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Abstract This is a supplementary note on M. X. Goemans, S. Iwata, and R. Zen-
klusen’s paper that proposes a flow model based on polylinking systems. Their flow
model is a series (or tandem) connection of polylinking systems. We can consider
an apparently more general model of a polylinking flow network which consists of
an ordinary arc-capacitated network endowed with polylinking systems on the ver-
tex set, one for each vertex of the network. This is a natural, apparent generalization
of polymatroidal flow model of E. L. Lawler and C. U. Martel and of generalized-
polymatroidal flow model of R. Hassin. We give a max-flow min-cut formula for
the polylinking network flow problem and discuss some acyclic flow property of
polylinking flows.

Keywords Linking systems · Polylinking flows · Submodular functions

PACS 90C27 · 90B10 · 90C90

1 Introduction

M. X. Goemans, S. Iwata, and R. Zenklusen [6] proposed a flow model based on
polylinking systems of A. Schrijver [9]. The present note is supplementary to their
paper and points out an apparent generalization of their model, which is also a natural,
apparent generalization of polymatroidal flow model of E. L. Lawler and C. U. Martel
[8] and of generalized-polymatroidal flow model of R. Hassin [7]. We give a max-
flow min-cut formula for the polylinking network flow problem and discuss some
acyclic flow property of polylinking flows. The results are easy consequences of those
in the theory of submodular functions but it may be worth noting and useful for
wireless information networks [1], which motivated the work of [6]
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2 Preliminaries: Base polyhedra and polylinking systems

Let W be a nonempty set and f : 2W → R be a submodular function, i.e., f satisfies

f (X)+ f (Y ) ≥ f (X ∪Y )+ f (X ∩Y ) (∀X , Y ⊆W ). (1)

We assume f ( /0) = 0. The base polyhedron associated with f is defined by

B( f ) = {x ∈ RW | ∀X ⊆W : x(X) ≤ f (X), x(W ) = f (W )}. (2)

Here for simplicity we consider submodular functions on power sets (or Boolean
lattices) but we can easily adapt the arguments in this note to submodular functions
on ring families (or distributive lattices). A vector x ∈ B( f ) is called a base. For any
base x ∈ B( f ) and u ∈W we define dep(x,u) by

dep(x,u) = {v ∈W | ∃α > 0 : x+α(χu −χv) ∈ B( f )}, (3)

where for any w ∈W χw is the unit vector such that χw(w) = 1 and χw(s) = 0 for all
s ∈ W \ {w}. In other words, when v ∈ dep(x,u) \ {u}, we can increase x(u) and at
the same time decrease x(v) by some positive amount without leaving the base poly-
hedron B( f ). The function dep : B( f )×W → 2W is called the dependence function.
Moreover, for any v ∈ dep(x,u)\{u} define

c̃(x,u,v) = max{α ∈ R | x+α(χu −χv) ∈ B( f )}, (4)

which is called the exchange capacity from v to u associated with base x. Dependence
functions and exchange capacities will appear only in Section 4.3. For more details
about the theory of submodular functions see [5].

For any vector x ∈ RW and any subset U of W define xU to be the vector in RU

such that xU (u) = x(u) for all u∈U , which is the restriction of x to U . For any disjoint
nonempty subsets U1,U2 ⊂W and any vectors x ∈ RU1 and y ∈ RU2 denote by x⊕ y
the vector in RU1∪U2 such that (x⊕ y)(u) = x(u) for all u ∈U1 and (x⊕ y)(u) = y(u)
for all u ∈U2.

Suppose that f (W ) = 0 and f (X) ≥ 0 for all X ⊆ W , which implies 0 ∈ B( f ).
We assume this property for all submodular functions appearing in the sequel. Let
(U1,U2) be an ordered pair of nonempty subsets of W such that U1 ∩U2 = /0 and
U1 ∪U2 = W . We call it an ordered proper bisection of W . Consider a reflection by
U1 of the base polyhedron given by

B(U1,U2)( f ) = {y | x ∈ B( f ), yU1 = −xU1 , yU2 = xU2}. (5)

Then the triple (U1,U2,B(U1,U2)( f )) is a polylinking system and B(U1,U2)( f ) is the as-
sociated polylinking polyhedron. We call f the submodular function associated with
the polylinking system. Here we define a polylinking system by means of a submod-
ular function (cf. [5, Sec. 3.5(b)]). (The original polylinking system introduced by
Schrijver [9] is the restriction of B(U1,U2)( f ) to the nonnegative orthant RW

+ .) For any
y ∈ B(U1,U2)( f ) we say yU1 is linked to yU2 , and (yU1 ,yU2) is called a pair of linked
vectors. Note that y(U1) = y(U2) since f (W ) = 0 by definition.
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3 The Polylinking Flow Model of Goemans, Iwata, and Zenklusen

Now let us give a description of the polylinking flow model of Goemans, Iwata,
and Zenklusen [6] for completeness of the presentation. Consider nonempty disjoint
sets Vi (i = 1, · · · ,r) with an integer r ≥ 2 and polylinking systems (Vi,Vi+1,Li) (i =
1, · · · ,r−1). The pair (V,L), where V = (V1, · · · ,Vr) and L = (L1, · · · ,Lr−1), is called
a polylinking flow model in [6]. It is a series (or tandem) connection of polylinking
systems. A flow in the polylinking flow model (V,L) is a tuple x = (x1, · · · ,xr) such
that (xi,xi+1) is a pair of linked vectors in Li for all i = 1, · · · ,r−1 and xi is nonneg-
ative for all i = 1, · · · ,r. Note that we always have a feasible flow consisting of zero
linked vectors. We have a common value x1(V1) = · · · = xr(Vr), which is called the
value of flow x = (x1, · · · ,xr).

Goemans, Iwata, and Zenklusen [6] considered a problem of finding a flow of
maximum value in the polylinking flow model, showed a min-max formula, and gave
an efficient algorithm for finding a maximum flow in the polylinking flow model by
reducing the problem to a submodular flow problem of J. Edmonds and R. Giles [2]
and by employing an efficient algorithm for submodular flows such as L. Fleischer
and Iwata’s [3] together with the fast Fourier transformation on finite fields.

4 Polylinking Flow Networks

Goemans, Iwata, and Zenklusen [6] considered a series (or tandem) connection of
polylinking systems. We can consider an apparently more general model which con-
sists of an ordinary arc-capacitated network endowed with polylinking systems, one
for each vertex of the network. This is a natural, apparent generalization of a polyma-
troidal flow model of Lawler and Martel [8] and that of a generalized-polymatroidal
flow of Hassin [7].

4.1 Definition of a (general) polylinking flow network

Let G = (V,A) be a directed graph with a vertex set V and an arc set A, and let
c : A → R∪{−∞} and c̄ : A → R∪{+∞} be lower and upper capacity functions on
arc set A such that c(a) ≤ c̄(a) for all a ∈ A. For each vertex v ∈ V we are given a
polylinking system (δ−v,δ+v,Lv), where let fv : 2δ−v∪δ+v → R be the submodular
function associated with the polylinking polyhedron Lv. (For any vertex v ∈ V , δ−v
denotes the set of arcs in G whose terminal vertices are v, and δ+v the set of arcs
in G whose initial vertices are v.) We call N = (G,c,LLL) a polylinking flow network,
where LLL = (Lv | v ∈V ).

A feasible flow (or a polylinking flow) in the polylinking network N = (G,c,LLL)
is a function ϕ : A → R that satisfies the following.

c(a) ≤ ϕ(a) ≤ c̄(a) (∀a ∈ A), (6)

ϕδ−v∪δ+v ∈ Lv (∀v ∈V ), (7)

where recall that ϕF for F ⊆ A is the restriction of ϕ to F .
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Remark 1 A polymatroidal flow network of Lawler and Martel [8] is a special case
of a polylinking flow network where each polylinking polyhedron Lv for v ∈ V is a
composition of polymatroids on δ−v and on δ+v, which is defined as follows. For
two polymatroid polyhedra P1 ⊂RS1 and P2 ⊂ RS2 with S1∩S2 = /0 define a polytope
L(P1,P2) ⊂ RS1∪S2 by

L(P1,P2) = {x1 ⊕ x2 | x1 ∈ P1, x2 ∈ P2, x1(S1) = x2(S2)}. (8)

We can see that the reflection of L(P1,P2) by S1 is a base polyhedron, and hence
L(P1,P2) gives a polylinking polyhedron. Also Hassin [7] considered a polylinking
flow network when each polylinking polyhedron Lv is a composition of generalized
polymatroids [4] on δ−v and on δ+v for v ∈ V , which is defined similarly as above
by replacing polymatroids by generalized polymatroids.

These facts can be understood as follows. Let P1 ⊂ RS1 and P2 ⊂ RS2 be gener-
alized polymatroids. We embed P1 (resp. P2) in RS1∪S2 by taking the direct sum of
P1 (resp. P2) with the zero vector in RS2 (resp. RS1). Then consider a new element e0
commonly used for P1 and P2, put T = S1 ∪S2 ∪{e0}, and let B1 ⊂ RT and B2 ⊂ RT

be, respectively, the base polyhedra lying in the hyperplane x(T ) = 0 such that the
projection along the axis e0 into the hyperplane x(e0) = 0 are P1 and P2 (after being
restricted on S1 and S2) [5, Sec. 3.5(a)]. Then, the Minkowski sum of −B1 and B2 is
a base polyhedron, denoted by B1,2, in RT , where −B1 = {−x | x ∈ B1} is also a base
polyhedron. Taking a section of B1,2 by the hyperplane x(e0) = 0 and restricting it to
T \{e0}= S1∪S2, we get a base polyhedron B̂ in RS1∪S2 . Finally, by the reflection of
B̂ by S1 we obtain the polylinking polyhedron L(P1,P2) defined by (8) for generalized
polymatroids P1 ⊂ RS1 and P2 ⊂ RS2 . ut

4.2 Equivalence between polylinking flows and submodular flows

Now we show that any polylinking flow network can be reduced to a submodular
flow network. The reduction technique given below is the same as the one shown
in [5, Sec. 5.2(c)], where polymatroids with the flow conservation are considered
instead of polylinking systems.

Given a graph G = (V,A), lower and upper capacity functions c : A → R and
c̄ : A → R with c(a) ≤ c̄(a) for all a ∈ A, and a submodular function f : 2V → R with
f ( /0) = f (V ) = 0, a submodular flow is a function ϕ : A → R that satisfies

c(a) ≤ ϕ(a) ≤ c̄(a) (∀a ∈ A), (9)
∂ϕ ∈ B( f ), (10)

where ∂ϕ is the boundary of flow ϕ defined by ∂ϕ(v) = ∑a∈δ+v ϕ(a)−∑a∈δ−v ϕ(a)
for all v ∈V .

For any polylinking flow network N = (G = (V,A),c, c̄,LLL = (Lv | v ∈ V )) with
associated submodular functions fv : 2δ−v∪δ+v → R for all v ∈ V , construct a sub-
modular flow network N0 = (G0 = (V0,A),c, c̄, f0) as follows.

V0 =
∪
v∈V

(W−
v ∪W+

v ), (11)

W−
v = {u−a | a ∈ δ−v}, W+

v = {u+
a | a ∈ δ+v} (∀v ∈V ), (12)
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where δ± are those defined with respect to G. Each arc a ∈ A of G0 has its head u−a
and tail u+

a . (Note that the arc set A is common to G and G0 while the vertex sets V
and V0 are different as well as the vertex-arc incidence relations.) Moreover,

f (U) = ∑
v∈V

f̄v((W−
v ∪W+

v )∩U) (∀U ⊆V0), (13)

where f̄v is the submodular function on 2W−
v ∪W+

v that is identified with fv by the
natural correspondence between δ−v∪ δ+v and W−

v ∪W+
v . It is easy to see that ϕ :

A → R is a polylinking flow in N if and only if ϕ is a submodular flow in N0.

Remark 2 Similarly as in [5, Sec. 5.2] we can show that any submodular flow net-
work can be reduced to a polylinking flow network. Hence these two models are
equivalent. That is, the polylinking flow problem is what is called a neoflow problem
in [5, Sec. 5]. From now on we consider both networks N and N0 and identify a
polylinking flow ϕ in N with its corresponding submodular flow ϕ in N0. Note that
the two flows are the same function on A. ut

Suppose that we are given a reference arc a0 ∈ A. Then we have a max-flow min-
cut theorem as follows (see [5, Theorem 5.11]).

Theorem 1 Suppose that there exists a feasible polylinking flow in N (or equiva-
lently a feasible submodular flow in N0). Then we have

max{ϕ(a0) | ϕ : a feasible polylinking flow in N }
= min[ c̄(a0),

min{c̄(∆+X)− c(∆−X \{a0})+ f (V \X) | X ⊆V0, a0 ∈ ∆−X} ],
(14)

where operators ∆± appearing in the right-hand side are defined with respect to
graph G0 = (V0,A) for network N0 (∆+X is the set of arcs leaving X and ∆−X the
set of arcs entering X). Moreover, if c, c̄, and f are integer-valued, then there exists
an integral maximum polylinking flow in N (with respect to reference arc a0). ut

4.3 Existence of acyclic polylinking flows of given flow value

It is well-known that for any two-terminal flow ϕ in a classical flow network there
exists a two-terminal flow ψ such that the two flow values are the same, flow ψ is
ϕ-equisignum (i.e. ψ(a) > 0 implies ϕ(a) > 0 and ψ(a) < 0 implies ϕ(a) < 0), and
the network restricted on the support of ψ is acyclic. We consider such a property for
polylinking flows.

For simplicity let us assume c(a) = 0 for all a ∈ A. Let ϕ be a feasible flow in
network N0. Define an auxilliary graph Gϕ = (V0,Aϕ) as follows.

Aϕ = A+
ϕ ∪

∪
v∈V

Dv
ϕ , (15)

A+
ϕ = {a | a ∈ A, ϕ(a) > 0}, (16)

Dv
ϕ = {(u−a ,u+

b ) | a ∈ δ−v, b ∈ δ+v, b ∈ depv((−ϕδ−v)⊕ϕδ+v,a)}
(∀v ∈V ), (17)



6 Satoru FUJISHIGE

where δ± are those defined with respect to graph G = (V,A) for network N and depv
for v ∈V is the dependence function associated with fv and a base (−ϕδ−v)⊕ϕδ+v ∈
B( fv). (Recall that b ∈ depv((−ϕδ−v)⊕ϕδ+v,a) means that we can decrease ϕ(a)
and ϕ(b) by some (and the same) amount α > 0 while keeping ϕδ−v∪δ+v ∈ Lv. The
maximum of such values α is called the exchange capacity from b to a with respect
to base (−ϕδ−v)⊕ϕδ+v ∈ B( fv) and is denoted by c̃v((−ϕδ−v)⊕ϕδ+v,a,b).)

The following algorithmic property is well-known [5, Sec. 5.5].

– If there exists a directed cycle in the auxiliary graph Gϕ , let Q be one of such
directed cycles, regarded as a subset of Aϕ , that do not have any short-cuts. Then
we can obtain a new feasible flow ϕ ′ by

ϕ ′(a) =
{

ϕ(a)−α (a ∈ Q)
ϕ(a) (a ∈ A\Q), (18)

where α is a positive number less than or equal to

min{min{ϕ(a) | a ∈ Q∩A+
ϕ },

min{c̃v((−ϕδ−v)⊕ϕδ+v,u−a ,u+
b ) | (u−a ,u+

b ) ∈ Q∩Dv
ϕ ,v ∈V}}.

Hence, given a feasible flow ϕ in N0, reducing flows along directed cycles not con-
taining reference arc a0, we can obtain a feasible flow ψ of the same flow value as ϕ
such that ψ is ϕ-equisignum and the auxiliary graph Gψ has no directed cycle Q with
a0 6∈ Q, as is shown in the next theorem.

We have the following acyclic reduction property of polylinking flows in general
polylinking networks.

Theorem 2 Given a feasible flow ϕ in polylinking network N with a reference arc
a0 and c = 0, there exists a feasible flow ψ that has the same flow value as ϕ and is
ϕ-equisignum and there exists no directed cycle Q with a0 6∈ Q in the auxiliary graph
Gψ .

(Proof) Re-define

c̄(a) = ϕ(a) (∀a ∈ A), (19)
c(a0) = ϕ(a0). (20)

Moreover, consider a cost function γ : A → R such that γ(a) = 1 for all a ∈ A. Then
let ψ be the minimum-cost submodular flow in N0 with the upper and lower capacity
functions and the cost function defined as above. The optimality of ψ [5, Sec. 5.4]
implies that there does not exist any directed cycle in the auxiliary graph Gψ for
the re-defined network N0. It follows that the flow ψ satisfies the condition of the
statement in the present theorem. ut
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