groups are defined in terms of their positions. For example, 

after the  subunit rotates by 120, the arrangement changes into state C in Fig. 6 and group III 

now comprises , E, E, and TP. 

We have analyzed the solvation entropies of the three groups using the hybrid of the 

ADIET and MA (Yoshidome et al. 2011; Yoshidome et al. 2012). In what follows, we 

summarize the physical picture of the rotational mechanism obtained. When a local, tight 

packing of DP, DP, E, and the  subunit with a particular orientation is preferentially 

achieved, the water entropy is maximized. The other two groups are packed moderately and 

loosely, respectively (see state A in Fig. 6). When the receptor has higher affinity with ATP 

than with ADP and the ATP and ADP concentrations are sufficiently high and low, 

respectively, any of the three processes in the hydrolysis cycle mentioned above leads to the 

lowering of the system free energy and unavoidably occurs. In the case of the 33 complex, 

Pi is released from E, ATP is hydrolyzed within DP, ATP binds to E, and ADP is released 

from DP, with the result that E, DP, and TP change to TP, E, and DP, respectively: The  

subunit rotates by 120 to recover the local, tight packing with DP, DP, and E (see state C in 

Fig. 6). The system free energy of state C is lower than that of state A by the free-energy 

decrease upon the ATP hydrolysis in aqueous solution, FH (0). 
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    It is experimentally known that the conformation of DP becomes half-open upon the 

release of Pi from E and hydrolysis of ATP within DP. Namely, the most tightly packed 

group becomes looser. Instead, the moderately packed and loosely packed groups are made 

tighter to recover the water entropy, inducing the 40 rotation of the  subunit: state A  state 

B in Fig. 7. The ATP binding to E’ and release of ADP from DP
HO give rise to further 

promotion of these changes in the packing structures of the three groups, inducing the 80 

rotation of the  subunit: state B  state C in Fig. 7. Thus, three portions which are different 

from one another in the degree of packing are always formed, and they are cyclically 

exchanged. The  subunit simply follows this cyclic exchange arising from the interplay of 

water entropy and hydrolysis cycle of ATP. This picture is consistent with the initially 

surprising experimental observation (Uchihashi et al. 2011) that the inhomogeneous packing 

structure rotates even without the  subunit. 

    The change in the system free energy during the 120 rotation of the  subunit is 

explained in Fig. 8. The sum of the free-energy decreases arising from the following events is 

equal to FH: Pi release and ATP hydrolysis, reorganization of the packing structure of the 

33 complex accompanying the 40 rotation of the  subunit, ATP binding and release of 

ADP, and reorganization of the packing structure of the complex accompanying the 80 

rotation of the  subunit. The reorganization is driven by the water-entropy effect. 

Protein folding occurs so that the system free energy can be lowered. The native state is 

visually different from the unfolded state. In the 33 complex, however, state C appears to 

be the same as state A (see Fig. 6). Actually, they are different: one ATP molecule is 

hydrolyzed, and the system free energy in state C is lower by FH. Without the three processes 

in the hydrolysis cycle, state A does not exhibit any change once it is stabilized. The three 

processes drive the rotation in the complex so that the system free energy can be lowered. The 

ATP hydrolysis into ADP and Pi is required just for recovering the original state by releasing 

ADP and Pi. The recovery allows the complex to repeat the rotational function. Water 

executes the rotation, and the ATP action provides a switch initiating the state change. We 

believe that all the ATP-driven proteins share the same physical essence. 

 

 

Concluding remarks 

 

The entropic excluded-volume effect becomes stronger as the molecular size of the solvent 

decreases and/or the solvent number density increases. Thanks to the hydrogen bonding, water 

can exist in liquid state at ambient temperature and pressure despite its exceptionally small 

molecular size. The effect, which stems from the translational displacement of solvent 

molecules, is the largest for water among ordinary liquids in nature. This is an answer to the 

question: Why is water indispensable to life? 

The physical factor driving the biological self-assembly referred to in “Introduction” is a 

gain in the translational entropy of water brought by the reduction in water crowding in the 

system, i.e., the water-entropy effect arising from the biomolecule-water many-body 
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correlations. We have shown that this effect is the true physical origin of hydrophobicity 

(Yoshidome and Kinoshita 2012). The water-entropy effect becomes considerably less 

powerful at low temperatures, giving rise to the collapse of the self-assembled structures (e.g., 

cold denaturation of a protein). 
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Figure Captions 

 

 

Fig. 1. Contact of a pair of large particles in small particles. When the small particles are 

spheres with diameter dS and the large particle is a sphere with diameter dL, the excluded space 

(the space occupied by the large sphere itself plus the space shown in gray) is a sphere with 

diameter “dS+dL”. Upon the contact, the two excluded spaces overlap (the overlapped space is 

marked in black). 

 

Fig. 2. Four contact manners of large particles, solutes, with high asphericity (e.g., long 

cylinders, thin discs, etc.) immersed in small particles forming the solvent. Manner 4 

maximizes the volume of the overlapped space (the space marked in black). 

 

Fig. 3. Crucial importance of water-entropy effect in protein folding. (a) Formation of a helical 

structure by a portion of the backbone occurring in the -helix. (b) Lateral contact of portions 

of the backbone occurring in the -sheet. (c) Close packing of side chains. 

 

Fig. 4. Illustration of a difference between the solute-solvent pair correlation and 

solute-solvent-solvent triplet and higher-order (solute-solvent many-body) correlations. 

 

Fig. 5. Dependence of C1
Pair, C1

Multi, C2
Pair, and C2

Multi on SdS
3 for hard-sphere solvent. 

C1
Pair=C1 for the pair correlation component of SV/kB (C1

Pair=S), C1
Multi=C1 for the 

many-body correlation component of SV/kB, C2
Pair=C2 for the pair correlation component of 

SV/kB, and C2
Multi=C2 for the many-body correlation component of SV/kB. C1=C1

Pair+C1
Multi 

and C2=C2
Pair+C2

Multi. C1 and C2 are the first and second, principal coefficients in the 

morphometric forms. SV, kB, S, and dS are the solvation entropy, Boltzmann constant, number 

density of bulk solvent, and diameter of solvent molecules, respectively. If the 

Asakura-Oosawa theory is applied to the present system, C1
Pair=S, C1

Multi=0, C2
Pair=0, and 

C2
Multi=0. 

 

Fig. 6. States A and C of the 33 complex. State C: after the 120 rotation of the  subunit. 

 

Fig. 7. States A, B, and C of the 33 complex. State B: after the 40 rotation of the  subunit. 

The release of Pi from E and hydrolysis of ATP within DP induces the 40 rotation. The ATP 

binding to E’ and release of ADP from DP
HO (half-open conformation of DP) induces the 80 

rotation. Prime represents that the packing structure has more or less changed. 

 

Fig. 8. Change in the system free energy during the 120 rotation of the  subunit. FH (0) 

denotes the free-energy decrease upon the ATP hydrolysis in aqueous solution. 
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