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Abstract

We investigate the dynamics of a pair of short laser pulse trains propagating in a medium consisting of
three-level Λ-type atoms by numerically solving the Maxwell-Schrödinger equations for atoms and fields.
By performing propagation calculations with different parameters, under conditions of electromagnetically
induced transparency, we compare the propagation dynamics by a single pair of probe and coupling laser
pulses and by probe and coupling laser pulse trains. We discuss the influence of the coupling pulse area,
number of pulses, and detunings on the probe laser propagation and realization of electromagnetically
induced transparency conditions, as well on the formation of a dark state.
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PACS: 42.50.Gy, 32.80.Qk, 42.65.Re

1. Introduction

Quantum control, sometimes referred to as co-
herent control, has drawn increasing interest in re-
cent years in many different areas of physical sci-
ences. Quantum control aims at manipulating the
fate of quantum systems at will by utilizing quan-
tum interference in one way or the other [1, 2]. The
optical response of an atomic medium can be mod-
ified due to quantum interference between two dif-
ferent excitation pathways and an opaque optical
medium can be rendered transparent to a probe
field by applying an intense coupling laser field
at a different frequency [3, 4]. This phenomenon
has been termed electromagnetically induced trans-
parency (EIT), and a narrow transparency window
with vanished absorption and refractive index ap-
pears within an absorption line. EIT was theoreti-
cally proposed by Kocharovskaya and coworkers [5],
and then it was experimentally demonstrated with
Sr atoms by Harris and coworkers [6]. The basis
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of EIT resides in the coherent population trapping
(CPT) in three-level Λ-type atoms, which was first
discovered by Alzetta and coworkers [7] in the D
lines of Na atoms: Briefly, for Λ-type atoms inter-
acting with a probe and a coupling laser the pop-
ulation is trapped in the two lower states without
excitation to the upper (intermediate) state during
the interactions. The underlying physics of CPT is
the destructive quantum interference for the tran-
sitions from the two lower states to the common
upper (intermediate) states, where the establish-
ment of coherence between the two lower states by
the probe and coupling lasers is the key. Since the
first experimental demonstration of EIT [6], vari-
ous kinds of EIT-related phenomena have been in-
tensively studied, some of which are lasing without
inversion, nonlinear optics, sub-fs pulse generation,
atomic coherence control, slow light, giant nonlin-
earity, and storage of light, etc. [8].

Quantum interference can be induced by lasers in
many different ways. For instance the incident laser
may be a single laser pulse or a laser pulse train.
By using a comb laser, which means an ultrafast
laser pulse train with a high repetition rate, one can
carry out the ultrahigh resolution spectroscopy. Re-
cently it has been shown that the accumulation ef-
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fects of coherence by a laser pulse train play an im-
portant role for coherent control of atomic or molec-
ular systems [9, 10]. The use of a chirped laser pulse
train is another way for coherent control of popula-
tion transfer [11]. Recent advances of laser technol-
ogy allows us to actively control the amplitude and
phase of the laser field from pulse to pulse, and the
application of such techniques to a frequency-comb
laser irradiated to a Λ-type molecule results in a
robust population transfer [12].
So far most of the studies on the Λ-type sys-

tem with a femtosecond laser pulse train have been
done, without taking into account the propagation
effects, either by assuming the presence of a sta-
tionary state [13] or a weak laser field when the
lowest order perturbation theory is applicable [14].
As for the work with propagation effects taken into
account, a closed Λ-type system with a degener-
acy in the two lower states has been theoretically
investigated with a femtosecond laser pulse train
[15], when the single laser pulse train acts as both
probe and coupling laser pulses due to the degen-
eracy of the system under consideration. At first
glance such a degenerate Λ-type system looks very
similar to a non-degenerate Λ-type system which
is most commonly studied in the context of EIT.
There is, however, an essential difference between
them: The initial state of the former is a mixed
state with 50:50 populations in the two degenerate
lower states without coherence, while for the latter
the initial state is a pure state and only a single
state is occupied before the interactions with laser
pulses. As a result, in terms of the single atom re-
sponse, i.e., at the entrance to the medium, a dark
state is not formed in the degenerate Λ-type sys-
tem by the very first pulse, while is formed in the
non-degenerate Λ-type system. As a natural con-
sequence, we expect that the following propagation
dynamics would be essentially different.
In this paper we numerically investigate the prop-

agation dynamics of a pair of short laser pulse
trains in a non-degenerate Λ-type atomic medium
under the EIT conditions when the coupling field is
stronger than the probe field. In principle such two-
colour laser pulse trains can be produced from a sin-
gle laser pulse train by the optical parametric am-
plification technique, etc. The pulses we assume in
this paper are short, and the time interval between
two successive pulses is also short compared with
a lifetime of the excited state, as a result of which
the spontaneous decay from the excited state will
not be completed before the next pulses arrive. Un-

like the case of the degenerate Λ-type system, how-
ever, this fact would play a minor role for the non-
degenerate Λ-type system, since the first pulse pro-
duces a nearly perfect dark state under the condi-
tions of EIT, at least at the entrance to the medium,
and hence the population in the excited state is
almost zero. The paper is organized as follows.
In Section 2 we introduce the theoretical model.
To describe the propagation dynamics we utilize
the Maxwell-Schrödinger equations for atoms and
fields and numerically solve them on a grid, assum-
ing a one-dimensional propagation. In Section 3
we present and discuss representative numerical re-
sults for the interaction of a pair of probe and cou-
pling laser as well as probe and coupling laser pulse
trains with a three-level Λ-type atom. The question
we address in this paper is whether and how much
the propagation dynamics of a pair of laser pulse
trains in a non-degenerate Λ-type atomic medium
is different from that of a single pair of pulses under
the EIT conditions. We examine the effect of the
laser parameters such as coupling pulse area, num-
ber of individual pulses, and laser detunings on the
temporal and spatial propagation dynamics of the
probe laser pulse train. Finally, concluding remarks
are given in Section 4. Atomic system of units are
used throughout the present work unless otherwise
stated.

2. Theoretical model

2.1. Laser pulse trains

In Fig. 1 we show the level scheme of a Λ-type
atom interacting with a pair of short laser pulse
trains: the state |1⟩ is initially occupied, while the
states |2⟩ and |3⟩ are initially unoccupied, and the
probe (coupling) laser field resonantly couples the
states |1⟩ and |2⟩ (|2⟩ and |3⟩), respectively. The
transition between the states |1⟩ and |3⟩ is dipole-
forbidden. The total electric field vector is written
as

E(z, t) = Ep(z, t) +Ec(z, t) , (1)

where Ep(z, t) and Ec(z, t) are the probe and cou-
pling electric field vectors that are copropagating
along the z axis. Since we assume that they are
in the form of pulse trains with linear polarizations
which are parallel to each other, the respective fields
are written as
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Eα(z, t) = Eα0 e exp [i(ωαt− k0αz)] (2)

×
Nmax−1∑

n=0

fα(z, t− nT )einϕ + c.c. , (3)

where Eα0 (with α = p or c hereafter) are the peak
field amplitudes of the probe and coupling laser
fields, respectively, and e is the polarization vec-
tor which is assumed to be identical for both lasers.
fα(z, t) is the slowly varying envelope, ωα is the
photon energy, and k0α is the wavenumber in vac-
uum for the respective laser fields. T and Nmax

represent the time interval between two successive
pulses and the number of pulses in each pulse train,
respectively, which are assumed to be identical for
both lasers, and ϕ is a phase shift between two suc-
cessive pulses.

By taking the Fourier transform of the electric
field Eq. (3) with respect to time as

Ẽα(z, ω) =

∫ +∞

−∞
Eα(z, t) exp (−iωt)dt,

where the symbol ∼ denotes a Fourier transform,
we obtain by applying the Poisson formula for
Nmax → ∞, after a simple algebra,

Ẽα(z, ω) = Ẽα0(z, ω−ωα)
+∞∑

m=−∞
δ(ω−ωαm), (4)

with Ẽα0(z, ω − ωα) = 2π Eα0f̃α(ω − ωα)/T and
ωαm = ωα + ϕ/T + 2πm/T . The laser pulse train
spectrum defined by Eq. (4) forms a frequency
comb with m laser modes centered at ωα + ϕ/T ,
separated by 2π/T , and with a peak amplitude

Ẽα0(z, ω − ωα). Therefore the photon energy of
the mth mode for each pulse train is given by
(ωα + ϕ/T ) ± 2πm/T . In this paper we assume
that the phase shift, ϕ, is zero. As for the slowly
varying envelope at the entrance to the medium,
fα(z = 0, t), we assume that it is represented by a
Gaussian function, i.e.,

fα(z = 0, t) = e−π(t/τ0)
2

, (5)

where τ0 is the pulse temporal width of a single
laser pulse, which is assumed to be identical for
both probe and coupling lasers.

2.2. Maxwell-Schrödinger equations

As long as the pulse duration is not very short,
say, if it is longer than 100 fs, we may derive the
equations for atoms and fields, which are often
called Maxwell-Schrödinger equations, after intro-
ducing the rotating-wave approximation and slowly
varying envelope approximation (SVEA). In SVEA
the envelope of the electric field varies slowly in
time and space compared to the optical period
and the wavelength of the field, and therefore the
second order derivative terms are negligible, i.e.,
|∂2

zfα(z, t)| ≪ k0α|∂zfα(z, t)| and |∂2
t fα(z, t)| ≪

ωα|∂tfα(z, t)|, where ∂z and ∂t represent the deriva-
tives relative to the variables z and t.

As for the response of the single atom to the laser
fields, we can follow the standard procedure and
easily derive the time-dependent Schrödinger equa-
tions in terms of the probability amplitudes of the
relevant states described in Fig. 1. Since we cou-
ple those equations with the Maxwell equations in
what follows, it is more convenient to introduce a
moving frame by replacing the space and time vari-
ables in the laboratory frame, z and t, by those in
the moving frame, ζ and τ , through the relations
of ζ = z and τ = t − z/c, where c is the speed of
light. Finally, we obtain the following probability
amplitude equations

∂

∂τ
c1(ζ, τ) =

i

2
Ωp(ζ, τ)c2(ζ, τ), (6)

∂

∂τ
c2(ζ, τ) = −(iδp + γ)c2(ζ, τ) (7)

+
i

2
Ωp(ζ, τ)c1(ζ, τ) +

i

2
Ωc(ζ, τ)c3(ζ, τ),

∂

∂τ
c3(ζ, τ) = −i(δp − δc)c3(ζ, τ)

+
i

2
Ωc(ζ, τ)c2(ζ, τ), (8)

where ck(ζ, τ) (k = 1, 2, and 3) is the slowly varying
probability amplitude of state |k⟩ with the initial
conditions of c1(ζ, τ = −∞) = 1 and ck(ζ, τ =
−∞) = 0 (k = 2, 3), γ is the spontaneous decay
rate of state |2⟩, and δp and δc are the detunings of
the probe and coupling lasers, respectively. Ωp(ζ, τ)
and Ωc(ζ, τ) are the one-photon Rabi frequency due
to the probe and coupling laser pulse trains, and are
defined as
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Ωp(ζ, τ) = Ωp0

Nmax−1∑
n=0

fp(ζ, τ − nT ), (9)

Ωc(ζ, τ) = Ωc0

Nmax−1∑
n=0

fc(ζ, τ − nT ), (10)

with the peak value of Ωp0 = d12Ep0 (Ωc0 = d23Ec0),
where d12 (d23) is the one-photon dipole moment
for the transition between states |1⟩ and |2⟩ (|2⟩
and |3⟩), respectively.
As for the response of the laser fields to the

atomic medium we obtain the following Maxwell
equations

∂

∂ζ
Ωp(ζ, τ) = −2iµpc

∗
2(ζ, τ)c1(ζ, τ), (11)

∂

∂ζ
Ωc(ζ, τ) = −2iµcc

∗
2(ζ, τ)c3(ζ, τ), (12)

where µp (µc) is the medium propagation coeffi-
cient for the probe (coupling) laser, which is defined
as µp = Ndωp|d12|2/2ε0c (µc = Ndωc|d23|2/2ε0c),
where Nd is the atomic density of the medium and
ε0 is the vacuum permittivity. The initial condi-
tions for Eqs. (11)-(12) are given by Eqs. (5) and
(9)-(10).
Now, we solve the coupled differential Eqs. (6)-

(8) and (11)-(12) for the atoms and laser fields with
arbitrary temporal shapes and field strengths. This
is a complicated mathematical problem and there is
no analytical solution for the general case. There-
fore we resort to the numerical method based on
the Crank-Nicholson algorithm which has a second
order accuracy in both time and space. The com-
puter code we have developed for this problem is an
extension of our previous work for the propagation
of phase-controlled two-colour lasers in a two-level
medium [16].

2.3. Maxwell-Schrödinger equations in the dressed
state basis

A more convenient way to study the Maxwell-
Schrödinger equations is to use the dressed state
basis [17], by taking the advantage of the dark
and bright states, |D⟩ and |B⟩, defined as coher-
ent asymmetric and symmetric superposition of the
two lower bare states, |1⟩ and |3⟩, |D⟩ = (Ωc0|1⟩ −
Ωp0|3⟩)/ΩB0 and |B⟩ = (Ωp0|1⟩ + Ωc0|3⟩)/ΩB0,

where ΩB0 =
√
Ω2

p0 +Ω2
c0 represents the bright

Rabi frequency. The dark and bright probability
amplitudes, cD and cB , are now calculated in terms
of c1 and c3,

cD(ζ, τ) =
1

ΩB0
[Ωc0c1(ζ, τ)− Ωp0c3(ζ, τ)], (13)

cB(ζ, τ) =
1

ΩB0
[Ωp0c1(ζ, τ) + Ωc0c3(ζ, τ)]. (14)

Similarly, we define new field variables [17],
ΩD(ζ, τ) and ΩB(ζ, τ), the dark and bright fields,
calculated in terms of Ωp and Ωc, as

ΩD(ζ, τ) =
1

ΩB0
[Ωc0Ωp(ζ, τ)− Ωp0Ωc(ζ, τ)],

(15)

ΩB(ζ, τ) =
1

ΩB0
[Ωp0Ωp(ζ, τ) + Ωc0Ωc(ζ, τ)].

(16)

First, by taking the derivative of Eqs. (13)-(14)
with respect to time, τ , and using the probability
amplitude Eqs. (6)-(8) and dressed fields defini-
tions (15)-(16) we obtain the following set of prob-
ability amplitude equations in the new basis of the
dressed states:

∂

∂τ
cD(ζ, τ) =

i

2
ΩD(ζ, τ)c2(ζ, τ) (17)

− i(δp − δc)
Ωp0

Ω2
B0

[Ωc0cB(ζ, τ) + Ωp0cD(ζ, τ)] ,

∂

∂τ
c2(ζ, τ) = −(iδp + γ)c2(ζ, τ) (18)

+
i

2
ΩB(ζ, τ)cB(ζ, τ) +

i

2
ΩD(ζ, τ)cD(ζ, τ),

∂

∂τ
cB(ζ, τ) =

i

2
ΩB(ζ, τ)c2(ζ, τ) (19)

− i(δp − δc)
Ωc0

Ω2
B0

[Ωp0cB(ζ, τ) + Ωc0cD(ζ, τ)] ,

with the initial conditions cD(ζ, τ = −∞) =
Ωc0/ΩB0, c2(ζ, τ = −∞) = 0, and cB(ζ, τ =
−∞) = Ωp0/ΩB0, as the Λ-type atom is initially
prepared in the ground state. Second, by taking
the derivative of Eqs. (15)-(16) with respect to ζ
and using Eqs. (11)-(12) and (13)-(14) we get after
a simple algebra the following Maxwell equations in
the dressed state basis:
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∂

∂ζ
ΩD(ζ, τ) = −2ic∗2(ζ, τ) (20)

× [µB1cD(ζ, τ) + µDcB(ζ, τ)] ,

∂

∂ζ
ΩB(ζ, τ) = −2ic∗2(ζ, τ) (21)

× [µDcD(ζ, τ) + µB2cB(ζ, τ)] ,

where the new propagation coefficients µB1, µB2

and µD are defined as µB1 = (Ω2
c0µp+Ω2

p0µc)/Ω
2
B0,

µB2 = (Ω2
p0µp + Ω2

c0µc)/Ω
2
B0, and µD = (µp −

µc)Ωp0Ωc0/Ω
2
B0, respectively. For initially matched

probe and coupling pulses at the entrance to the
medium, fp(ζ = 0, τ) = fc(ζ = 0, τ), the initial
conditions satisfied by the dressed fields are evalu-
ated from Eqs. (15)-(16) as ΩD(ζ = 0, τ) = 0 and
ΩB(ζ = 0, τ) = ΩB0

∑
n fp(ζ = 0, τ − nT ).

Finally, because we are interested in a weak inter-
action of the probe field with the atom, Ωp0 ≪ Ωc0,
important simplifications of the probability ampli-
tude Eqs. (17)-(19) occur as follows,

∂

∂τ
cD(ζ, τ) ≃ 0, (22)

∂

∂τ
c2(ζ, τ) ≃ −(iδp + γ)c2(ζ, τ) (23)

+
i

2
ΩB(ζ, τ)cB(ζ, τ),

∂

∂τ
cB(ζ, τ) ≃ −i(δp − δc)cD(ζ, τ) (24)

+
i

2
ΩB(ζ, τ)c2(ζ, τ),

with the initial conditions cD(ζ, τ = −∞) ≃ 1,
c2(ζ, τ = −∞) = 0, and cB(ζ, τ = −∞) ≃ 0, show-
ing that the Λ-type atom is initially in a dark state
|D⟩. Obviously, Eqs. (22)-(24) correspond to a Λ-
type atom where the dressed state |D⟩ is practically
decoupled from the two fields and the dark field is,
accordingly to its definition (15), ΩD(ζ, τ) ≃ 0, re-
ducing thus the problem of a three- to a two-level
atom. Hence, for initially matched pulses in the
limit of weak probe field, Ωp0 ≪ Ωc0, we obtain
that the atomic system reaches a dark state where
ΩD(ζ, τ) ≃ 0 and the temporal profile of probe and
coupling laser pulses does not change at any opti-
cal depth, fp(ζ, τ) = fc(ζ, τ) = fp(ζ = 0, τ), and
therefore the medium becomes transparent to both
lasers [17].

Similar simplifications exist for the Maxwell Eqs.

(20)-(21) in the limit of weak probe field, where
the propagation coefficients simplify as µB1 ≃ µp,
µB2 ≃ µc, and µD ≃ 0. Substituting the above
simplified propagation coefficients in the Maxwell
Eqs. (20)-(21) we obtain

∂

∂ζ
ΩD(ζ, τ) ≃ −2iµpc

∗
2(ζ, τ)cD(ζ, τ), (25)

∂

∂ζ
ΩB(ζ, τ) ≃ −2iµcc

∗
2(ζ, τ)cB(ζ, τ). (26)

Next, because the atom interacts with two laser
pulse trains, whose spectra consist of combs with
different frequencies, is useful to consider the above
Maxwell-Schrödinger Eqs. (22)-(26) in the spec-
tral domain where the dependence on the frequency
comb modes is emphasized. By taking the Fourier
transform of Eqs. (22)-(24) with respect to τ and
using the Fourier transform of the probability am-
plitude ck(ζ, t) (k = B,D and 2) defined as

c̃k(ζ, ω) =

∫ +∞

−∞
ck(ζ, τ

′)e−iωτ ′
dτ ′, (27)

we can write, after a straightforward algebra, the
set of probability amplitude equations in the spec-
tral domain as follows,

c̃D(ζ, ω) ≃ 0, (28)

c̃2(ζ, ω) ≃
1

2(ω + δp − iγ)
(29)

×
+∞∑

m=−∞
Ω̃B0(ζ,mωr)c̃B(ζ, ω −mωr),

c̃B(ζ, ω) ≃
1

2(ω + δp − δc)
(30)

×
+∞∑

m=−∞
Ω̃B0(ζ,mωr)c̃2(ζ, ω −mωr),

where we employ the Fourier transform of the
bright Rabi field, Ω̃B(ζ, ω), given by

Ω̃B(ζ, ω) =

∫ +∞

−∞
ΩB(ζ, τ

′)e−iωτ ′
dτ ′

= 2π Ω̃B0(ζ, ω)
+∞∑

m=−∞
δ(ω −mωr),
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with

Ω̃B0(ζ, ω) = [Ωp0Ω̃p0(ζ, ω) + Ωc0Ω̃c0(ζ, ω)]/ΩB0,

Ω̃p0(ζ, ω) = d12Ep0f̃p(ζ, ω)/T,

Ω̃c0(ζ, ω) = d23Ec0f̃c(ζ, ω)/T,

where ωr = 2π/T represents the repetition angular
frequency. For the EIT parameters we employ, is
quite visible from the amplitude probabilities Eqs.
(28)-(30), that the upper and bright state popula-
tions, |c̃k(ζ, ω)|2 (k = 2, B), are periodic functions
with the same periodicity as the laser frequency
comb ωr.
By taking now the Fourier transform of Eqs.

(25)-(26) and using Eq. (28) the Maxwell equations
in the spectral domain reads as

∂

∂ζ
Ω̃D(ζ, ω) ≃ 0, (31)

∂

∂ζ
Ω̃B(ζ, ω) ≃ −i

µc

π
c̃∗2(ζ, ω)⊗ c̃B(ζ, ω), (32)

where the symbol ⊗ denotes the convolution oper-
ator which is defined as h(ω)⊗ g(ω) =

∫ +∞
−∞ h(ω −

ω′)g(ω′)dω′. In the limit of weak probe field for
initially matched pulses, similar to the findings
in the temporal domain, is clear from Eq. (31)
that the atomic system reaches a dark state where
Ω̃D(ζ, ω) ≃ 0 and the probe and coupling laser

pulses achieve identical spectral profiles f̃p(ζ, ω) =

f̃c(ζ, ω).

3. Numerical Results and Discussions

In this section we present representative results
for the propagation of the short probe and coupling
laser pulse trains in a Λ-type atomic medium by
numerically solving Eqs. (6)-(12). We consider re-
alistic values for the atomic and lasers parameters
and represent the propagation length in units of µpζ
which is the so-called optical depth [18]. The popu-
lation of state |k⟩ (k = 1, 2, and 3) at any time and
space, (ζ, τ), is calculated as Pk(ζ, τ) = |ck(ζ, τ)|2.
Atomic coherence between states |1⟩ and |2⟩ is
defined by c1(ζ, τ)c

∗
2(ζ, τ), where the real part,

Re[c1(ζ, τ)c
∗
2(ζ, τ)], stands for the refractive index

and the imaginary part, -Im[c1(ζ, τ)c
∗
2(ζ, τ)], stands

for the absorption coefficient, respectively. The
dark and bright state populations are calculated as
PD(ζ, τ) = |cD(ζ, τ)|2 and PB(ζ, τ) = |cB(ζ, τ)|2.

In what follows we present the propagation of a sin-
gle pair of resonant probe and coupling laser pulses,
next we discuss the propagation of resonant probe
and coupling laser pulse trains, and finally we inves-
tigate the influence of symmetric and asymmetric
detunings on the propagation of laser pulse trains.

3.1. Propagation of a single pair of resonant probe
and coupling laser pulses

To start with, we investigate the propagation of
a single pair of probe and coupling laser pulses, i.e.,
Nmax = 1 in Eq. (3), with different pulse durations
and laser intensities. Representative results for the
temporal shape of the probe pulse Ωp(ζ, τ) at dif-
ferent optical depths µpζ = 0, 3, 6, and 9 ps−1 are
shown in Figs. 2(a)-(e) where the pulse durations
of both probe and coupling laser pulses are 100 fs,
1 ps, 10 ps, 100 ps, and 1 ns, respectively. The pa-
rameters we have chosen for Fig. 2 are Ωp0 = 0.04
THz and Ωc0 = 1 THz for the Rabi frequencies,
τ0 = 1 ps for the pulse duration, δp = δc = 0 for de-
tunings, and the spontaneous decay rate from the
upper state is γ = 70 MHz. Similar results, but at
higher coupling laser intensities, are shown in Figs.
2(f)-(j) with Ωc0 = 10 THz. We note in Fig. 2
the quite different spatio-temporal changes of the
probe pulse with short pulse durations compared
to those with long pulse durations for which most
of the EIT studies have been carried out. As we
see in Figs. 2(a)-(c) and Figs. 2(f)-(g) for small
and moderate coupling pulse areas (Ωc0τ0 < 10)
the probe laser pulse is significantly distorted dur-
ing the propagation, and each pulse breaks up into
several sub-pulses with positive and negative ampli-
tudes [16, 19, 20]. The number of modulations at
the trailing edge of the pulse increases as the prop-
agation distance (or optical depth) increases. We
note that, if the pulse area is small and the pulse
duration is shorter than the lifetime of the upper
state, the propagation of the laser pulse does not
obey the exponential absorption given by the Beer’s
law (we should recall that the Beer’s law is valid for
constant laser fields) [21]. Therefore the right wing
(or trailing edge) of laser pulses can propagate for
longer distances [19]. When the pulse durations are
as short as sub-ps or ps and the pulse areas, in par-
ticular the pulse areas of the coupling laser pulses,
are also small, there is no EIT effect. In such cases
we simply observe the modulations at the trailing
edge of the probe pulse [16, 19], as shown in Figs.
2(a) and (b). As the pulse durations become longer
and accordingly the pulse areas become larger, EIT
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is established with the so-called preparation loss at
the leading edge of the pulse [17], as shown in Figs.
2(d) and (e). If we increase the peak intensities
of the coupling laser pulse by ten times, Ωc0 = 10
THz, (right column of Fig. 2) we observe similar
dynamics but at shorter pulse durations.
For a better understanding of the break-up pro-

cess of the small area pulse, we plot in Figs. 3(a)-(c)
and Figs. 3(d)-(f) the temporal shape of the probe
pulse, Ωp(ζ, τ), and the population in the ground
state, P1(ζ, τ), respectively, at two different optical
depths µpζ = 0 and 1 ps−1 for the case of a single
laser pulse propagating in a two-level medium, i.e.,
Nmax = 1 and Ωc0 = 0. The parameters we choose
for Fig. 3 are Ωp0 = 0.04 THz, τ0 = 5 ps, and
δp = 0 with three different spontaneous decay rates
of γ = 700 GHz (γ−1 = 1.4 ps), 70 GHz (γ−1 = 14
ps), and 7 GHz (γ−1 = 140 ps) for Figs. 3(a) and
(d), Figs. 3(b) and (e), and Figs. 3(c) and (f), re-
spectively. It is well known that in the weak field
regime, when the Rabi frequency is smaller than the
atomic linewidth, Ωp0 < γ shown in Fig. 3(a), the
laser pulse is damped and strongly absorbed, while
in the strong field regime, Ωp0 > γ in Fig. 3(c), the
laser pulse oscillates and reshapes due to the Rabi
flopping between the ground and excited state pop-
ulations. Since we are using laser pulses we should
also take into consideration the pulse duration [19].
As we see in Fig. 3(a), the pulse is absorbed by
the medium if the lifetime of state |2⟩ is short com-
pared with the pulse duration (γτ0 = 3.5). If the
lifetime of state |2⟩ is longer than the pulse dura-
tion (γτ0 = 0.035), the trailing edge of the pulse
modulates with positive and negative amplitudes,
as shown in Figs. 3(b) and (c). The modulations
of the trailing edge of the pulse are spread over for
a time scale of the order of γ−1 [17].

3.2. Propagation of probe and coupling laser pulse
trains with zero detunings

Next, we study the propagation of the probe and
coupling laser pulse trains, i.e., Nmax > 1 in Eq.
(3). In Fig. 4 we plot the spatio-temporal change
of the probe laser field Ωp(ζ, τ), at different optical
depths µpζ = 0, 3, 6, and 9 ps−1, for the first,
40th, and 120th pulses in the probe pulse train.
The probe and coupling laser pulse trains are ini-
tially matched with identical pulse envelopes at the
entrance to the medium. The parameters we em-
ploy for Fig. 4 are Ωp0 = 0.04 THz, Ωc0 = 0.5
THz, δp = δc = 0, τ0 = 1 ps and T = 10 ns.
The frequency separation between two successive

comb teeth is 0.2π GHz and the spontaneous decay
rate from the upper state is γ = 70 MHz, i.e., 14
ns lifetime. As mentioned before the pulse dura-
tion of each individual pulse, τ0, is much shorter
than the lifetime of the upper state and there is
no enough time for a complete decay of the upper
excited state |2⟩ before the next pulse in the train
arrives. Under these conditions, the area of each
of the individual probe laser pulse is small while
that of the coupling laser pulse is moderate, i.e.,
Ωp0τ0 = 0.04 and Ωc0τ0 = 0.5. What we learn
from Fig. 4 is that, although EIT is not yet es-
tablished when the first probe pulse goes through
the medium, coherence is slowly accumulated in the
medium as more probe and coupling pulses interact
with the medium, and when the 120th probe pulse
enters the medium we can see the some signature of
EIT. We note that our numerical results for atomic
populations and probe laser absorption at the en-
trance to the medium (not shown here) agree well
with the results presented in [22] in terms of a single
atom response under the presence of a probe laser
train pulse and a continuous-wave coupling laser.

What we glimpse in Fig. 4 is indeed an EIT ef-
fect by the pair of probe and coupling laser pulse
trains but with different degrees of transparencies.
This interpretation can be verified by looking at the
populations of the dark and bright states. In Fig. 5
we show the variations of the dark and bright state
populations PD(ζ, τ) and PB(ζ, τ) as a function
of time at different optical depths. As expected,
the dark state population induced by the very first
pulse is nearly unity at the entrance to the medium.
This is quite in contrast to the case of a degener-
ate Λ-type system in which coherence between the
two lower states induced by the very first pulse is
negligibly small, for example, as shown in the red
side panel of the upper left figure of Fig. 6 in [15].
Since we find out that the single atom response (at
optical depth = 0) by the first pulse is clearly differ-
ent for the non-degenerate and degenerate Λ-type
systems, we expect that the following propagation
dynamics should be quite different as well. Now,
back to Fig. 5 in this paper, we notice that the
dark state population becomes slightly smaller as
the optical depth becomes larger for a fixed num-
ber of irradiated pulses, say, 50, indicating that the
transparency slightly deteriorates for larger optical
depths, at least up to µpζ = 9 ps−1. Clearly this
deterioration of transparency is due to the propa-
gation effects. In addition we compare in Figs. 6(a)
and (b) the population dynamics of states |1⟩ and
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|3⟩, P1(ζ, τ) and P3(ζ, τ), at different optical depths
µpζ = 0, 3, 6 and 9 ps−1. All the parameters are
chosen to be the same with those for Fig. 4. It is
clear that a steady dark state is reached only at the
entrance to the medium (µpζ = 0) after irradiation
with more than 60 pulses when both populations P1

and P3 (solid lines in Fig. 6) are time independent.
Next, we increase the coupling laser intensity so

that Ωc0 = 1 THz and hence the pulse area of the
individual coupling laser pulse is Ωc0τ0 = 1, while
keeping all other parameters exactly the same with
those for Fig. 4. The results are shown in Fig. 7
for the first, 40th, and 120th pulses in the probe
pulse train. Clearly, compared with the case of Fig.
4, the transmission of the probe laser pulses be-
comes much better and for the 120th pulse we see
an ideal EIT effect where the probe laser pulse train
propagates without absorption. The probe laser ab-
sorption for the 120th pulse (not shown here) takes
negligible values for optical depths at least up to
9 ps−1. Similar to Fig. 5 for Ωc0 = 0.5 THz, we
present in Fig. 8 the dark and bright state pop-
ulations PD(ζ, τ) and PB(ζ, τ) for Ωc0 = 1 THz
as a function of time at different optical depths.
We notice that the steady dark state population for
Ωc0 = 1 THz is much closer to unity compared with
the case of Ωc0 = 0.5 THz, which indicates that
even if the probe and coupling laser pulses are short
and form pulse trains, more ideal EIT is realized
by increasing the coupling laser intensity. Clearly,
after the irradiation of tens of pulses the Λ-type
atomic medium already reaches the steady dark
state, and the temporal profile of the probe pulse
is hardly changed and the absorption of the probe
pulses is almost negligible at any optical depths.
Finally, in Figs. 9(a) and (b) we compare the

population dynamics of states |1⟩ and |3⟩, P1(ζ, τ)
and P3(ζ, τ), at different optical depths µpζ = 0, 3,
6 and 9 ps−1. All the parameters are chosen to be
the same with those for Fig. 7. A notable difference
is seen between the results for Ωc0 = 1 THz [Figs.
9(a) and (b)] and 0.5 THz [Figs. 6(a) and (b)]: for
Ωc0 = 1 THz the populations P1 and P3 are time
independent at different optical depths after the ir-
radiation with many pulses (approximately 120),
and they take almost the same values at any opti-
cal depth. Therefore the population is trapped in
a steady dark state, which is a superposition of the
two lower states |1⟩ and |3⟩, and the upper state
|2⟩ remains practically unpopulated that give rise
to propagation without absorption in Fig. 7. For
moderate coupling pulse area Ωc0τ0 = 1 the time

scale to establish the ideal EIT and the generation
of a dark state is of the order of a few microseconds,
while for larger coupling pulse areas the EIT is es-
tablished much faster in the nanoseconds regime.

3.3. Propagation of probe and coupling laser pulse
trains with symmetric and asymmetric detun-
ings

Before closing this section we investigate how the
laser detunings influence the propagation dynamics
of the probe laser pulse train. Note that for all
results presented until now in this paper, the central
comb teeth of both probe and coupling lasers are on
exact resonance, i.e., δp = δc = 0. As mentioned
before, the spectrum of a laser pulse train forms a
frequency comb with teeth which are separated by
2π/T and, in particular, for a pulse train with a
single pulse duration of 1 ps and time interval of 10
ns the separation between the two successive comb
teeth is 0.2π GHz.

We consider two different choices of detunings for
the probe and coupling lasers as illustrated in Figs.
10(a) and (b), which we call symmetric and asym-
metric detunings, respectively. For the symmetric
detunings, all comb teeth of the probe and cou-
pling laser pulses match, i.e., δp = δc, and the
question is which comb teeth are on exact reso-
nance with the |1⟩-|2⟩ and |2⟩-|3⟩ transitions. For
the asymmetric detunings, the comb teeth of the
probe and coupling lasers at the opposite side with
respect to the central peak in the frequency do-
main match, i.e., δp = −δc. Note that only one
pair of the probe and coupling comb teeth is on ex-
act resonance with the corresponding transitions,
as depicted in Figs. 10(a) and (b), provided that
the values of the probe and coupling detunings are
δp = mp ωr (δc = mc ωr), with mp (mc) an inte-
ger. Therefore whatever the difference we might see
between them in terms of probe pulse propagation
arises from the contributions of other comb teeth
which are off resonance.

In Fig. 11 we compare the spatio-temporal
changes of the absolute value of probe laser field
|Ωp(ζ, τ)| for the above choices of detunings of the
probe and coupling lasers: (a) symmetric detun-
ings δp = δc ≃ 201.062 GHz (blue lines) and (b)
asymmetric detunings δp = −δc ≃ 201.062 GHz
(red lines), for the first (upper graph of Fig. 11),
10th (middle graph of Fig. 11), and 20th (lower
graph of Fig. 11) pulses. The symmetric (asymmet-
ric) detunings correspond to the mp = mc = 320
(mp = −mc = 320) comb teeth of the probe and
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coupling lasers and we increase the coupling laser
intensity such that Ωc0 = 2 THz. All the rest of
the parameters employed in Fig. 11 are the same
with those for Fig. 4. Clearly, we see some dif-
ferences between the two cases, especially in the
trailing edge of the probe pulse, where the optical
ringing [23, 24] occur for both cases, however the os-
cillations in the trailing edge disappear for symmet-
ric detunings case for larger t/T because a steady
dark state is reached quite fast after the interaction
with the first 20 pulses for optical depths µpζ < 6
ps−1. As mentioned before, these differences come
from the contribution of all other off-resonant comb
modes of both lasers, Fig. 10(b) for the asymmetric
case.
Accordingly, the dynamics of the dark and bright

state populations PD(ζ, τ) and PB(ζ, τ) is quite dif-
ferent in both cases, as shown in Fig. 12. For
the symmetric detunings case the medium reaches a
steady dark state from the very beginning in terms
of the number of pulses and optical depths (blue
lines in Fig. 12) and the dark and bright state
populations slightly oscillate toward the establish-
ment of EIT, while for the asymmetric detunings
the populations of both dark and bright states ex-
hibit a sew-saw pattern (red lines in Fig. 12) with
envelopes that follow the profile of the dark and
bright state populations for symmetric detunings.
The oscillatory behavior of the dark and bright
state populations for asymmetric detunings is the
result of the Rabi oscillations of the probability am-
plitude of state |3⟩, c3(ζ, τ), that enters in the defi-
nitions of the dark and bright states Eqs. (13)-(14).
The number of Rabi oscillations of c3(ζ, τ) during a
single pulse duration is proportional with the two-
photon Raman detuning, δp − δc, and depends on
the comb modes order. One of the conditions re-
quired to establish a dark state in case of a single
pair of probe and coupling pulses is the two-photon
Raman resonance, but the EIT effect occurs over a
small transparency frequency window, while for a
train of laser pulses the best EIT effect occur, when-
ever all the probe and coupling comb teeth match
(δp = δc = mp ωr), within a larger transparency
window as shows the population of the excited state
P2, in Fig. 13, as a function of the probe laser
detuning at entrance to the medium (blue dashed
lines for symmetric detunings). The laser param-
eters in Fig. 13 are the same as in Fig. 11 and
the detuning dependence of the population of the
upper excited state at µpζ = 0 for a single pair
of probe and coupling pulses (Nmax = 1) is com-

pared to that of the probe and coupling laser pulse
trains (Nmax = 2, 4, 10, and 20). For the asymmet-
ric detunings case, although the two-photon Raman
detuning is not zero but multiple of the repetition
angular frequency, δp − δc = 2 mp ωr, the atomic
system also exhibits some degree of transparency
within a smaller transparency window (red lines in
Fig. 13 for asymmetric detunings). However it is
clear from Fig. 13 that EIT is better established
for the case of symmetric detunings.

Of course there are many other choices for the
probe and coupling laser detunings, and the above
choices are the two special cases we present. Ob-
viously, larger differences between pulse propaga-
tions with symmetric and asymmetric detunings
are obtained for energies that do not satisfy the
one-photon resonance condition [9], since the two-
photon Raman resonance is always fulfilled for sym-
metric detunings. There is one exception, when
a similar behavior of the pulse propagation lead-
ing to EIT is obtained for asymmetric detunings
that do not correspond to one-photon resonance,
δp = −δc = (2 mp + 1) ωr/2, because the two-
photon Raman detuning is again a multiple of the
repetition angular frequency and therefore the two-
photon resonance condition is satisfied, as shows, in
Fig. 13, the population of the excited state for de-
tunings that are odd multiples of ωr/2. In contrast
with our findings for the Λ-type atom we expect
that the asymmetric detunings case should give the
best EIT for a three level ladder-type atom when
the two-photon detuning dependence of the proba-
bility amplitude of state |3⟩ in Eq. (8) is given by
δp + δc.

4. Conclusions

We have systematically studied the propagation
of a pair of short laser pulse trains in a three-level Λ-
type atomic medium by simultaneously solving the
Maxwell-Schrödinger equations. First, for a single
pair of probe and coupling pulses we have presented
in Fig. 2 the different spatio-temporal changes of
the probe pulse with short duration (fs and ps) com-
pared to those with long duration (ns) for different
coupling laser strengths. For long pulse durations
(ns) the oscillations of the probe pulse during the
propagation take place at the leading edge of the
pulse and are induced by the Rabi oscillations be-
tween the |1⟩ and |3⟩ levels. The EIT effect for long
pulse durations is established at large pulse areas
provided that Ωc0 >> Ωp0. In contrast, for short
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pulse durations (fs or ps) and small pulse areas the
trailing edge of the probe laser pulse is significantly
distorted during the propagation and the right wing
of the pulse breaks up into several sub-pulses. As
the coupling pulse area increases the amplitude of
the sub-pulses is reduced, the probe laser propa-
gates undistorted and an ideal EIT is established.
A second goal of this work is to compare, for short
pulses (ps), the propagation dynamics of a pair of
probe and coupling laser pulse trains with a sin-
gle pair of probe and coupling laser pulses under
the conditions of EIT. The main difference is that
for a single pair of probe and coupling lasers the
EIT is accomplished for large coupling pulse areas
(Ωc0τ0 > 103), while for propagation of probe and
coupling laser pulse trains the EIT (as well the for-
mation of a dark state), is reached for moderate
coupling pulse areas (Ωc0τ0 > 1), and it strongly de-
pends on the number of pulses in the train, as shown
in Fig. 7. We have discussed how the propaga-
tion dynamics of the laser pulse trains through the
medium under the EIT conditions could be modi-
fied by the appropriate choice of laser parameters
such as Rabi frequencies, pulse durations, number
of pulses, and laser detunings. Because of the use
of short ps laser pulse trains and moderate coupling
field intensities, realization of EIT has been found
to be more demanding with ps train pulses com-
pared with the case of irradiation with a single pair
of ns pulses. However, after the medium interacts
with a few tens of pulses at moderate coupling field
intensities EIT can be achieved. We have shown
that the attainment of EIT can be manipulated,
depending on which pairs of comb teeth are on res-
onance and a steady dark state can be achieved
whenever the two-photon detuning is an integer of
the repetition angular frequency ωr.
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Figure 1: (Color online) Level scheme for a three-level Λ-type
atom interacting with the probe and coupling lasers: States
|1⟩ and |2⟩ are coupled by a probe laser with a photon energy
of ωp, while states |2⟩ and |3⟩ are coupled by a coupling laser
with a photon energy of ωc. If the laser is in a form of a
pulse train, the laser spectrum exhibits a frequency comb as
illustrated.
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Figure 2: (Color online) Temporal variation of the probe
laser field Ωp(ζ, τ) under the irradiation of a single pair of
probe and coupling laser pulses with the durations of τ0 =
100 fs [(a) and (f)], 1 ps [(b) and (g)], 10 ps [(c) and (h)],
100 ps [(d) and (i)], and 1 ns [(e) and (j)] at different optical
depths µpζ = 0 (black solid line), 3 ps−1 (red dashed line),
6 ps−1 (green dot-dashed line), and 9 ps−1 (blue dot-dot-
dashed line). The employed parameters are Ωp0 = 0.04 THz
and Ωc0 = 1 THz for graphs (a)-(e), and Ωp0 = 0.04 THz
and Ωc0 = 10 THz for graphs (f)-(j). For all graphs γ = 70
MHz and δp = δc = 0.
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Figure 4: (Color online) Spatio-temporal change of the probe
laser field Ωp(ζ, τ) under the presence of the coupling laser
field at different optical depths µpζ = 0, 3, 6, and 9 ps−1.
The upper, middle, and lower figures are for the first, 40th,
and 120th pulses in the probe pulse train. The employed
parameters are Ωp0 = 0.04 THz, Ωc0 = 0.5 THz, δp = δc =
0, τ0 = 1 ps, T = 10 ns, and γ = 70 MHz, which result in
the pulse areas of Ωp0τ0 = 0.04 and Ωc0τ0 = 0.5.
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Figure 5: (Color online) Spatio-temporal change of the dark
and bright state populations PD(ζ, τ) (upper figure) and
PB(ζ, τ) (lower figure) for different optical depths µpζ = 0,
3, 6, and 9 ps−1. All the parameters are the same with those
for Fig. 4.
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Figure 6: (Color online) Ground and excited state popula-
tions P1(ζ, τ) and P3(ζ, τ) as a function of time at different
optical depths µpζ = 0 (black solid line), 3 ps−1 (red dot-
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dashed line). The employed parameters are the same with
those for Fig. 4.
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Figure 7: (Color online) Similar to Fig. 4 but with Ωc0 = 1
THz, where the rest of the parameters are the same with
those for Fig. 4. Accordingly the pulse areas are Ωp0τ0 =
0.04 and Ωc0τ0 =1.
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Figure 8: (Color online) Spatio-temporal change of the dark
and bright state populations PD(ζ, τ) (upper figure) and
PB(ζ, τ) (lower figure) for different optical depths µpζ = 0,
3, 6, and 9 ps−1. All the parameters are the same with those
for Fig. 7.
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Figure 9: (Color online) Ground and excited state popula-
tions P1(ζ, τ) and P3(ζ, τ) as a function of time at different
optical depths µpζ = 0 (black solid line), 3 ps−1 (red dot-
ted line), 6 ps−1 (green dashed line), and 9 ps−1 (blue dot-
dashed line). The employed parameters are the same with
those for Fig. 7.

Figure 10: (Color online) Illustration of the (a) symmetric
detunings δp = δc and (b) asymmetric detunings δp = −δc.
In either case one of probe as well as coupling laser comb
tooth is on exact resonance with the corresponding transi-
tion.
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Figure 11: (Color online) Spatio-temporal change of the
probe laser field |Ωp(ζ, τ)| at different optical depths µpζ =
0, 3, 6, and 9 ps−1 under the symmetric (blue lines) and
asymmetric detunings (red lines). The upper, middle, and
lower figures show the first, 10th, and 20th pulses in the
probe pulse train. The choices of the symmetric and asym-
metric detunings are δp = δc ≃ 201.062 GHz and δp = −δc ≃
201.062 GHz, respectively. Ωc0 = 2 THz, the rest of the em-
ployed parameters are the same with those for Fig. 4 and
accordingly the pulse areas are Ωp0τ0 = 0.04 and Ωc0τ0 = 2.
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Figure 12: (Color online) Spatio-temporal change of the dark
and bright state populations PD(ζ, τ) (upper figure) and
PB(ζ, τ) (lower figure), for different optical depths µpζ = 0,
3, 6, and 9 ps−1, under the symmetric (blue lines) and asym-
metric detunings (red lines, see-saw pattern). All the param-
eters are the same with those for Fig. 11.
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Figure 13: (Color online) Population of the upper excited
state P2 as a function of the probe laser detuning, at optical
depth µpζ = 0, under symmetric (blue dashed lines) and
asymmetric detunings (red solid lines) for the first (a), 2nd

(b), 4th (c), 10th (d), and 20th (e) probe pulse in the train.
All the parameters are the same with those for Fig. 11.
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