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Abstract

Two-dimensional (2D) covariance NMR spectroscopy, which has originally been established to

extract homonuclear correlations (HOMCOR), is extended to include heteronuclear correlations

(HETCOR). In a 13C/15N 2D chemical shift correlation experiment, 13C and 15N signals of a poly-

crystalline sample of 13C, 15N-labeled amino acid are acquired simultaneously using a dual-receiver

NMR system. The data sets are rearranged for the covariance data processing, and the 13C-15N

heteronuclear correlations are obtained together with the 13C-13C and 15N-15N homonuclear cor-

relations. The present approach retains the favorable feature of the original covariance HOMCOR

that the spectral resolution along the indirect dimension is given by that of the detection dimen-

sion. As a result, much fewer amounts of data are required to obtain a well-resolved 2D spectrum

compared to the case of the conventional 2D Fourier-Transformation (FT) scheme. Hence, one can

significantly save the experimental time, or enhance the sensitivity by increasing the number of

signal averaging within a given measurement time.
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INTRODUCTION

Two-dimensional (2D) Fourier-transform (FT) NMR spectroscopy has been widely used

to characterize structure and dynamics of molecules of chemical/biological interest in so-

lution and solids. One drawback in NMR spectroscopy in general is the low sensitivity.

When a free induction decay (FID) has to be averaged over many times to attain tolerable

signal-to-noise ratio, 2D FT NMR analysis becomes time consuming, as it requires a rela-

tively long array of one-dimensional (1D) FIDs. In order to reduce the experimental time,

alternative approaches have been proposed. They include Hadamard spectroscopy[1, 2] and

covariance spectroscopy[3, 4]. Application of the former is restricted to samples with well-

resolved Lorenzian or Gaussian lines, whereas the latter does not require any assumption

on the resonance-line shape, and thus has wider potential applications in both liquid- and

solid-state NMR.

Covariance is a concept in statistics, serving for a measure of how much a pair of vari-

ables are correlated with each other. Originally, the idea of covariance was introduced in

IR and Raman spectroscopy[5]. Its application to NMR spectroscopy has been put forth by

Brüschweiler and Zhang[3, 4], who demonstrated homonuclear correlation (HOMCOR) ex-

periments in solution. Then, its feasibility for solid-state NMR was demonstrated by Hu et

al[6]. Recently, covariance HOMCOR has also been applied to microcrystalline proteins[7]

and study of binding of curcumin to amyloid β fibrils[8]. The experimental procedure is

same for both 2D FT and covariance HOMCOR, in which an array of FIDs is acquired. In

contrast to the former that performs 2D FT, data processing of the latter involves FT only

in the direct dimension. Then, covariance is calculated for every pair of data points at given

frequencies to evaluate if the relevant pair of magnetizations vary in a correlated way during

the indirect dimension.

Meanwhile, a modified scheme was introduced, in which a 2D HOMCOR spectrum is

calculated not by the covariance processing of an array of 1D spectra, but by that of a

2D FT spectrum. Such “indirect” covariance NMR spectroscopy was demonstrated both in

solution[9] and in solids[10]. Snyder et al. applied covariance to a 4D NOESY spectrum[11].

They also established a general approach for indirect covariance that allows one to construct

a covariance matrix from multiple NMR spectra[12]. In addition, Lafon et al. applied

covariance to non-uniform sampling of natural abundance deuterium NMR data sets, halving

2



the measurement time compared with the original covariance scheme[13].

In the context of “direct” covariance NMR spectroscopy, only HOMCOR has been per-

formed so far, although reducing the measurement time is also of interest for heteronuclear

correlation (HETCOR) experiments. This is presumably due to the symmetric nature of

the proposed covariance processing, which is suitable for HOMCOR but not for HETCOR.

In this work, we show that covariance can be used to obtain the correlation between het-

eronuclear spins I and S, together with the I-I and S-S homonuclear correlations. We

demonstrate experiments and covariance data processing in 1H-1H dipolar-coupling mediated

13C/15N chemical shift correlation experiments[14, 15], to obtain the 13C-15N heteronuclear

correlation as well as the 13C-13C and 15N-15N homonuclear correlations.

In the 1H-1H dipolar-coupling mediated 13C/15N chemical shift correlation experiments,

the 13C and 15N spins exchange their magnetizations through 1H spin diffusion. The resultant

2D correlation spectra, often called CHHC, NHHN, and CHHN/NHHC spectra, tell the

presence of such 1H spins that are spatially close to the relevant 13C/15N spins. Until

recently, acquisition of the 13C and 15N signals was done in separate implementations of the

experiments. To save the experimental time, Herbst et al. employed a spectrometer with

multiple receivers to acquire 13C and 15N FIDs simultaneously[16]. As shown below, one

can also fully exploit the benefits of covariance CHHC, NHHN, and NHHC correlations by

simultaneous measurements of the 13C and 15N signals using the dual-receiver system.

PRINCIPLE

Here, we show how the idea of covariance NMR can be extended to include heteronuclear

correlations. Let us suppose for a moment that the signals from two nuclear spin species

were detectable through one rf channel with a frequency bandwidth that would be large

enough to cover the resonances of both spin species altogether. Then, the peaks from both

species would appear in a single 1D spectrum, and the situation would be qualitatively

the same as that in the established covariance HOMCOR analysis, and its straightforward

application would give the correlations among the different spin species as well as among

the same species. In practice, however, it is difficult to accommodate resonance frequencies

of heteronuclear spins in a bandwidth of one rf channel. What we aim here is to reconfigure

two heteronuclear signals acquired through the separate channels to form a single fictitious
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spectrum containing both, so that the covariance analysis can be performed just in the same

way as in the case of the covariance HOMCOR spectroscopy.

Fig. 1 shows a pulse sequence for the 1H-1H dipolar-coupling mediated 13C/15N chemical

shift correlation experiment. First, the magnetizations of I (13C) and S (15N) spin species

are enhanced by cross polarization (CP), and then stored along the z axis by applying π/2

pulses. After eliminating the 1H magnetization by a z-filter, another π/2 pulse is applied

to each of the I and S rf channels, letting the I and S spins evolve during the t1 period

under 1H decoupling. The second CP process serves for passing the I and S magnetizations

back to the 1H spins, which, during the mixing time, undergo spin diffusion, exchanging

the magnetizations with the nearby 1H spins. Finally, another CP is performed, and the

resultant I and S magnetizations are observed simultaneously using the dual-receiver system

under 1H decoupling.

In order to avoid spectral overlap of 13C and 15N resonances in the indirect dimension,

time proportional phase increment (TPPI) is applied to phases ϕ1C and ϕ1N, so that the

frequencies of evolution are shifted during t1. In addition, in order to retrieve the correct

sign of the frequency of spin precession during the evolution time, a quadrature set of data

are acquired for each value of t1. This is done by the conventional States method[17], that

is, by separate acquisition of the signals using the phases ϕ1C and ϕ1N shifted by 90 degrees.

It should be noted here that the States method may be omitted by such TPPI operation

that shifts both of the I and S resonances in the indirect dimension to one side (positive or

negative) of the spectral region. Even though either the real or imaginary data sets alone

suffice in this case, the required region of the spectrum and thereby the length of the data

array is doubled, so that the experimental cost is unchanged.

In this way, the real and imaginary data sets s
(ξ)
real(t1, t2) and s

(ξ)
imag(t1, t2) are obtained for

each of the 13C and 15N receiver channels (ξ = (I = 13C, S = 15N)). By performing Fourier

transformation with respect to t2 followed by proper phase adjustment, we obtain arrays of

1D spectra

S
(ξ)
real(t1, ω2ξ) =

∫
s
(ξ)
real(t1, t2) exp(−iω2ξt2)dt2, (1)

S
(ξ)
imag(t1, ω2ξ) =

∫
s
(ξ)
imag(t1, t2) exp(−iω2ξt2)dt2, (2)

and thereby the hypercomplex data sets

S(ξ)(t1, ω2ξ) = Re{S(ξ)
real(t1, ω2ξ)} + iRe{S(ξ)

imag(t1, ω2ξ)}. (3)
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Up to this point, the procedures of 2D FT NMR and covariance NMR are identical. In

the former, the second Fourier transformation is applied to Eq. (3), giving the conventional

2D spectra S(ξ)(ω1, ω2ξ) represented by

S(ξ)(ω1, ω2ξ) =
∫

S(ξ)(t1, ω2ξ) exp(−iω1t1)dt1. (4)

Note that, by appropriate TPPI implementation, the resonance frequencies of the I and

S spin species in the indirect dimension are well separated, as schematically depicted in

Fig. 2(a). Here, S(I)(ω1I , ω2I) carries the correlations between the I − I and I − S spins,

while S(S)(ω1S, ω2S) exhibits the S − I and S − S correlations.

The covariance C(X, Y ) between two complex variables X = {x1, · · · , xN} and Y =

{y1, · · · , yN} is defined as

C(X,Y ) =
1

N

N∑
k=1

(X − 〈X〉)(Y − 〈Y 〉)∗ (5)

= 〈XY ∗〉 − 〈X〉〈Y ∗〉. (6)

Here, the asterisks and the brackets denote for complex conjugate and averaging. Now, we

introduce covariances CII , CIS, CSI , and CSS calculated from the hypercomplex data sets

S(I)(t1, ω2I) and S(S)(t1, ω2S) as

CII(ω2I , ω
′
2I) = 〈S(I)(t1, ω2I)S

(I)(t1, ω
′
2I)

∗〉

−〈S(I)(t1, ωI2)〉〈S(I)(t1, ω
′
2I)

∗〉, (7)

CIS(ω2I , ω
′
2S) = 〈S(I)(t1, ω2I)S

(S)(t1, ω
′
2S)∗〉

−〈S(I)(t1, ω2I)〉〈S(S)(t1, ω
′
2S)∗〉, (8)

CSI(ω2S, ω′
2I) = 〈S(S)(t1, ω2S)S(I)(t1, ω

′
2I)

∗〉

−〈S(S)(t1, ω2S)〉〈S(I)(t1, ω
′
2I)

∗〉, (9)

CSS(ω2S, ω′
2S) = 〈S(S)(t1, ω2S)S(S)(t1, ω

′
2S)∗〉

−〈S(S)(t1, ω2S)〉〈S(S)(t1, ω
′
2S)∗〉, (10)

where the brakets indicate averaging over t1. The covariance spectra Cξξ′ (ξ, ξ′ = I, S) in

Eqs. (7)-(10) correspond to the four regions of the 2D FT spectra, as depicted in Fig. 2(a)(b).

In practice, the acquired data sets are in the form of discrete data points. Accordingly,

we rewrite S(I)(t1, ω2I) and S(S)(t1, ω2S) in Eq. (3) as

S(I)(p∆t1, qI∆ω2I) = S(I)
p,qI

, (11)

S(S)(p∆t1, qS∆ω2S) = S(S)
p,qS

, (12)
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where p = 1, · · · , N1, qI = 1, · · · , NI , and qS = 1, · · · , NS are integers. ∆t1 is the increment

of the evolution time. Note that ∆t1 and N1 are common for I and S in the present work.

It is also possible to treat the data sets S(I)
p,qI

and S(S)
p,qS

as a single data set by joining them

together into an array of 1D spectra S, which is represented as

Sp,q =

 SI
p,q, q = 1, · · · , nI

SS
p,q−nI

, q = nI + 1, · · · , nI + nS

. (13)

S is a N1 × (nI + nS) matrix, from which the (nI + nS) × (nI + nS) covariance matrix C

with elements

Cij =
1

nI + nS − 1

N1∑
k=1

(Sk,i − 〈Si〉)(Sk,j − 〈Sj〉)∗ (14)

are obtained with

〈Si〉 =
1

nI + nS

N1∑
k=1

Sk,i. (15)

As discussed in the previous works on covariance NMR, the covariance spectrum cor-

responds to the power spectrum in the 2D FT scheme. Thus, the square root R of the

covariance matrix C gives a reasonable measure of the spin correlations. In general, calcu-

lation of R requires diagonalization of the covariance matrix. Due to the symmetric nature

of C, it is achieved by transformation using an orthogonal matrix V as

C = V · D · VT , (16)

where D = diag(d1, d2, · · ·) is a diagonal matrix and VT is the transposed matrix of V. For

orthogonal matrices, V · VT = 1. From the square root of D, which is readily obtained as

diag(
√

d1,
√

d2, · · ·), R is calculated by

R = VT ·
√

D · V. (17)

Importantly, in the covariance approach, the resolution of C and thereby R along the

indirect dimension is given by that of the direct dimension for any length N1 > 1 of the t1

increments. When the actual width of the peak of interest is less than the resolution given

by the FT scheme, covariance becomes an attractive alternative to FT. Since much less N1

suffices to extract spin correlations than that required in the conventional FT scheme, one

can increase the number of signal accumulations within a given experimental time, leading

to significant improvement in the attainable sensitivity.
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EXPERIMENTAL

Solid-state NMR measurements were performed in a polycrystalline sample of uniformly

13C, 15N-labeled histidine. All experiments were carried out in a magnetic field of 9.4 T

at room temperature using a Chemagnetics 3.2 mm MAS probe, which was triply tuned

at the resonance frequencies of the 1H, 13C, and 15N spins. For the dual receiver system,

two OPENCORE NMR spectrometers[18–20] were used. One was devoted to 1H and 13C rf

pulsing and 13C detection, while the other was assigned to rf transmission and acquisition

for the 15N spins. They were triggered to be operated synchronously. The carrier frequen-

cies were 400.2385 MHz, 100.650531 MHz, and 40.562604 MHz for the 1H, 13C, and 15N

resonances.

RESULTS AND DISCUSSION

Fig. 3 shows 15N and 13C CPMAS spectra of uniformly 13C, 15N-labeled histidine acquired

simultaneously using the dual receiver system. The sample spinning frequency was 23 kHz,

and, during the contact time of 200 µs, rf irradiation was applied with intensities of 60 kHz

for the 1H channel and 83 kHz for both the 13C and 15N channels. During the simultaneous

signal acquisition, two pulse phase modulation (TPPM) decoupling[21, 22] was applied to

the 1H spins with an intensity of 100 kHz. In Fig. 3, the peaks are assigned according to

ref. [23], and the IUPAC nomenclature is used for the labeling[24].

Typically, the 1H-1H dipolar coupling mediated 13C/15N chemical shift correlation ex-

periments are performed with a contact time of the order of 100 µs, which is rather short

compared to that used in the conventional CPMAS experiments. Appreciable peak intensi-

ties are thus expected for the protonated 13C/15N spins.

In order to optimize the correlation experiment for the histidine sample that we used in

this work, we examined the contact time dependence of the 13C/15N peak intensities (Fig. 4).

For the proton-bearing carbons, transient oscillations were observed[25] with periods ranging

from ca. 120 to 150 µs (Fig. 4(a)). On the other hand, the buildups of the 15Nπ and 15NH+
3

magnetizations were much slower, as shown in Fig. (b). Since the optimal contact times

distributed, we set the best compromise for the contact times τCP1 and τCP3 in the 1H-1H

dipolar coupling mediated 13C/15N chemical shift correlation experiment (Fig. 1) to be 200
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µs.

Next, we examined 13C/15N to 1H polarization transfer during the second CP time τCP2

by observing depolarization of the 13C/15N magnetizations. As demonstrated in Fig. 4(c)(d),

we found that 200 µs was also a reasonable value for the contact time τCP2 for CP from the

13C/15N spins back to the 1H spins.

Fig. 5(a) shows a 2D covariance spectrum of the 1H-1H dipolar coupling mediated 13C/15N

chemical shift correlation experiment obtained in uniformly 13C,15N-labeled histidine using

the pulse sequence depicted in Fig. 1. After acquiring the 13C and 15N FIDs, we performed

Fourier transformation with respect to the direct dimension, and obtained the hypercomplex

data sets according to Eqs. (11)-(12). Then, we joined them together to arrange the data

matrix S (Eq. (13)), and finally, we calculated the covariance matrix C using Eq. (14).

In order to calculate the square root R of C, we applied the Hausholder transformation

on C into a tridiagonal matrix[26]. The matrix was then diagonalized by employing the

Jacobi rotations. The square root R obtained in this way is shown in Fig. 5(b). The size

of the matrix C was 1548×1548, and the calculation of its square root took 4.5 hours on a

personal computer with a Core-i7 processor using a program that we have written for this

purpose. The calculation of a matrix square root may be done much more efficiently using

a singular value decomposition (SVD) scheme, as reported by Trbovic et al.[27].

The data were taken along the indirect dimension t1 for 1.024 ms, which is much shorter

than the T2 values of 13C/15N spins. We thus expect that, in the conventional 2D FT, more

data should be taken along t1. In order to clarify this point, the same data sets were processed

with 2D FT. As shown in Fig. 5(c), the 2D FT spectrum was accompanied by a number

of ripples along the indirect dimension[28], in contrast to the covariance processing that

resulted in the ripple-free spectra even with such truncated FIDs (Figs. 5(a)(b)). Fig. 5(d)

shows another 2D FT spectra with 8 times longer acquisition along t1 (N1 = 256), but with

a smaller number of accumulations by a factor of 8, so that the total experimental time

was almost the same as those in Figs. 5(a)-(c). Figs. 6(a) and (b) show slices of the 2D

FT spectra that are shown in Figs. 5(c) and (d). Indeed, the resolution has been improved

significantly, however, at the cost of the lower sensitivity. Moreover, the disturbing ripples

are still visible in the 15N peaks.

Fig. 6(c) and (d) show slices of the covariance C and the square root R of the covariance

spectra, showing that the relative intensities of the peaks in the 2D FT spectrum are closer
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to those in R. As discussed by Brüschweiler[4], similarity of the square root R with the

2D FT spectrum, rather than that of the covariance spectrum C, is based on the Parseval’s

theorem, which states that

∫ ∞

−∞
dtf(t)g∗(t) ∝

∫ ∞

−∞
dωF (ω)G∗(ω), (18)

where F (ω) and G(ω) are the Fourier transformation of f(t) and g(t). In the present case,

S(ξ)(t1, ω2ξ) in Eq. (3) corresponds to f(t1) and g(t1), and S(ξ)(ω1, ω2ξ) in Eq. (4) corresponds

to F (ω1) and G(ω1). That is,

∫
dt1S

(ξ)(t1, ω2ξ)S
(ξ′)(t1, ω2ξ′)

∗ ∝
∫

dω1S
(ξ)(ω1, ω2ξ)S

(ξ′)(ω1, ω2ξ′). (19)

The right-hand side of Eq. (19) is equivalent to the element of the square of the 2D

FT matrix. On the other hand, the left-hand side coincides with the covariance when

〈S(ξ)(t1, ω2ξ)〉 ∼ 0. This condition is met in most cases, as S(ξ)(t1, ω2ξ) oscillates with t1 due

to the TPPI implementation. It follows that the square root R of the covariance matrix

gives a spectrum which corresponds to the 2D FT spectrum with an evolution time that is

sufficiently longer than T2.

In practice, we deal with discrete data sets, and the integral in Eq. (19) is replaced by a

summation. In addition, the summation is taken over a finite length, in contrast to that the

Parseval’s theorem demands integration over an infinite range. We expect that, as increasing

the length N1 of the data set along the indirect dimension t1, the covariance matrix C

asymptotically gets closer to the square of the 2D FT spectrum with sufficient t1 increments.

In Fig. 7 plotted are the intensities of the cross peaks in the covariance spectrum for various

data lengths N1. We found that the cross peak intensities monotonically decreased, and

converged as N1 was increased. The criterion for how many N1 points should take depends

on the target of the study. When one intends to extract the same profile from the covariance

spectrum as that of the 2D FT spectrum, one needs to verify convergence of the peak

intensities with increasing N1. Otherwise, much less N1 would suffice, as demonstrated in

Fig. 5. We also verified that the intensity of the cross peaks in the 2D covariance spectrum

with N1 = 32 increased with the mixing time τm, confirming the possibility of structural

analysis using the covariance spectra even without their perfect agreement with the 2D FT

spectra.
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SUMMARY

In this work, we implemented 13C-13C, 15N-15N, and 13C-15N covariance solid-state NMR

spectroscopy in a polycrystalline sample of uniformly 13C, 15N-labeled amino acid under

MAS. To our knowledge, this is the first demonstration of the covariance NMR spectroscopy

that includes heteronuclear correlations as well as homonuclear correlations. The calculation

of heteronuclear covariance requires transverse magnetizations of both the I and S spin

species during the detection period. In the present case of 1H-1H dipolar coupling mediated

13C/15N chemical shift correlation experiment, an NMR system equipped with the dual

receiver channels can be exploited to acquire the 13C and 15N FIDs simultaneously. In this

work, we operated two separate single-receiver NMR spectrometers synchronously.

Since the resolution of the covariance 2D spectrum in the indirect dimension is given

by that of the detection dimension, much fewer amounts of data sets suffice to yield a

satisfactory, ripple-free 2D spectrum compared to the case of the conventional 2D FT scheme.

One can therefore save the experimental time, or enhance the sensitivity by increasing

the number of signal accumulations within a given measurement time. It has also been

shown that the square root of the covariance matrix is a reasonable measure of the cross-

peak intensities, in accordance with the previous reports on homonuclear covariance NMR

spectroscopy.

The concept of covariance has wide potential applications in the field of NMR spec-

troscopy. In covariance HOMCOR/HETCOR, an array of 1D spectra is firstly obtained,

and then covariance is calculated between a data point at one frequency and that at an-

other frequency. However, it would also be possible to take covariance between an array of

measured data with non-experimental data. A recent example of such is the so-called phase

covariance NMR[29, 30], which is not relevant for 2D correlation experiments but for simple

1D single pulse experiments. In phase covariance, a set of FIDs is acquired with various

phases of the excitation pulse. By calculating the covariance between the data and the pulse

phases, a spectrum that is similar to the conventional spectrum is obtained. When the

incoherent signals, such as telecommunication radio waves, are contaminated in the NMR

spectrum, the phase covariance approach effectively eliminates them.

Phase covariance NMR takes the covariance between arrays of measured data and exper-

imental parameters (rf phase). It would also be possible to consider covariance between a
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data array and a mathematical function. For example, covariance processing using a sinu-

soidal function would be similar to Fourier transformation. However, they are not equivalent,

because the former and the latter are irreversible and reversible process. We plan to further

study covariance data processing in NMR spectroscopy, so that we could look at a wide

variety of NMR data from different angles.
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Figure Captions

Figure 1

A pulse sequence for 1H-1H dipolar-coupling mediated 13C/15N chemical shift correla-

tion experiments. The signals from the 13C and 15N spins are acquired simultaneously.

Time proportional phase increment (TPPI) is applied to phases ϕ1C and ϕ1N. That is,

ϕ1C = ϕ0C + t1∆ϕ1C and ϕ1N = ϕ0N + t1∆ϕ1N, and the freqency shift in the indirect dimen-

sion is determined by 2π/∆ϕ1C and 2π/∆ϕ1N, respectively. In addition, a quadrature pair

of data are acquired for a given value of t1, with ϕ0C and ϕ0N shifted by π/2. For the real

part of the hypercomplex data, the phases are cycled as follows. ϕ0C, ϕ0N : x, x,−x,−x;

ϕ2 : x,−x, x,−x; ϕ3 : −y,−y, y, y; ϕacq : −y, y,−y, y. For the imaginary part of the hy-

percomplex data, the phases are cycles as follows. ϕ0C, ϕ0N : −y,−y, y, y; ϕ2 : x,−x, x,−x;

ϕ3 : x, x,−x,−x; ϕacq : x,−x, x,−x.

Figure 2

Correspondence between (a) the 2D FT spectra S(I)(ω1I , ω2I), S(S)(ω1S, ω2S) and (b) the

covariance spectra CII(ω2I , ω
′
2I), CIS(ω2I , ω

′
2S), CSI(ω2S, ω′

2I), and CSS(ω2S, ω′
2S).

Figure 3

(a)(b) 15N and 13C CPMAS spectra of uniformly 13C-15N labeled histidine acquired simul-

taneously using the dual receiver system. The contact time was 200 µs, and the signals

were accumulated over 40 times under MAS at 23 kHz. (c) The structure of histidine. The

carbon and the nitrogen sites are labeled according to IUPAC nomenclature.

Figure 4

Measured polarization and depolarization curves of (a)(c) 13C peaks and (b)(d) 15N peaks.

In (a) and (b), the buildup behavior of the 13C and 15N magnetizations are plotted as a

function of the contact time τCP1. In (c) and (d), the 13C and 15N magnetizations were firstly

enhanced by CP with a contact time of 200 µs. After eliminating the 1H magnetization by

a z-filter, the second CP was applied with various contact times τCP2, aiming at transferring

the 13C and 15N magnetizations back to the 1H spins. The experiments were carried out in

a magnetic field of 9.4 T under MAS at 23 kHz.

Figure 5

(a) A 2D covariance spectrum of 1H-1H dipolar coupling mediated 13C/15N chemical shift cor-

relation experiment obtained in uniformly 13C, 15N-labeled histidine with the pulse sequence

described in Fig. 1. The experimental parameters are as follows. τCP1 = τCP2 = τCP3 = 200

13



µs, τd = 3 ms, τm = 200 µs. t1 was incremented by 33 µs up to 1.024 ms, so that the

length N1 of the data sets was 32. TPPI was applied to shift the frequencies in the indirect

dimension by -5 kHz and +10 kHz for the 13C and 15N channels, respectively. The signals

were accumulated over 320 times with a recycle delay of 3 s. The experiment was carried out

in a magnetic field of 9.4 T under MAS at 23 kHz. The data was processed according to the

procedure described in the text, and plotted with 5 contours whose heights range from 2.0%

to 50% of the highest peak. (b) The square root R of the 2D covariance spectrum in (a).

(c) A 2D FT spectrum using the identical data sets used in (a)(b). (d) A 2D FT spectrum

obtained with 256 t1 increments up to 8.416 ms, which was 8 times that of the data in (c),

whereas the number of accumulation was reduced by a factor of 8 (i.e., 320/8=40), to make

the total measurement time the same.

Figure 6

Slice spectra of (a) the 2D FT spectrum with N1 = 32, (b) the 2D FT spectrum with

N1 = 64, (c) the covariance spectrum, and (d) the square root of the covariance spectrum.

The same data sets were used as those plotted in Fig. 5. The slices were taken along the

indirect dimension t1 at the peaks corresponding to the Cβ, Cα, C5, C2, NH+
3 , and Nτ atomic

sites.

Figure 7

Array-length dependence of the intensities of the cross peaks in the 2D covariance spectra

of 1H-1H dipolar coupling mediated 13C/15N chemical shift correlation experiment. The

experiment was carried out with an array length of 256, and the covariance processing was

performed for various lengths N1 of the data sets taken from the acquired data. The MAS

frequency was 23 kHz, and the mixing time τm was 200 µs. (a), (b), and (c) show the

cross-peak intensities for the 13C-13C, 13C-15N, and 15N-15N correlations, respectively.
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