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ABSTRACT 

We apply a Hamiltonian particle method, which is one of the particle methods, to simulate 

seismic wave propagation in a cracked medium.  In a particle method, traction-free 

boundaries can readily be implemented and the spatial resolution can be chosen in an 

arbitrary manner.  Utilisation of the method enables us to simulate seismic wave 

propagation in a cracked medium and to estimate effective elastic properties derived from the 

wave phenomena.  These features of the particle method would bring some advantages of 

numerical efficiencies (e.g. calculation time, computational memory) and the reduction of 

time for pre-processing. 

 

We first describe our strategy for the introduction of free surfaces inside a rock mass, i.e., 

cracks, and to refine the spatial resolution in an efficient way.  We then model a 2D cracked 

medium which contains randomly distributed, randomly oriented, rectilinear, dry and non-

intersecting cracks, and simulate the seismic wave propagation of P- and SV-plane waves 

through the region.  We change the crack density in the cracked region and determine the 

effective velocity in the region.  Our results show good agreement with the modified self-

consistent theory, which is one of the effective-medium theories.  Finally, we investigate the 

influence of the ratio of crack length to particle spacing on the calculated effective velocities.  

The effective velocity obtained becomes almost constant when the ratio of crack length to 

particle spacing is more than approximately 20.  Based on this result, we propose to use 

more than 20 particles per crack length. 

 

Key Words: particle method, effective elastic property, cracked media, digital rock physics. 
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INTRODUCTION 

It is important to estimate physical properties of cracked rocks in many scientific and 

engineering fields.  Especially in exploration geophysics, understanding the behaviour of 

seismic waves in cracked rock masses is of interest when prospecting for earth resources.  In 

the past, many theoretical studies have been directed at estimating the elastic properties of 

cracked media.  O’Connell and Budiansky (1974) proposed a model for the macroscopic 

elastic properties based on a self-consistent approximation.  Budiansky and O’Connell 

(1976) calculated the elastic moduli of bodies, in which planar cracks are randomly 

distributed, on the basis of the self-consistent method.  Henyey and Pomphrey (1982) 

proposed a modified self-consistent theory with a set of differential equations for the 

effective elastic moduli, taking into account the crack interaction energy.  Davis and 

Knopoff (1995) showed that the mean-field approximation, also known as the theory for non-

interacting cracks, is appropriate for the problem of finding the modulus of a material with a 

high concentration of cracks by using a boundary integral method.  In spite of a variety of 

approaches, theoretical approaches suffer from limitations such as crack geometries, long 

wavelength approximation, and so on. 

 

Numerical studies, which may be less restrictive, have also been introduced in order to 

investigate the effective elastic properties of cracked media.  Saenger and Shapiro (2002) 

and Saenger et al. (2004) conducted finite difference (FD) simulations with rotated staggered 

grids (Saenger et al., 2000) in order to investigate the effective elastic properties of fractured 

2D and 3D media, respectively.  Dahm and Becker (1998) also calculated elastic moduli for 

media containing strongly interacting cracks using a boundary element method and a finite 

element method (FEM).  Their results were in good agreement with the modified self-
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consistent theory predictions.  However, models for numerical analysis need to be 

discretised with fine grids whose spatial scale is adjusted for representing small-scale cracks.  

In addition, the accommodation of model boundary or crack boundary shape remains as a 

problem in numerical methods such as finite difference schemes.  The discretisation in space 

for cracked media remains a cause of inefficiency in simulations, for which some 

improvement has sought. 

 

The estimation of the elastic properties of media can readily be accommodated in the 

simulation of seismic wave propagation.  Seismic simulators using particle methods have 

been developed by many researchers (Toomey and Bean, 2000; Del Valle-Garcia and 

Sanchez-Sesma, 2003; O’Brien and Bean, 2004; Mariotti, 2007; O’Brien et al., 2009; 

Takekawa et al., 2012).  Takekawa et al. (2012) applied a Hamiltonian particle method 

(HPM) (Suzuki and Koshizuka, 2008; Kondo et al., 2010) to simulate surface wave 

propagation.  In HPM, the equation of motion of each particle is formulated in a 

Hamiltonian framework.  The unique approach of HPM is that the deformation gradient 

tensor on each particle is decided by using the least-square method.  A free surface is 

introduced in a simple way, by ending the interactions of particles at the surface.  Since 

arbitrary refinement of spatial resolution is possible in a simple manner in the application of 

HPM (Takekawa et al., 2012), we are able to choose the optimum number of particles 

without unnecessarily consuming computational resources, and so enhance the efficiency of 

the simulation.  If we use a local refinement technique in the FD method, we need special 

treatment around the refined area for the local fine grids (Aoi and Fujiwara, 1999).  In FEM, 

we need a procedure to redefine the mesh for the refined area.  Thus, the HPM should lead 

to a reduction of time taken for pre-processing.  Furthermore, the accuracy of HPM for 
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modelling of surface waves is higher than the finite difference method with rotated staggered 

grids (Takekawa et al., 2013). These features could allow us to efficiently calculate not only 

strong ground motion induced by earthquakes (Takekawa et al., 2012) but also the scattering 

of seismic waves by fractures (Okamoto et al., 2013) and other applications in material 

science and engineering (Saenger et al., 2012). 

 

In this paper, we would like to propose HPM as a method to effectively estimate elastic 

properties of cracked media.  We first explain our strategy for introducing the cracks in the 

rock mass and calculate the seismic wave field induced by a single crack in order to validate 

our strategy.  We, then, investigate the validity of the particle method for determining the 

effective properties of cracked media comparing the numerical results with those from 

analytical approach.  We then investigate the effect of the difference of spatial resolution 

around cracks on the effective velocity for efficient discretisation. 

 

 

METHOD 

 

 

Hamiltonian particle method 

In HPM, a model for analysis is represented by an aggregate of particles. Each particle 

interacts with its nearby particles, and the extent of the interaction between particles is 

controlled by a weighting function w(r). 
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                            (1) 

 

where r is the distance between particles, and re is the radius of the influence domain. The 

influence domain between particles i and j is determined by the following equations. 

 

               (2) 

        (3) 

 

where rei and rej are the influence domains of particles i and j, α is a coefficient, and di is the 

radius of the particle i. The calculation of the elastic wave propagation is based on the 

particle interactions between particles whose separations are less than re. 

 

The deformation gradient tensors at each particle position are defined to minimise the error 

function ei where, 

 

          
      

 
   

 
  (4) 

 

where    is the deformation gradient tensor at the position of particle i,    
  and     are the 

initial and current relative positions of particles i and j, respectively, and    
  is the 

weighting value calculated by Eq. (1). The deformation gradient tensor    can be obtained 

by calculating the partial differential of Eq. (4) with respect to   . 

 

           
    

 
   

   (5) 
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  (6) 

 

We calculate strain and stress tensors as, 

 

            (7) 

              (8) 

 

The total elastic strain and kinetic energy is as follows. 

 

                 (9) 

          
      (10) 

 

where     is the volume of particle i,    is the mass of particle i,    is the velocity of 

particle i. Then we can calculate the equation of motion of the system: 

 

                         

         
     

           
     

          (11) 

 

We apply a symplectic scheme, which is a time integration scheme conserving the total 

energy of Hamiltonian systems, as follows: 

 

    
 

 
        

 

 
            /   (12) 

                    
 

 
    (13) 
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Although the time updating process described above is very simple and the computational 

cost is comparable with the explicit Euler method, we can calculate particle motions with 

good energy conservation.  On the other hand, it is known that high-frequency local 

oscillations occur, due to spurious singular modes that degrade numerical accuracy, although 

the total energy can be conserved.  This results from the definition of the deformation 

gradient tensors only at the particles.  Kondo et al. (2010) developed a suppression method 

by introducing an artificial potential force that has no physical meaning, with a coefficient to 

vary its effect.  The coefficient of the artificial force (Eq. (14) in Kondo et al. (2010)) is 

decided by trial and error in this study.  For numerical stability, we apply the Courant 

condition: 

 

           (14) 

 

where    is the time step,    is the minimum particle spacing and      is the maximum 

P-wave velocity in the model. 

 

Introduction of cracks 

In HPM, a free surface can be introduced just by setting the interactions between particles at 

the surface to zero (Suzuki et al., 2007; Takekawa et al., 2012).  In this study, we take 

advantage of this feature to introduce traction-free boundaries inside the rock mass (i.e., 

cracks).  Figure 1 shows the strategy of the introduction of a single crack, and the 

refinement of the spatial resolution only around the crack.  The free surface is introduced 

just by cutting off the connectivity across the crack.  This technique is simple to implement, 

but the reproducibility of the crack depends on the particle spacing.  To ensure enough 

spatial resolution, we can replace a particle which is near the crack with four particles (Figure 
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1 (b)).  This procedure is also simple to implement.  If we need finer particle spacing, we 

can further divide each quarter particle into four particles.  In this way, arbitrary refinement 

of spatial resolution can be achieved in an effective manner.  Figure 2 shows an example of 

particle refinement around cracks using the above approach.  Since we use only distances 

between particles to discretise the model in HPM, it is possible to use different sizes of 

particles in an easy manner.  Furthermore, because our model does not require high velocity 

contrasts to define cracks, this approach is stable like finite difference (FD) modelling 

(Saenger et al., 2000).  Note that the time step should be decreased in accordance with the 

minimum particle spacing for stable calculations. 

 

In order to validate the accuracy of our strategy for representing the shape of cracks, we 

conduct a numerical simulation of seismic wave scattering induced by a single crack.  We 

use a result from a finite difference method with a rotated staggered grid (FDM-RSG) as a 

reference solution because the accuracy of FDM-RSG has already been validated by 

comparison with analytical solutions in Kruger et al. (2005).  A numerical model is shown 

in Figure 3.  A single crack, with inclination angle     and length 1.61 m, is embedded in 

the centre of the model.  Since the particle and grid spacing in HPM and FDM-RSG are 2 

mm, the crack is represented by more than 800 particles or grid nodes.  The upper and lower 

boundaries of the model are periodic boundaries.  A plane P-wave is generated at the right 

edge of the model, and propagates through the model.  We record the scattering waves 

induced by the crack using a receiver array placed at the right side of the crack.  Figure 4 

shows a snapshot of the disturbed wave field calculated by HPM.  We can observe that 

reflected P- and S-waves are generated after the incident plane P-wave hit the crack.  Figure 

5 shows the waveforms observed at the receiver array.  Each waveform agrees well with the 

reference traces, for both vertical and horizontal components.  This indicates that our 
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strategy can calculate scattering waves induced by the crack accurately if we use a large 

number of particles to represent the crack.  The number of particles required to represent the 

crack with sufficient accuracy is discussed in the next section. 

 

 

NUMERICAL RESULTS OF EFFECTIVE WAVE VELOCITIES 

 

 

Model set-up 

We use numerical models as shown in Figure 6.  The model has a cracked region in the 

centre of it.  The cracked region is            , and has randomly placed, randomly 

oriented, rectilinear, dry and non-intersecting cracks.  All cracks have the same length, i.e., 

            , where lk represents the half-length of each crack.  The cracked region is 

set into a 2D isotropic elastic medium with a P-wave velocity of            , an S-wave 

velocity of            , and a mass density of             .  A plane wave (P- or 

SV-wave) is incident from the right side of the model and goes through the cracked region.  

We detect the plane wave passing through the cracked region with a line of receivers placed 

just to the left of the cracked region.  The source wavelet in our numerical experiments is 

the first derivative of a Gaussian function, with a dominant frequency of 20 kHz.  Therefore, 

the dominant wavelengths of P- and SV-wave in the homogeneous region are 0.2 m and 

0.1155 m, respectively.  This means that our numerical conditions are a good approximation 

to the long wavelength limit.  The background particle spacing is 0.001 m and the time step 

is        .  We apply periodic boundary conditions in the vertical direction. 
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We describe the number of cracks in the cracked region with the crack density parameter  , 

defined by: 

 

  
 

 
   

  
    (15) 

 

where A represents the area of the cracked region, and n the number of cracks.  Figure 7 

shows typical examples of cracked regions with different crack densities. 

 

Figure 8 shows examples of the spatial-averaged waveforms recorded at the receiver array for 

different crack densities.  We used 200 receivers to calculate the averaged waveforms.  It 

can be observed that the time delay of the peak of the spatial-averaged waveforms increases 

with increasing crack density.  Using this time delay, we can estimate the effective velocity 

in the cracked region. 

 

 

Effective P- and SV-wave velocities 

Figure 9 shows our numerical results of effective velocities.  For comparison, the 

predictions of the effective velocities from three of the theories described in the Introduction 

are also shown.  Six numerical experiments were conducted at each crack density with 

different crack distributions.  Note that it is difficult to detect error bars in Figure 9 (b) 
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because the standard deviations are very small.  We refined the spatial resolution around 

cracks in two steps, as in Figure 2.  The effect of the level of refinement around cracks on 

the effective velocity will be investigated in the next section.  In Figure 9, we observe the 

relative decrease in the normalised velocities as a function of the crack density.  For a sparse 

crack distribution (e.g.       ), the numerical and three analytical results are in good 

agreement with each other.  This is one of the arguments for the validity of our numerical 

method.  For a dense crack distribution, on the other hand, our numerical results for P- and 

SV-wave velocities are in good agreement with the predictions of the modified self-consistent 

theory.  We will discuss the validity of our results in response to the results of the next 

section with comparing to the previous studies. 

 

 

Effect of the ratio of the particle spacing to the crack length 

In this section, we examine the effect of the number of particles per crack length.  Fine 

spacing of particles improves the accuracy of the calculation, but increases computational 

costs, i.e., memory and CPU time.  For both reasonable accuracy and computational costs, it 

is important to ascertain the appropriate level of refinement around cracks.  The ratio of the 

crack length to the particle spacing is defined by a parameter  , 

 

  
   

  
 (16) 
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where    is the particle spacing around cracks.  Incidentally, in the previous section, the 

crack length and particle spacing around cracks are 0.0061 m and 0.00025 m, respectively, so 

that the parameter   was 24.4. 

 

We also define the “nominal” crack length KN and the “real” crack length KR as shown in 

Figure 10.  Since a crack is introduced by cutting the connectivity between particles that 

intersect the crack, the reproducibility of the crack length depends on the spatial resolution 

around cracks.  If we use a coarse arrangement of particles as in Figure 10 (a), the difference 

between KN and KR will be larger than with the use of a finer arrangement (Figure 10 (b)).  

Therefore, refining the spatial resolution provides a more accurate representation of the crack 

length.  Furthermore, a fine particle arrangement can reproduce significantly thin cracks, as 

are assumed in the theories, more accurately than a coarse distribution.  To test these effects 

on the effective velocity, we use a special arrangement of cracks as shown in Figure 11.  

Each crack length is set to 0.002999 m and the regular background particle spacing is set to 

0.001 m.  All cracks are aligned with the regular particle lattice.  In this case, both the 

crack length measures, KN and KR, are approximately same.  The crack density   is fixed 

at 0.05 and the elastic parameters are also the same as those in the previous section.  We 

change the parameter   from 3 to 48 by changing the particle spacing around cracks, and 

calculate the effective P-wave velocities of the cracked media. 

 

The calculation results for different   are shown in Figure 12 as filled circles.  Each 

symbol is an average value over six model realisations.  The effective P-wave velocities are 

very slow comparing with the results of Figure 9 because all of the cracks are perpendicular 
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to the direction of the incident wave.  The calculated velocity decreases with an increase in 

 .  Figure 13 shows the horizontal normal stress field around the cracks for two different 

values of  .  The incident wave propagates from right to left.  In both figures, the stress 

concentration can be observed around the tips of the vertical cracks, but each case shows a 

different degree of stress concentration.  Since the coarse arrangement of particles cannot 

reproduce the stress field at the crack tips as accurately as the fine arrangements, the stress 

fields just around the crack tips are quite different from each other.  This induces an 

artificial stiffness that results in larger effective velocities, as indicated by previous studies 

(e.g. Dahm and Becker, 1998).  As we increase the number of particles around the cracks, 

the results converge to a certain value. 

 

Next, we change the crack length from 0.002999 m to 0.003001 m.  In this case, the “real” 

crack length KR is much greater than the “nominal” crack length KN when we use the coarse 

particle arrangement.  The distribution of cracks is the same as Figure 11.  The calculated 

effective P-wave velocities are shown in Figure 12 as open squares.  The effective velocity 

increases with an increase in  .  When we set the crack length to 0.003001 m, not only the 

effect of the difference between KN and KR but also the effect of the artificial stiffness is 

included in the model.  Nevertheless, the effective velocity is underestimated when we use 

coarse particles.  This means that the underestimation due to the difference between KN and 

KR has a larger effect than the overestimation due to the artificial stiffness.  We note that the 

difference between KN and KR in this model has a major influence on the underestimation 

because the cracks are aligned with the regular latticed particle arrangement.  Using fine 

particles reduces the difference between the results for this model and those for the crack 
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length of 0.002999 m.  The difference in the normalised effective velocity between the two 

cases is approximately 1.1 % at   of 24. 

 

In summary, a coarse particle arrangement acts to both increase and decrease the effective 

velocity.  In an arbitrary arrangement of cracks, both randomly distributed and randomly 

oriented, the effective velocity could be strongly affected by both effects. 

 

In order to demonstrate these effects in arbitrary arrangements, we use the same model as 

shown in Figure 6.  The crack length is fixed at 0.0061 m.  The particle spacing in the non-

cracked region is 0.002 m.  The crack density   is fixed to 0.05.  We make six different 

crack distributions for each parameter   and averaged the results.  The numerical result is 

shown in Figure 14.  It can be observed that the effective velocity slightly increases with 

increasing parameter  .  The effective velocity is higher than shown in Figure 12 in spite of 

the same crack density in the model.  This is because the cracks are not all aligned 

perpendicular to the direction of the incident wave.  The variation in the effective velocities 

with respect to   in Figure 14 is smaller than those in Figure 12.  Since the coarse particle 

arrangement may act to increase or decrease the effective velocity, as described above, the 

contributions could cancel each other out.  These results indicate that we can obtain a stable 

prediction of the effective velocities using the average of values from several model 

realisations.  However, the standard deviation in case of low   remains high.  In Figure 12, 

the difference in the normalised effective velocity between the two cases decreased to about 1 

per cent at a   of 24.  This indicates that a fine particle arrangement, with more than 
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approximately 20 particles per crack length, will provide a stable prediction of effective 

velocities even with extreme crack distributions like that shown in Figure 11. 

 

 

Comparison to the previous studies 

In the previous section, we compared our numerical results with several theoretical ones; the 

self-consistent theory, the theory for non-interacting cracks and the modified self-consistent 

theory.  Our results of P- and SV-wave velocities are in good agreement with the predictions 

of the modified self-consistent theory (Figure 9).  In the self-consistent theory, the bulk and 

shear moduli become negative and Poisson’s ratio exceeds 0.5 at high crack densities.  In 

the theory for non-interacting cracks, crack-to-crack interactions are neglected.  In contrast, 

the modified self-consistent theory provides reasonable solutions for effective properties 

lying in the physical range at high crack densities, and does consider crack-to-crack 

interactions. 

 

In previous numerical studies, numerical solutions for the effective velocities using the 

modified self-consistent theory using FD simulations (Saenger and Shapiro, 2002; Saenger et 

al., 2004) agreed well with solutions using boundary element and finite-element simulations 

(Dahm and Becker, 1998).  Our results are in good agreement with their conclusions.  On 

the other hand, Davis and Knopoff (1995), Grechka and Kachanov (2006) and Grechka 

(2007a) proposed that the interactions between cracks can be neglected at high crack 

densities, and that the theory for non-interacting cracks performs well.  Furthermore, 

Grechka (2007b) pointed out ambiguity in the consistency and reproducibility of FD 
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simulations (e.g., Saenger et al., 2004), which stems from the difference between the 

“nominal” and “real” crack lengths.  However, the effective velocity in Figure 12 and 14 

converged to a constant value as   increased.  This indicates that the definition of the crack 

length does not have large influence on the effective velocity if we use enough particles per 

crack length.  Thus, we conclude that our results eliminated the ambiguity over the 

definition of the crack length, and support the correctness of the modified self-consistent 

theory. 

 

 

CONCLUSIONS 

We have presented an application of HPM for calculating seismic wave propagation and 

evaluating effective velocities in cracked media.  HPM has some advantages in representing 

cracks inside the elastic media: i) it is easy to introduce free surfaces, ii) arbitrary spatial 

refinement is possible in a simple and easy manner. 

 

In order to investigate the effectiveness of the method, we considered 2D isotropic cracked 

media.  We predicted the effective P- and SV-wave velocity and compared them with values 

predicted by three different theoretical approaches.  Our results were in good agreement 

with the effective velocities from the modified self-consistent theory.  This was consistent 

with the previous numerical studies conducted by the finite difference method, the finite 

element method and the boundary element method.  We also investigated the influence of 

the ratio of crack length to particle spacing on the effective velocity.  The result indicated 

that we could obtain stable results with values of more than 20 for the parameter  . 
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In this study, we placed limitations on the model styles, so that cracks did not intersect each 

other, and crack length is much shorter than the wavelength.  These restrictions were applied 

to enable comparison with theoretical results obtained under similar conditions.  In 

numerical studies, however, there is no necessary restriction on crack intersections or 

wavelengths.  Therefore, numerical experiments using HPM could also support estimation 

of the effective velocities under various conditions that are not available to most theoretical 

approaches. 
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FIGURE CAPTIONS 

 

Fig. 1: 

The schematic figure of the introduction of a crack.  Solid circles are particles, the dotted 

line is a crack, and the solid lines represent connectivity between particles.  A free surface 

inside the elastic medium is introduced by cutting off the connectivity that intersects the 

surface.  (a) Original particle arrangement, (b) particle arrangement after refinement of 

spatial resolution in the vicinity of the crack. 

 

Fig. 2: 

An example of particle arrangement after the refinement of spatial resolution in the vicinity 

of cracks.  Circles and solid lines represent particles and cracks, respectively.  Only 

particles around cracks are replaced by smaller particles.  In this figure, a two step 

refinement is depicted. 

 

Fig. 3: 

Model set-up for numerical validation.  White circles represent receivers and the solid line 

represents the crack. 

 

Fig. 4: 

A snapshot of the horizontal displacement velocity calculated by HPM. 
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Fig. 5: 

The waveforms recorded by the receiver array.  Solid and dashed lines are the waveforms 

from HPM and FDM-RSG calculations, respectively.  The dotted line represents the 

difference between the waveforms but the scale is amplified by a factor of 10.  (a) horizontal 

and (b) vertical displacement velocities. 

 

Fig. 6: 

Numerical model set-up for the calculation of effective velocities.  White triangles represent 

receivers. 

 

Fig. 7: 

Examples of crack distributions.  The solid square and solid lines represent the cracked 

region and cracks, respectively.  (a)       , (b)       , (c)       . 

 

Fig. 8: 

Displacement waveforms calculated at the receivers for different crack densities. 

 

Fig. 9: 



24 

Normalised effective velocities versus crack density.  Veff and V represent the effective 

velocity and background velocity, respectively.  Circles are numerical results, averaged over 

six repetitions with different crack distributions.  Solid lines represent the result of the 

theory for non-interacting cracks, dotted lines represent that of self-consistent theory, and 

dot-dash lines represent that of the modified self-consistent theory.  (a) P-wave velocity, (b) 

SV-wave velocity. 

 

Fig. 10: 

The definition of “nominal” crack length KN and the “real” crack length KR. 

 

Fig. 11: 

Crack distribution and crack alignment used for the demonstration of the effect of the 

resolution around cracks. 

 

Fig. 12: 

Normalised effective velocities calculated for the special arrangement as shown in Figure 11. 

 

Fig. 13: 

Snapshots of the horizontally normal stress field. (a)    , (b)     . 
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Fig. 14: 

Normalised effective P-wave velocity versus parameter   calculated for the random 

arrangement of cracks as shown in Figure 6.  The error bars denote the standard deviation 

for different crack distributions. 
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