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Stellar oscillations in Eddington-inspired Born-Infeld gravity
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We consider the stellar oscillations of relativistic stars in the Eddington-inspired Born-Infeld gravity
(EiBI). In order to examine the specific frequencies, we derive the perturbation equations governing the
stellar oscillations in EiBI by linearizing the field equations and numerically determine the oscillation
frequencies by changing the coupling parameter in EiBI, κ, and stellar models. As a result, we find that the
frequencies depend strongly on the value of κ, where the frequencies in EiBI with negative κ become higher
and those with positive κ become lower than the expectations in general relativity. We also find that, via the
observation of the fundamental frequency, one could distinguish EiBI with 8πϵ0jκj ≳ 0.03 from general
relativity, independently of the equation of state for neutron star matter, where ϵ0 denotes the nuclear
saturation density and ϵ0κ becomes a dimensionless parameter. With the further constraints on equation of
state, one might distinguish EiBI even with 8πϵ0jκj≲ 0.03 from general relativity.
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I. INTRODUCTION

Asteroseismology is a unique approach to investigate
stellar properties, which is similar to helioseismology for
the Sun. This is a technique to see the stellar properties
by using the observable information of stellar oscillations.
Via the observations of spectra of oscillation frequencies,
one expects to find the stellar mass, radius, equation of state
(EOS), spin frequency, and information about magnetic
field (e.g., [1–7]). In practice, the possibilities to constrain
the saturation parameters of nuclear matter are also
suggested, using the quasiperiodic oscillations observed
in the giant flare phenomena [8–11], whose sources are
considered as strongly magnetized neutron stars [12].
Furthermore, the direct observations of gravitational waves
induced by the stellar oscillations might enable us to probe
the gravitational theory in the strong-field regime [13–16].
Many experiments and observations in the weak-field
regime, such as the solar system, tell us the validity of
general relativity, while the tests of gravitational theory
in the strong-field regime are still poor. That is, the
gravitational theory in the strong-field regime might be
different from general relativity. If so, one could probe the
gravitational theory through the observations associated
with compact objects [17,18]. In fact, the direct detections
of the gravitational waves may enable us to probe the
gravitational theory.
Eddington-inspired Born-Infeld gravity (EiBI) [19] has

recently attracted attention as a modified gravitational
theory, because the big bang singularity can be avoided
with this theory. EiBI is based on the gravitational action
proposed by Eddington [20] and on the nonlinear electro-
dynamics by Born and Infeld [21]. EiBI becomes com-
pletely equivalent to general relativity in vacuum, while

EiBI can deviate from general relativity in the presence of
matter. Because the gravity in EiBI is nonlinearly coupled
with matter, one can expect the significant deviation in the
high density region, such as inside the compact objects.
Actually, the spherically symmetric neutron star models
in EiBI have been constructed, which can deviate from
the predictions in general relativity even for the low-mass
neutron stars [22–27]. That is, via the direct measurements
of stellar mass and radius, one might be able to distinguish
EiBI from general relativity.
On the other hand, asmentioned before, the frequencies of

compact objects could tell us the information associated
with the compact objects. If the spectra of stellar oscillations
expected in EiBI became different from those in general
relativity, one might be able to distinguish the gravitational
theory via the observation of stellar oscillations such as
the gravitational waves radiated from the compact objects.
So, in this paper, we consider the stellar oscillations in EiBI.
In particular, to examine the oscillation frequencies, we
adopt the relativistic Cowling approximation, where the
metric is assumed to be fixed during the oscillations. Then,
by changing the coupling parameter in EiBI and the stellar
models, we will examine the spectra systematically. This
paper is organized as follows. In the next section, we briefly
summarize EiBI and the equilibrium stellar models in EiBI.
In Sec. III, we derive the perturbation equations describing
the stellar oscillations and solve it numerically. Finally,
we discuss the results in Sec. IV. In this paper, we adopt
geometric units, c ¼ G ¼ 1, where c and G denote the
speed of light and the gravitational constant, respectively,
and the metric signature is ð−;þ;þ;þÞ.

II. STELLAR EQUILIBRIUM IN EIBI

In this section, we briefly mention EiBI and the
relativistic stellar models in EiBI, where we especially*sotani@yukawa.kyoto‑u.ac.jp
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consider the spherically symmetric stellar models. EiBI is
proposed by Bañados and Ferreira [19], which can be
obtained with the action as

S ¼ 1

16π

2

κ

Z
d4x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgμν þ κRμνj

q
− λ

ffiffiffiffiffiffi
−g

p �
þ SM½g;ΨM�;

ð1Þ
where jgμν þ κRμνj and g denote the determinants of ðgμν þ
κRμνÞ and gμν, while Rμν is the Ricci tensor constructed
with the connection Γμ

αβ. We remark again that the
connection Γμ

αβ should be considered as the independent
field from the metric tensor gμν in EiBI. The matter action
SM depends on the metric and matter field ΨM. This theory
has two parameters, λ and κ. The dimensionless constant λ
is associated with the cosmological constant Λ, such as
λ ¼ 1þ κΛ. In this paper, we consider only asymptotically
flat solutions, i.e., we adopt that λ ¼ 1. The remaining
parameter κ is the Eddington parameter, which is con-
strained in the context of the observations in the solar
system, big bang nucleosynthesis, and the existence of
neutron stars [19,22,28,29]. Additionally, terrestrial mea-
surements of the neutron skin thickness of 208Pb and
astronomical observations of the radius of 0.5M⊙ neutron
star could enable us to constrain κ [27].
The field equations are obtained by varying the

action [19]

Γμ
αβ ¼

1

2
qμσðqσα;β þ qσβ;α − qαβ;σÞ; ð2Þ

qμν ¼ gμν þ κRμν; ð3Þ
ffiffiffiffiffiffi
−q

p
qμν ¼ ffiffiffiffiffiffi

−g
p

gμν − 8πκ
ffiffiffiffiffiffi
−g

p
Tμν; ð4Þ

where qμν and q denote an auxiliary metric associated with
the physical metric gμν via Eq. (3) and its determinant,
while Tμν is the energy-momentum tensor defined with the
matter action SM as

Tμν ¼ 1ffiffiffiffiffiffi−gp δSM
δgμν

: ð5Þ

With the covariant derivative ∇μ, which is defined with gμν,
the energy-momentum conservation law is expressed as
∇μTμν ¼ 0. From Eq. (4), one can show that the physical
metric gμν is completely equivalent to the auxiliary metric
qμν, when Tμν ¼ 0.
The structures of neutron stars in EiBI have been

discussed in some literatures [22–27]. The metric for the
spherically symmetric objects is expressed as

gμνdxμdxν ¼ −eνdt2 þ eλdr2 þ fðdθ2 þ sin2θdϕ2Þ; ð6Þ

qμνdxμdxν ¼ −eβdt2 þ eαdr2 þ r2ðdθ2 þ sin2θdϕ2Þ;
ð7Þ

where ν, λ, β, α, and f are functions of r. Assuming that the
neutron stars are composed of perfect fluid, the energy-
momentum tensor is given by

Tμν ¼ ðϵþ pÞuμuν þ pgμν; ð8Þ
where ϵ and p are the energy density and pressure, while uμ

corresponds to the four velocity of matter given as
uμ ¼ ðe−ν=2; 0; 0; 0Þ. Then, from Eqs. (3), (4), and the
energy-momentum conservation law, one can obtain the
Tolman-Oppenheimer-Volkoff equations in EiBI [22–27].
To close the equation system, one needs to prepare the
relationship between the pressure and density, i.e., EOS.
In particular, in this paper, we adopt two realistic EOSs to
construct the neutron star models, i.e, Shen EOS [30] and
FPS EOS [31]. Shen EOS is based on the relativistic mean-
field approach, while FPS EOS is based on the Skyrme-
type effective interaction (see [32] for more details about the
adopted EOSs). Note that the appearance of the curvature
instabilities at the stellar surface constructed with a poly-
tropic EOS is pointed out in [33], which could be a problem
to solve. Furthermore, the coupling constant κ is constrained
from the evidence that compact objects exist [22], i.e.,

8πpcκ < 1 for κ > 0; ð9Þ
8πϵcjκj < 1 for κ < 0; ð10Þ

where pc and ϵc denote the central pressure and density.
Hereafter, we adopt 8πϵ0κ as a normalized coupling
constant, where ϵ0 is the nuclear saturation density given
by 2.68 × 1014 g cm−3. We remark that the coupling
constant κ has been constrained from the observations in
the solar system, i.e., jκj≲ 3 × 105 m5 s−2 kg−1 [28], which
leads to j8πϵ0κj≲ 2.25 × 107.
In Fig. 1, we show the mass-radius relations in general

relativity and in EiBI with 8πϵ0κ ¼ �0.03, where the

FIG. 1 (Color online) (color online). Comparison between
the neutron star mass-radius relations in general relativity and
in EiBI with 8πϵ0κ ¼ �0.03. The shaded region surrounded by
the broken line shows the allowed values of mass and radius for
EOS with stiffness between FPS and Shen EOSs in general
relativity, while the regions surrounded by the solid and dotted
lines show those in EiBI with 8πϵ0κ ¼ 0.03 and −0.03.
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shaded region surrounded by the broken line corresponds
to the allowed region in mass-radius relation for EOS with
stiffness between FPS and Shen EOSs, while the regions
surrounded by the solid and dotted lines correspond to
those in EiBI with 8πϵ0κ ¼ 0.03 and −0.03. From this
figure, one can observe a large uncertainty in the mass-
radius relation due to EOS, compared with that due to the
gravitational theory. In practice, even if 8πϵ0jκj≃ 0.03, it
might be difficult to distinguish the gravitational theory by
using the measurements of stellar mass and radius.

III. SPECTRA OF STELLAR OSCILLATIONS

In this paper, as mentioned before, we focus on the stellar
oscillations of the relativistic stars in EiBI. For this purpose,
we adopt the Cowling approximation as a first step; i.e.,
we neglect the metric perturbations as δqμν ¼ δgμν ¼ 0.
The Lagrangian displacement vector of matter element ξi

is given by

ξi ¼ ðξr; ξθ; ξϕÞ ¼ ðW;−V∂θ;−Vsin−2θ∂ϕÞ
1

r2
Ylm; ð11Þ

where W and V correspond to functions of t and r, while
Ylm denotes the spherical harmonics. With such variables,
the perturbation of four-velocity δuμ can be expressed as

δuμ ¼ ð _W;− _V∂θ;− _Vsin−2θ∂ϕÞ
1

r2
e−ν=2Ylm; ð12Þ

where the dot denotes partial derivative with respect to t.
Additionally, the perturbations of energy density and
pressure are given by

δϵ ¼ δϵðt; rÞYlm and δp ¼ δpðt; rÞYl;m: ð13Þ

Then, the perturbation equations in the Cowling
approximation can be derived from the variation of the
energy-momentum conservation law, i.e.,∇μðδTμνÞ ¼ 0. In
practice, one can obtain the following equations,

r2δϵþ ϵ0WþðϵþpÞ
�
W0 þ

�
λ0

2
þf0

f
−
2

r

�
Wþlðlþ1ÞV

�

¼ 0; ð14Þ

ϵþ p
r2

e−νẄ þ e−λδp0 þ ν0

2
e−λðδpþ δϵÞ ¼ 0; ð15Þ

−
ϵþ p
r2

e−νV̈ þ 1

f
δp ¼ 0; ð16Þ

where the prime denotes partial derivative with respect to r.
In addition to the above equations, one can show that δp
is associated with δϵ as δp ¼ c2sδϵ, where cs denotes the
sound speed. At last, combining Eqs. (14)–(16) with the

relation of δp ¼ c2sδϵ, one can get the perturbation equa-
tions for W and V as

W0 ¼
�
ν0

2c2s
−
λ0

2
−
f0

f
þ 2

r

�
W þ

�
ω2

c2s
fe−ν − lðlþ 1Þ

�
V;

ð17Þ

V 0 ¼ −
1

f
eλW þ

�
2

r
−
f0

f
þ ν0

�
V; ð18Þ

where we assume that the perturbation variables have a
harmonic time dependence, such as Wðt; rÞ ¼ WðrÞeiωt.
With the appropriate boundary conditions, the problem

to solve becomes the eigenvalue problem with respect to ω.
The boundary condition at the stellar surface is that the
Lagrangian perturbation of pressure should be vanished,
i.e., Δp ¼ 0, which reduces to

2fω2e−νV þ ν0W ¼ 0: ð19Þ

On the other hand, the perturbation variables should be
regular at the stellar center. Using Eqs. (17) and (18), one
can show that W and V should behave in the vicinity of
stellar center as

W ¼ Crlþ1 and V ¼ −Crl=l; ð20Þ

where C is a constant. Hereafter, we especially focus on the
l ¼ 2 modes, which can be dominating modes in gravi-
tational wave radiations from the compact objects.
First, in order to see the dependence of the oscillation

frequencies in EiBI with different values of κ, we calculate
it with a specific EOS, i.e., FPS EOS. Figure 2 shows
the f mode frequencies in the left panel and the p1 mode
frequencies in the right panel as a function of the stellar
average density ðM=R3Þ1=2, where the frequencies are
calculated with FPS EOS. We remark that ðM=R3Þ1=2¼
3.46×10−2 km−1 for a typical stellar model with R¼ 12 km
and M ¼ 1.4M⊙. In this figure, the solid line corresponds
to the frequencies in general relativity (κ ¼ 0), while the
broken, dotted, and dot-dashed lines are corresponding
to the results in EiBI with 8πϵ0jκj ¼ 0.01, 0.02, and
8πϵ0κ ¼ 0.04, respectively. In both modes, one can see
that the frequencies with negative κ deviate more from the
results in general relativity, compared with the frequencies
with positive κ. In practice, for the typical stellar model
with ðM=R3Þ1=2 ¼ 0.0346, the frequencies of f mode in
EiBI with 8πϵ0κ ¼ −0.01 and −0.02 become 7.5% and
16.8% larger than that in general relativity, while those in
EiBI with 8πϵ0κ ¼ 0.01, 0.02, and 0.04 become 6.3%,
11.6%, and 20.4% smaller than that in general relativity.
Also, the frequencies of p1 mode in EiBI with 8πϵ0κ ¼
−0.01 and −0.02 become 6.0% and 12.4% larger than that
in general relativity, while those in EiBI with 8πϵ0κ ¼ 0.01,
0.02, and 0.04 become 5.3%, 9.8%, and 17.7% smaller than
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that in general relativity. Additionally, we emphasize
that the deviation of frequencies from the predictions in
general relativity could depend on the gravitational theory,
although the frequencies in EiBI may partially degenerate
to those in another gravitational theory (cf., the results in
scalar tensor gravity [13]). Thus, one may be able to
distinguish EiBI from scalar-tensor gravity by collecting
the observational data radiated from several neutron stars,
if the observed frequencies would deviate from the pre-
dictions in general relativity.
From the observational point of view, as shown in Fig. 1,

one might have to take into account the uncertainty due to
EOS. In Fig. 3, we show the f mode frequencies (left panel)
and p1 mode frequencies (right panel) both in general
relativity and in EiBI with 8πϵ0κ ¼ �0.03 as a function of
the stellar average density. In the both panels, the shaded
regions surrounded by the broken lines denote the frequen-
cies expected for EOS with stiffness between FPS and Shen
EOSs in general relativity, while the regions surrounded
by the solid and dotted lines denote those in EiBI with
8πϵ0κ ¼ 0.03 and −0.03. Comparing to the mass-radius
relation shown in Fig. 1, one can observe that the
frequencies depend weakly on the EOS. This could be
because that the f mode oscillation, which is an acoustic

wave, propagates inside the star with sound velocity
associated with the stellar average density. In fact, it
has been suggested in general relativity that the f mode
frequencies are written as a linear function of the stellar
average density, which weakly depends on the adopted
EOS [1,2]. From the left panel in Fig. 3, one can obviously
see that the f mode frequencies in EiBI with 8πϵ0κ ≃
�0.03 could be distinguished from those in general
relativity, even if the uncertainty in frequencies due to
EOS would exist. That is, via the direct observations of f
mode oscillations, one could distinguish EiBI from general
relativity, if 8πϵ0jκj≳ 0.03, independently of EOS for
neutron star matter. Of course, if the EOS for neutron star
matter would be determined or constrained via the other
astronomical observations and/or terrestrial unclear experi-
ments, one might distinguish EiBI even with 8πϵ0jκj ≲
0.03 from general relativity. On the other hand, with the
uncertainty due to EOS, it seems to be difficult to
distinguish EiBI with 8πϵ0κ ≃ 0.03 from general relativity
via the observations of p1 mode oscillations.

IV. CONCLUSION

Eddington-inspired Born-Infeld gravity (EiBI) attracts
attention as a modified gravitational theory in the context of

FIG. 2 (Color online) (color online). With FPS EOS, the frequencies of f mode (left panel) and p1 mode (right panel) are shown as a
function of the stellar average density ðM=R3Þ1=2. In both panels, the frequencies in general relativity (κ ¼ 0), while the broken, dotted,
and dot-dashed lines are corresponding to the results in EiBI with 8πϵ0jκj ¼ 0.01, 0.02, and 8πϵ0κ ¼ 0.04.

FIG. 3 (Color online) (color online). Uncertainties due to the adopted EOS in the f mode (left panel) and p1 mode (right panel)
frequencies, where the shaded region surrounded by the broken line denotes the expected frequencies in general relativity, while the
regions surrounded by the solid and dotted lines correspond to those in EiBI with 8πϵ0κ ¼ 0.03 and −0.03.
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avoiding the big bang singularity. This theory completely
agrees with general relativity in vacuum, but can deviate
from general relativity in the region with matter. In this
paper, we especially focus on the stellar oscillations in
EiBI, and examine the oscillation frequencies of neutron
stars as changing the Eddington parameter κ. For this
purpose, we derive the perturbation equations with a
relativistic Cowling approximation by linearizing the
energy-momentum conservation law. As a result, we find
that the f and p1 mode frequencies depend strongly on the
Eddington parameter. Compared with the expectations in
general relativity (κ ¼ 0), the frequencies in EiBI with
negative κ become high and those with positive κ become
low. Additionally, in general, there exists an uncertainty in
stellar models due to EOS of neutron star matter, but we
show that one could identify EiBI with 8πϵ0jκj≳ 0.03 from
general relativity independently of the adopted EOS.
Furthermore, one might be able to distinguish EiBI even
with 8πϵ0jκj≲ 0.03 from general relativity, if the EOS were
constrained from the astronomical observations and/or

terrestrial nuclear experiments. As a first step, we adopt
the Cowling approximation in this paper, but we should do
more complex analysis without such approximation some-
where, where we will consider the gravitational waves
radiated from neutron stars in EiBI. In fact, the damping
time of gravitational waves is also one of the important
pieces of information from the asteroseismological point of
view. Such additional information should help us to
constrain the gravitational theory more clearly.
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