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The in-medium pion properties, i.e. the temporal pion decay constant ft , the pion mass m∗

π , and
the wave function renormalization in symmetric nuclear matter are calculated in an in-medium
chiral perturbation theory up to the next-to-leading order of the density expansion O(k4

F ). The
chiral Lagrangian for the pion–nucleon interaction is determined in vacuum, and the low-energy
constants are fixed by experimental observables. We carefully define the in-medium state of the
pion and find that the pion wave function renormalization plays an essential role in the in-medium
pion properties. We show that the linear density correction is dominant and the next-to-leading
corrections are not so large at the saturation density, while their contributions can be significant at
higher densities. The main contribution of the next-to-leading order comes from the double scat-
tering term. We also discuss whether the low-energy theorems, the Gell-Mann–Oakes–Renner
relation and the Glashow–Weinberg relation, are satisfied in the nuclear medium beyond the lin-
ear density approximation. We also find that the wave function renormalization is enhanced as
much as 50% at the saturation density including the next-to-leading contribution, and that the
wave function renormalization can be measured in the in-medium π0 → γ γ decay.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Subject Index D33

1. Introduction

Spontaneous breakdown of chiral symmetry (χSSB) SU (N f )L × SU (N f )R → SU (N f )V

characterizes the vacuum and low-energy dynamics of quantum chromodynamics (QCD) [1,2]. The
non-vanishing chiral condensate 〈q̄q〉 is considered as one of the order parameters of χSSB and
gives a characteristic scale for hadron physics. χSSB is considered to be responsible for the origin
of the constituent quark mass after the current quark mass is partly given by the Higgs conden-
sate. According to the spontaneous breakdown, pseudoscalar mesons such as π, K , η appear as
Nambu–Goldstone (NG) bosons.

Recently, in order to investigate the mechanism of dynamical mass generation, partial restoration
of the chiral symmetry in the nuclear medium has gained considerable attention. This phenomenon
is the incomplete restoration of chiral symmetry with sufficient reduction of the absolute value of
the chiral condensate in the medium and will lead to various changes of hadron properties. Once
we understand the partial restoration of chiral symmetry, we can predict other in-medium hadronic
quantities through low-energy theorems and vice versa.

From this point of view, vast theoretical and experimental efforts are devoted to this topic. The
density dependence of the chiral condensate is evaluated in various approaches, e.g., the well
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known linear density approximation providing the model-independent low-density theorem [3,4], the
relativistic Bruckner–Hartree–Fock theory approach [5], and systematic calculations by in-medium
chiral perturbation theory beyond the linear density calculation [6,7]. According to the model-
independent linear density approximation, the leading density correction to the chiral condensate is
determined by the π N sigma term σπ N and, with the empirical value of the sigma term, it has been
found that the leading correction gives a large enough contribution at the normal nuclear density:

〈q̄q〉∗
〈q̄q〉0

≈ 1 − 0.35ρ/ρ0, (1)

where 〈q̄q〉∗, 〈q̄q〉0 are the in-medium and in-vacuum condensates and ρ0 is the normal nuclear
density. Recently, an in-medium sum rule satisfied in any density region has been derived model-
independently by the current algebra method and the low-energy theorems, such as the Gell-Mann–
Oakes–Renner relation, the Glashow–Weinberg relation, and the Weinberg–Tomozawa relation, are
discussed within the linear density order [8].

To investigate the pion properties in nuclei, deeply bound pionic atoms have received much atten-
tion [9–11]. Theoretically, the binding energies and decay widths of the 1s and 2p deeply bound pionic
atom states are estimated [12–14] and in Refs. [15,16] hadronic quantities, such as the pion optical
potential, have been calculated beyond the linear density. Experimentally, the reduction of the chiral
condensate is estimated quantitatively through reduction of the s-wave isovector parameter b1 in the
π–nucleus optical potential [11]. The b1 parameter is regarded as an in-medium isovector π N scatter-
ing length. These results show that the reduction of b1 means the repulsive enhancement of the s-wave
π–nucleon interaction in the nucleus. Other examples are low-energy π–nucleus scattering and ππ

interaction in nuclei in the scalar–isoscalar channel. The low-energy π–nucleus scattering also show
that s-wave π–nucleus interaction are enhanced repulsively [17,18]. According to the theoretical
discussion given in Refs. [19,20], the in-medium ππ interaction in the scalar–isoscalar part also has
attractive enhancement thanks to the partial restoration of chiral symmetry in the nuclear medium;
the experimental observation of the invariant mass spectrum of the ππ production off nuclear targets
performed in Refs. [21–23] could have a hint of such a enhancement.

In particular, the pion decay constant is a fundamental quantity of chiral symmetry breaking. The
in-medium decay constant has also been investigated in the linear density approximation [24] and
recently the chiral condensate and the decay constant have been evaluated in the next-to-leading
order based on chiral order counting [25]. In this paper, we discuss a general in-medium pion state
and evaluate in-medium pionic quantities such as the decay constant, mass, and the pseudoscalar
coupling beyond the linear density approximation. This paper is organized as follows. In Sect. 2, we
explain the general formulation of the in-medium chiral perturbation theory and discuss an expansion
by Fermi momentum counting. In Sect. 3, we discuss the in-medium pion state and define the in-
medium pionic quantities. Here we will find that the pion wave function renormalization plays an
important role in the in-medium pionic quantities. In Sect. 4, we evaluate the in-medium pion self-
energy, wave function renormalization, pion decay constant, and pseudoscalar coupling and show
the numerical results of their density dependence up to O(k4

F ) in the Fermi momentum expansion
in symmetric nuclear matter and in the isospin limit. We also discuss whether the in-medium low-
energy theorems, the Gell-Mann–Oakes–Renner relation and the Glashow–Weinberg relation, are
satisfied or not. Finally we discuss the in-medium π0 → 2γ process caused by the chiral anomaly.
In Sect. 5, we summarize our paper.
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2. In-medium chiral perturbation theory

Chiral perturbation theory (CHPT) is a powerful tool describing the low-energy dynamics of the
Nambu–Goldstone (NG) bosons and nucleons as an effective field theory of QCD [26–29]. CHPT
is constructed based on chiral symmetry and its spontaneous breaking and consists in systematic
expansion of NG boson momentum and the quark mass. The chiral order counting scheme makes
it possible to categorize Lagrangian and Feynman diagrams in terms of powers of momentum and
the quark mass, and to estimate the magnitude of possible corrections for the amplitude, such as the
current–current correlation functions. Thus, CHPT describes quantitatively the S-matrix elements of
the QCD currents.

In this decade, chiral effective theory for nuclear matter has been developed [15,30] and is applied
to study nuclear matter properties, such as the nuclear matter energy density [31], and also used to
study partial restoration of chiral symmetry and the in-medium changes of the pion properties, such
as in-medium pion mass, decay constant [7,25], and the 1s and 2p energy levels of deeply bound
pionic atoms [12].

2.1. Basics of the formulation

For the calculations of the in-medium pion quantities, we evaluate the Green’s functions in the ground
state of nuclear matter; in particular, our interests are hadron properties in the nuclear medium as
a bound state of the nucleon many-body system. In quantum field theory, the transition amplitude
between the ground state in the presence of the external fields is the fundamental quantity, and the
generating functional is defined by the transition amplitude, which can be calculated by the path
integral formalism of the quantum field theory. In the in-medium chiral perturbation theory, one
prepares the ground state of the nucleon Fermi gas at an asymptotic time as a reference state [30].
The generating functional W for the connected Green functions in nuclear matter is given as follows:

Z [J ] = exp iW [J ] = 〈�out|�in〉J (2)

=
∫

DU DN DN †〈�out|N (+∞)〉ei
∫

dx(Lπ+Lπ N +LN )〈N (−∞)|�in〉, (3)

where U is the chiral field parametrized by the NG boson field in the nonlinear realization of chiral
symmetry, N is the nucleon field, and J represents the scalar, pseudoscalar, vector, and axial vector
external fields J = (s, p, v, a). The Lagrangian is described by the free pion and nucleon fields and
should include, in principle, all the interactions between pions and nucleons within the Lagrangian.
Since we use a Lagrangian described by the free nucleon field and this Lagrangian prescribes the
nucleon interaction, the reference state can be the ground state of the free Fermi gas of nucleons
defined by

|�in,out〉 ≡
N∏
n

a†(pn)|0〉, (4)

where a†(pn) is the nucleon creation operator with momentum pn , the index n represents the spin
and isospin, N is the number of momentum states below the nucleon Fermi momentum k(n)

F , which
is obtained by the nucleon density ρn as k(n)

F = (3π2ρn)
1/3, and |0〉 is the 0-particle state.

The connected n-point Green functions can be calculated by taking functional derivatives of iW [J ]
with respect to the external sources Ji :

〈�out|TO1 · · ·On|�in〉 = (−i)n δ

δ J1
· · · δ

δ Jn
iW [J ], (5)
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where Oi is the corresponding current operator to the external source Ji . Considering the symmetry
property of the current operator under the chiral rotation, one can identify the quark contents of
the current operators, such as the pseudoscalar current Pi = q̄iγ5τ

i q and the axial vector cur-
rent Ai

μ = q̄γμγ5τ
i q/2. If we evaluate the generating functional nonperturbatively with appropriate

nucleon–nucleon interactions, we can describe the nuclear matter in principle and deduce the QCD
current Green functions in nuclear matter. Note that this prescription resembles the description of the
deuteron in terms of free nucleons, in which one starts with the free nucleon field and appropriate
nucleon–nucleon interaction and can find the deuteron as a bound state of two nucleons by solving
the Bethe–Salpeter equation nonperturbatively.

In Ref. [30], a method is proposed to derive the in-medium chiral Lagrangian in a systematic
expansion in terms of the chiral counting and the Fermi sea insertion. In this method, the Fermi
momentum is regarded as a small parameter of the chiral order. Performing the integral in terms of
the nucleon field by using the Gauss integral formula for the bilinear form of the nucleon interaction,
one obtains a generating functional characterized by double expansion of Fermi sea insertions and
chiral orders:

Z [J ] =
∫

DU exp

{
i
∫

dx

[
Lππ −

∫
dp

(2π)32E p
F Tr

(
i�(x, y)(	 p + m N )n(p)

)
− i

2

∫
dp

(2π)32E p

dq

(2π)32Eq
F Tr

(
i�(x, x ′)(	q + m N )n(q)i�(y′, y)(	 p + m N )n(p)

)
+ · · · ,

]}
(6)

where F denotes Fourier transformation of the spatial variables except for x , E(p) is the nucleon

energy E(p) =
√

p2 + m2
N for the momentum p, and �(x, y) is the nonlocal vertex defined by the

in-vacuum quantities as � ≡ −i A[14 − G0 A]−1, where the interactions A and the free nucleon prop-
agator G0 are given by the in-vacuum chiral perturbation theory. The isodoublet matrix n(p) restricts
the momentum integral for the nucleon momenta up to the Fermi momentum:

n(p) =
(

θ(k p
F − |p|) 0

0 θ(kn
F − |p|)

)
. (7)

The nonlocal vertex �(x, y) is expanded in terms of the bilinear local vertex A as

i� = A + AG0 A + AG0 AG0 A + · · · (8)

and the vertex A is also expanded in terms of the chiral order. The in-medium pion Lagrangian L̃ππ

can be obtained by the generating functional (6) as Z [J ] = exp[i
∫

d4xL̃ππ ].
For the calculation of the amplitude, one uses free nucleon propagators for the chiral expansion

of the nonlocal vertex function and the Fermi sea nucleon term (−2π)δ(p2 − m2
N )θ(p0)n(p) in the

Fermi sea insertion among the nonlocal vertices �(x, y). It has been shown explicitly in Ref. [32]
that this expansion scheme is consistent with the conventional relativistic many-body theory in the
sense that one can use the in-medium nucleon propagator directly, i.e. the Fermi gas propagator,

iGi (p) = iGi
0(p) + iGi

m(p) (9)

= i(	 p + m N )

p2 − m2
N + iε

− 2π(	 p + m N )δ(p2 − m2
N )θ(p0)θ(ki

F − |p|), (10)

in the calculation. Here, the free propagator and the medium part of the Fermi gas propagator are
denoted by iGi

0, iGi
m with the isospin index i = n, p. The medium part iGi

m represents the Fermi
sea effect. We can calculate the connected functions using the usual perturbative expansions with the
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in-medium nucleon propagator. In this way, one can deal with density contributions from the nuclear
medium by perturbative expansion of the nuclear Fermi momentum.

2.2. Density expansion

In in-medium CHPT, we can classify the current Green functions in terms of the order of the small
parameters in the expansion of the pion momentum, the quark mass, and the Fermi momentum in a
similar way to in-vacuum CHPT. The chiral order of a specific diagram is counted as [30]

ν = 4Lπ − 2Iπ +
Vπ∑
i=1

di +
Vρ∑

i=1

dρi ≥ 4 (11)

dρ = 3n +
n∑

i=1

ν�i − 4(n − 1) (12)

where Lπ is the number of pion loops, Iπ is the number of pion propagators, di is the chiral dimension
from the pion chiral Lagrangian, dρ is the chiral dimension of the nonlocal in-medium vertex with n
Fermi sea insertions, and ν� is the chiral dimension of the � vertex. In this chiral counting, we count
the Fermi gas propagator as O(p−1), like a free nucleon propagator, so that the counting rule is the
same as for in-vacuum chiral perturbation theory.

In this work, we focus on the Fermi momentum dependence of the Green functions and count
only by Fermi momentum orders. We assume that the in-vacuum loop effects are renormalized into
counter-terms in the chiral Lagrangian and we use the in-vacuum physical values to fix the low-
energy constants (LECs). For example, we translate LEC c1 appearing in L(2)

π N into the physical π N
sigma term σπ N :

c1 = −σπ N

4m2
π

, (13)

since the c1 term gives the leading order of the π N sigma term in the chiral perturbation theory and,
once one calculates the higher orders for the π N sigma term, they should also contribute to the in-
medium quantities in the same manner as c1. An empirical value for the sigma term is σπ N � 45 MeV
[33], and a recent analysis based on relativistic formulation of π N chiral perturbation theory suggests
σπ N = 59(7) MeV [34,35]. Another example is the isoscalar π N scattering length a+. In tree order,
a+ is given with LECs c1, c2, c3 from L(2)

π N as

b+ ≡ 4π

(
1 + mπ

m N

)
a+ = 2m2

π

f 2
π

(
2c1 − c2 − c3 + g2

A

8m N

)
. (14)

The scattering length is used to determine the combination of the LECs c1, c2, c3. Recent calculations
based on CHPT give a+ = (7.6 ± 3.1) × 10−3 m−1

π at better than 95% confidence level [36]. In
this way, we take the in-vacuum physical values to determine the LECs and perform systematic
calculations for density effects of the pionic observables based on the counting of Fermi momentum
orders.

As we have discussed in Ref. [32], beyond the order of ρ2 in the density expansion, the π N
dynamics alone cannot predict the in-medium quantities, because we encounter divergence in loop
calculations. This divergence can be removed, once we introduce counter-terms expressed by NN

contact interactions. The NN interactions are to be determined by the in-vacuum NN dynamics.
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2.3. Chiral Lagrangian and parametrization of chiral field

We use the following chiral Lagrangian in this work. The chiral Lagrangian for the meson sector is
given with the chiral field U parametrized by the pion field as

L(2)
π = f 2

4
Tr
(

DμU † DμU + χ†U + χU †
)

, (15)

with the covariant derivative for the chiral field U

DμU = ∂μU − i(vμ + aμ)U + iU (vμ − aμ) (16)

given by the vector and axial vector external fields vμ and aμ counted as O(p), and the χ field

χ = 2B0(s + i p) (17)

given by the scalar and pseudoscalar fields s and p counted as O(p2). The scalar field s is replaced
by the quark mass matrix in calculation. This Lagrangian is counted as O(p2).

In this paper, in order to simplify the perturbative calculation, as we did in our previous paper [32],
we use the following parametrization of the chiral field U , proposed by [38,39]:

U = exp

[
iπ iτ i y(π2)

2
√

π2

]
(18)

where y(π2) satisfies

y − sin y = 4

3

(
π2

f 2

) 3
2

. (19)

The chiral Lagrangian for the nucleon sector is as follows:

Lπ N = N̄ (iγ μ∂μ − m N − A)N , (20)

where A is the chiral interaction for the nucleon in the bilinear form. The chiral interaction can be
expanded in terms of the chiral order as A = ∑

n=1 A(n), and A(n) is counted as O(pn). The explicit
form of the leading term A(1) reads

A(1) = −iγ μ�μ − igAγ μγ5�μ (21)

with the vector current

�μ = 1

2
[u†, ∂μu] − i

2
u†(vμ + aμ)u − i

2
u(vμ − aμ)u†, (22)

and the axial current

�μ = 1

2

[
u†(∂μ − i(vμ + aμ)

)
u − u

(
∂μ − i(vμ − aμ)

)
u†
]
, (23)

where the field u is defined by a square root of the chiral field U : u = √
U . The expression of the

next leading term A(2) is given as

A(2) = −c1〈χ+〉 + c2

2m2
N

〈uμuν〉DμDν − c3

2
〈uμuμ〉 (24)

with χ+ ≡ uχ†u + u†χu†, uμ ≡ 2i�μ, and the covariant derivative for the nucleon field DμN =
(∂μ + �μ)N . Here we have omitted irrelevant terms in the present work for the in-medium pion
properties in symmetry nuclear matter.
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3. In-medium properties of the pion

3.1. Pion mass and wave function renormalization

The in-medium pion propagation can be calculated by the two-point function of the pseudoscalar
density:

�ab(p) = 〈�|Pa Pb|�〉. (25)

Around the in-medium pion pole the two-point function can be written in terms of the in-medium
quantities, such as the in-medium pion mass m∗2

π , velocity vπ , and pseudoscalar coupling G∗
π , as

�ab(p) = δabG∗
π

i

p2
0 − v2

πp2 − m∗2
π + iε

G∗
π (26)

where G∗
π does not include any singularity at the pion pole. In this way, with p = 0, the in-medium

pion mass is defined by the pole position of the two-point function and the coupling of the pion to
the pseudoscalar density Pa in medium is defined by the square root of the residue of the two-point
function at the pion pole.

The two-point function can be calculated using the in-medium chiral perturbation theory given in
the previous section. The calculation will be done in terms of in-vacuum quantities like

�ab(p) = δabĜπ

i

p2 − m2
π − �(p2) + iε

Ĝπ , (27)

where mπ is the in-vacuum pion mass, �(p2) is the pion self-energy in medium, and Ĝπ is the
vertex correction of the pion coupling to the pseudoscalar density. The vertex correction Ĝπ does
not contain the pion pole and it is calculated by considering one-particle irreducible diagrams.

Expanding the self-energy �(p2) in Eq. (27) around p2
0 = m∗2

π and p2 = 0,

�(p2) = �(m∗2
π ) + (p2

0 − m∗2
π )

∂�(m∗2
π )

∂p2
0

+ p2 ∂�(m∗2
π )

∂p2 + · · · ,

we write the two-point function in the following way:

�ab(p) = δabĜπ

i Z

p2
0 − v2

πp2 − m∗2
π + iε

Ĝπ (28)

with

m∗2
π = m2

π + �(m∗2
π ) (29)

v2
π = 1 + ∂�(m∗2

π )

∂p2 (30)

Z =
(

1 − ∂�

∂p2
0

(m∗2
π )

)−1

. (31)

Comparing Eqs. (26) and (28), we obtain, at the pion pole,

G∗
π =

√
ZĜπ . (32)

Using the in-medium chiral perturbation theory we can calculate the self-energy �(p2) and Ĝπ ;
thus, we obtain the in-medium pion properties with the above equations.
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3.2. In-medium state

The in-medium pion propagator can also be written by the pion field operator π as

〈�|πaπb|�〉 = δab i

p2 − m2
π − �(p2) + iε

(33)

= δab i Z

p2
0 − v2

πp2 − m∗2
π + iε

. (34)

Comparing Eqs. (28) and (34), for the calculation of the pion pole we regard

πa = Pa

Ĝπ

. (35)

The pion operator π creates one pion in medium with mass m∗
π and wave function normalization Z ,

satisfying

〈�|πa|π∗b(p)〉 = δab
√

Z , (36)

where we have introduced the one-pion state with a momentum p in the nuclear medium by
denoting |π∗b〉.

The in-medium coupling constant G∗
π defined in Eq. (26) as the residue of the pion propagator

induced by the pseudoscalar density may also be written as the following matrix element:

G∗
πδab = 〈�|Pa|π∗b(p)〉. (37)

Relation (32) can be understood by Eq. (37) with the reduction formula:

〈�|Pa|π∗b(p)〉 = lim
p2→m∗2

π

(
i
√

Z

p2 − m∗2
π + iε

)−1

〈�|Paπb|�〉

= lim
p2→m∗2

π

(
i
√

Z

p2 − m∗2
π + iε

)−1
1

Ĝπ

〈�|Pa Pb|�〉

= lim
p2→m∗2

π

(
i
√

Z

p2 − m∗2
π + iε

)−1
1

Ĝπ

δab

(
Ĝπ i Z Ĝπ

p2 − m2
π + iε

)

= δab
√

ZĜπ

where we have understood p2 = p2
0 − v2

πp2, and we have used Eq. (35) in the second equality and
Eq. (28) in the third equality.

3.3. In-medium pion decay constants

We define the in-medium decay constant in analogy with the in-vacuum decay constant as a matrix
element of the axial vector current Aa

μ:

〈�|Aa
μ(0)|π∗b(p)〉 = i

[
pμF∗(p0, p) + nμ(p · n)N∗(p0, p)

]
δab (38)

where we have introduced a vector characterizing the medium rest frame nμ with n2 = 1 and there
are two form factors, F∗ and N∗, in the presence of nuclear matter. In fact, these form factors should
be functions of p2 and p · n, according to Lorentz covariance. The pion decay constants are obtained
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at the mass shell point with |p| = 0 and p0 = m∗
π . We define the temporal and spatial components

of the decay constant ft , fs by taking nμ = (1, 0) as

〈�|Aa
0|π∗b〉 ≡ i ft p0, (39)

〈�|Aa
i |π∗b〉 ≡ i fs pi . (40)

The decay constants are obtained by

ft = F∗(m∗
π , �0) + N∗(m∗

π , �0), (41)

fs = N∗(m∗
π , �0). (42)

These decay constants can be calculated in the in-medium chiral perturbation theory. Making good
use of the reduction formula in momentum space again, we write down the matrix element in terms
of the one-particle irreducible vertex correction and the wave function renormalization:

〈�|Aa
μ|π∗b(p)〉 = lim

p2→m∗2
π

(
i
√

Z

p2 − m∗2
π + iε

)−1

〈�|Aa
μπb|�〉

= lim
p2→m∗2

π

(
i
√

Z

p2 − m∗2
π + iε

)−1
1

Ĝπ

〈�|Aa
μ Pb|�〉

= lim
p2→m∗2

π

(
i
√

Z

p2 − m∗2
π + iε

)−1
1

Ĝπ

i f̂i pμ

(
i Z

p2 − m∗2
π + iε

)
Ĝπ

= i f̂i
√

Z pμ,

where we mean p2 = p2
0 − v2

πp2, and f̂i with i = t, s is the vertex correction of the decay constant,
which can be calculated by one-particle irreducible diagrams in the chiral perturbation theory.

4. Results

In this section, we investigate explicitly the in-medium pion properties with the in-medium chiral
perturbation theory up to the order of k4

F in the density expansion. In the last section, we found that
the in-medium pion decay constant can be calculated by the pion wave function renormalization Z
and the one-particle irreducible vertex correction f̂i . The wave function renormalization is evaluated
by taking the derivative of the pion self-energy � with respect to the energy squared. We calcu-
late the pion self-energy first. With the self-energy, we then evaluate the in-medium pion mass and
the wave function renormalization, and show their density dependence. Calculating the one-particle
irreducible correction for the pion decay constant, we evaluate the density dependence of the decay
constant with the wave function renormalization. We also check whether the low-energy relations
are also satisfied in the nuclear medium. Finally we discuss the π0 → 2γ decay rate in the nuclear
medium. For simplicity, we concentrate on the calculation under the unpolarized symmetric nuclear
matter, where the matter has spin 0 and isospin 0 with equal proton and neutron densities, ρp = ρn .

In the following, we present the Feynman diagrams for each quantity and classify them according
to the density dependence. As we have already discussed in the previous section, we presume that the
in-vacuum LECs are fixed by the experimental observables. The vertex and mass corrections from
the quantum loops of the pion and the nucleon are renormalized into physical quantities. On this
understanding, we replace the LECs with the observed quantities and use the experimental values.
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Fig. 1. Feynman diagrams for the pion self-energy � up to O(k4
F ). (a) The leading order of the density correc-

tions O(k3
F ). (b) The next-to-leading order correction O(k4

F ). In these diagrams, the dashed lines denote the
pion lines, the doubled and thick lines are the nucleon lines for the Fermi gas propagator iG and the medium
part of the Fermi gas propagator iGm , and the filled and unfilled circles are the leading and the next-to-leading
order vertices from the chiral Lagrangian, respectively.

In the present work the relevant replacements are as follows:

2B0mq → m2
π (43)

c1 → −σπ N

4m2
π

(44)

2c1 − c2 − c3 → f 2
π

2m2
π

b+ − g2
A

8m N
(45)

where the left-hand sides are given by LECs, while the right-hand sides are written in terms of the
observed quantities in vacuum. In these expressions, b+ ≡ 4π(1 + mπ/m N )a+ with the isoscalar
π N scattering length a+. In the replacement, higher-order contributions in the chiral counting are
already involved. In this sense, we lose the strict counting of the chiral order. Taking this scheme,
we do not have to calculate the loop integrals that contain only the in-vacuum propagators, because
they are supposed to be already counted inside the experimental value. This fact reduces the number
of relevant diagrams that we should calculate.

The in-medium quantities that we are going to calculate should be evaluated at the pion pole. The
in-vacuum chiral order can be counted by the pion mass. Therefore, in the perturbative expansion,
the term of which the leading chiral counting in vacuum is � has m�

πkm
F ( kF

m N
)n dependence. The factor

(kF/m N )n comes from the Fermi motion correction of the nucleon when one calculates the Fermi
sea loop integral. The order of the density expansion is counted as p = m + n, while the order of the
small parameter is given by q = � + m. If one takes the density contribution up to k4

F ∼ ρ4/3, it is
sufficient to consider diagrams with q ≤ m + 4.

The details of the loop calculation are summarized in Appendix A.

4.1. In-medium pion self-energy

We show the Feynman diagrams contributing the in-medium self-energy with the density correc-
tions up to O(k4

F ∼ ρ4/3) in Fig. 1. In these diagrams, the dashed, doubled, and thick lines are the
pion propagator, the Fermi gas propagator iG, and the nucleon propagation in the Fermi gas iGm ,
and the filled and unfilled circles are the leading and next-to-leading order vertices from the chiral
Lagrangian, respectively. In the following calculations, we fix the external momentum as q = (q0, 0).
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The diagrams for the leading order of the density expansion O(k3
F ) are given in Fig. 1(a). The

self-energy coming from the left-hand diagram �1 in Fig. 1 (a) can be calculated as

−i�1(q0) = −
∫

d4 p

(2π)4 Tr
[
(−i A(1)

π )iG(p + q)(−i A(1)
π )iG(p)

]

= −ρ
ig2

A

4 f 2m N
q2

0 , (46)

where iG(p) is the Fermi gas propagator given in Eq. (10), and the amplitude −i A(1)
π can be obtained

by the interaction Lagrangian given in Eq. (A7) of Appendix A.
Next, we calculate the right-hand diagram �2 in Fig. 1(a):

−i�2(q0) = (−1)

∫
d4 p

(2π)4 Tr
[
(−i A(2)

ππ )iGm(p)
]

= −2iρ

f 2

(
4c1 B0mq − (c2 + c3)q

2
0

)
. (47)

The next-to-leading order contribution coming from the left-hand diagram �3 in Fig. 1(b) is
given as

− i�3(q0) = 1

2

∫
d4k

(2π)4 iL(2)

π4 (i Dπ(k))2(−i�m(k)) (48)

with the pion propagator i Dπ(k), the symmetric factor 1/2, and �m(k) defined as

−i�m(k) = −
∫

d4 p

(2π)4 Tr
[
(−i A(1)

π )iGm(p + k)(−i A(1)
π )iGm(p)

]
.

Finally we obtain

− i�3(q0) = im2
π g2

Ak4
F

12π4 f 4 F

(
m2

π

4k2
F

)
(49)

with function F(x2) defined by

F(x2) = 3

8
− 3x2

4
− 3x

2
arctan

1

x
+ 3x2

4
(x2 + 2) ln

x2 + 1

x2 (50)

The self-energies coming from the double scattering corrections [37] given by the middle and
right-hand diagrams of Fig. 1(b), �4 and �5, have two ππ N N vertices from the leading Weinberg–
Tomozawa interaction and the next-to-leading interaction with LECs ci , respectively. These are
evaluated as

−i�4(q0) = −
∫

d4 p

(2π)4

d4k

(2π)4 Tr
[
(−i A(1)

ππ )iGm

(
k − p

2

) (
−i A(1)

ππ

)
iGm

(
k + p

2

)
i Dπ(p + q)

]

= −2iq2
0

f 4

k4
F

6π4 G(a2), (51)

−i�5(q0) = −
∫

d4 p

(2π)4

d4k

(2π)4 Tr
[
(−i A(2)

ππ )iGm

(
k − p

2

)
(−i A(2)

ππ )iGm

(
k + p

2

)
i Dπ(q − p)

]

= −i
(

8c1 B0mq − 2c2q2
0 − 2c3q2

0

)2 2k4
F

3π4 f 4 G(a2) (52)

with a2 = (q2
0 − m2

π)/(4k2
F ) and function G(a2) defined by

G(x2) = 3

8
+ x2

4
+

√
x2

2
ln

∣∣∣∣1 − x

1 + x

∣∣∣∣+ x2

4
(x2 − 3) ln

∣∣∣∣1 − x2

x2

∣∣∣∣ . (53)
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Summing up all the contributions, we obtain the the self-energy up to O(k4
F ) as

�(q0, 0) = �1 + �2 + �3 + �4 + �5 (54)

= 2ρ

f 2

(
4c1 B0mq −

(
c2 + c3 − g2

A

8m N

)
q2

0

)
− m2

π g2
Ak4

F

12π4 f 4 F

(
mπ

2kF

)

+
[

q2
0

8
+
(

4c1 B0mq − c2q2
0 − c3q2

0

)2
]

8k4
F

3 f 4π4 G(a2) (55)

with a2 = (q2
0 − m2

π)/(4k2
F ).

4.2. In-medium pion mass

The in-medium pion mass is obtained by the summation of the in-vacuum mass and the self-energy
evaluated at the pion on the mass shell qμ = (m∗

π , 0). This brings us to a self-consistent equation:

m∗2
π ≡ m2

π + �(q2
0 = m∗2

π ). (56)

Nevertheless, because the in-medium correction starts with the linear density ρ ∼ k3
F and we are

evaluating the pion mass up to O(ρ4/3), the density correction on the mass in the argument of the
self-energy gives higher orders in the density expansion of the in-medium pion mass. Thus, we are
allowed to evaluate the self-energy at the in-vacuum on-shell qμ = (mπ , 0) for the present purpose.
We evaluate the in-medium pion mass up to O(ρ4/3) as

mπ =
√

m2
π + �(q2

0 = m2
π)

= mπ

{
1 + ρ

f 2

(
2c1 − c2 − c3 + g2

A

8m N

)
− g2

Ak4
F

24π4 f 4 F

(
mπ

2kF

)

+
[

1

8
+ m2

π

(
2c1 − c2 − c3

)2
]

4k4
F

3π4 f 4 G(0)

}

= mπ

⎧⎨
⎩1 + ρ

b+

2m2
π

− g2
Ak4

F

24π4 f 4
π

F

(
mπ

2kF

)
+
⎡
⎣1

8
+ m2

π

(
b+

2m2
π

− g2
A

8m N

)2
⎤
⎦ 2k4

F

π4 f 4
π

⎫⎬
⎭ . (57)

The LECs, B0, c1, c2, c3, have been determined by the in-vacuum physical quantities, the pion mass
mπ , the π N sigma term σπ N , and the factored scattering length b+. The linear density correction of
the pion mass stems from the scattering length. Since the isosinglet π N scattering length is known to
be small compared to the inverse pion mass, b+ = (9.6 ± 3.9) × 10−2 m−1

π , the leading correction
is as small as 5% at the saturation density ρ0 � 0.49 m3

π .
In Fig. 2, we show the density dependence of the in-medium pion mass as a function of the density

normalized by the normal nuclear density ρ0. In the figure, the dotted line shows the result up to
the leading linear density and the solid line is for the result containing the next-to-leading order. We
take the following values for the in-vacuum quantities: fπ = 92.4 MeV, gA = 1.26, mπ = 138 MeV,
b+ = 9.6 × 10−2 m−1

π , and σπ N = 45 MeV [33]. One can see from Fig. 2 that the next-to-leading
order (NLO) correction is not small. The main contribution comes from the double scattering terms.
The density correction of the pion mass at twice or three times the normal nuclear density becomes
about 15 to 20%. Since the in-medium CHPT is a low-energy effective theory it would be not appli-
cable in the higher-density region; nevertheless, we expect that this theory would be applicable up to
3ρ0 where Fermi momentum corresponds to about 400 MeV.
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Fig. 2. Density dependence of the in-medium pion mass normalized by the in-vacuum pion mass, m∗
π/mπ , in

symmetric nuclear matter. The dotted line shows the result up to the leading linear density correction, while
the solid line is the result containing the next-to-leading order correction.

4.3. In-medium wave function renormalization

Next, the wave function renormalization is obtained by evaluating the derivative of the self-energy
�(q0) with respect to q2

0 at q2
0 = m∗2

π . Again, since the difference between the in-medium and in-
vacuum pion masses in the self-energy is counted as the higher order of the density expansion, we
evaluate the derivative of the self-energy at q2

0 = m2
π for the present purpose:

Z =
[

1 − ∂�(q2
0 = m2

π)

∂q2
0

]−1

=
[

1 + 2ρ

f 2

(
c2 + c3 − g2

A

8m N

)
−
(

1

8m2
π

− 2(2c1 − c2 − c3)(c2 + c3)

)
8m2

πk4
F

3π4 f 4 G(0)

]−1

= 1 + 2ρ

f 2
π

(
σπ N

2m2
π

+ f 2
π b+

2m2
π

)

+ m2
πk4

F

π4 f 4
π

[
1

8m2
π

+ 2

(
f 2
π b+

2m2
π

− g2
A

8m N

)(
σπ N

2m2
π

+ f 2
π b+

2m2
π

− g2
A

8m N

)]
. (58)

In the calculation of the wave function renormalization, we encounter a singularity in the derivative
of function G(x) at x → 0. As discussed in detail in Appendix A, this singularity may be consid-
ered as an infrared singularity in quantum field theory and brings a problematic density dependence
starting from k2

F ln kF , which is inconsistent with the low-density expansion starting from k3
F . Thus,

we should expect certain cancellation of the singularity. The infrared singularity should cancel when
one calculates the scattering rates, not in the amplitude itself. Therefore we have dropped the singular
term containing the derivative of function G(x).

At the linear density, we find that

Z = 1 + 0.40
ρ

ρ0
, (59)

which implies that the wave function is enhanced by 40% at the saturation density. The density
dependence of the wave function renormalization is shown in Fig. 3. As one can see in the figure, the
density correction of the wave function is not so small, being of the order of 50% at the saturation
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Fig. 3. Density dependence of the in-medium pion wave function renormalization Z in symmetric nuclear
matter. The dotted line shows the result up to the leading linear density correction and the solid line is for the
pion mass containing the next-to-leading order correction.

(a)

(b)

Fig. 4. Feynman diagrams showing the one-particle vertex correction of the pion decay constant f̂t . (a) Leading
order density corrections. (b) Next-to-leading order corrections. In these diagrams, the wavy line denotes the
axial vector current.

density. It would be very interesting if one could observe the strong enhancement of the wave function
renormalization phenomenologically, such as in formation cross sections of deeply bound pionic
atoms. Later, we will again discuss the possible observation of the wave function renormalization
itself in the in-medium π0 decay into 2γ .

4.4. In-medium pion decay constant

We evaluate the temporal pion decay constant in medium. According to the discussion in the previous
section, the in-medium decay constant is given by the wave function renormalization Z and the
one-particle irreducible vertex correction f̂t as ft = f̂t

√
Z . The wave function renormalization has

already been evaluated in the previous subsection; here let us calculate the vertex correction f̂t in
density expansion.

In Fig. 4, we show the relevant Feynman diagrams for the density corrections up to O(k4
F ∼ ρ4/3).

The wavy lines in Fig. 4 denote axial vector currents. The leading graphs O(k3
F ) are shown in

Fig. 4(a), while the next-to-leading order contributions O(k4
F ) are given in Fig. 4(b). Since the tem-

poral decay constant is given by the matrix element of the time component of the axial vector current
Ai

0, we evaluate the one-particle irreducible (1PI) matrix element

〈�|Ai
0|π∗ j (q)〉1PI = iδi j p0 f̂t (60)
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for the rest pion qμ = (q0, 0). The loop calculation is essentially the same as the calculation done
for the self-energy. Here we will show only the definition and result of each contribution.

The contribution from the left-hand diagram f̂1 in Fig. 4(a) reads

f̂1q0 = −
∫

d4 p

(2π)4 Tr
[
(−i A(1)

a )iG(p + q)(−i A(1)
π )iG(p)

]
= −q0

g2
A

4 f m N
ρ. (61)

The vertex correction coming from the right-hand diagram in Fig. 4(a) is

f̂2q0 = −
∫

d4 p

(2π)4 Tr
[
(−i A(2)

πa)iGm(p)
]

= q0
2ρ

f
(c2 + c3). (62)

For the left-hand diagram in Fig. 4(b), we have f̂3 with symmetric factor 1/2:

f̂3q0 = 1

2

∫
d4k

(2π)4 iL(2)

π3a

(
i Dπ(k)

)2
(−i�m)

= q0
g2

Ak4
F

6π4 f 3 F

(
m2

π

4k2
F

)
. (63)

Function F(x) is defined in Eq. (50). The vertex corrections represented by the middle and right-hand
diagrams in Fig. 4(b) are calculated as

f̂4q0 = −
∫

d4 p

(2π)4

d4k

(2π)4 Tr
[
(−i A(1)

πa)iGm

(
k − p

2

)
(−i A(1)

ππ )iGm

(
k + p

2

)
i Dπ(p + q)

]

= − q0k4
F

3π4 f 4 G(a2) (64)

f̂5q0 = −
∫

d4 p

(2π)4

d4k

(2π)4 Tr
[
(−i A(2)

πa)iGm

(
k − p

2

)
(−i A(2)

ππ )iGm

(
k + p

2

)
i Dπ(q − p)

]

= (c2 + c3)
(

2c1m2
π − (c2 + c3)q

2
0

) 8q0k4
F

3π4 f 3 G
(

a2
)

(65)

where a2 = (q2
0 − m2

π)/(4k2
F ) and function G(x) is defined in Eq. (53).

The vertex correction f̂t should be evaluated at q2
0 = m∗2

π in principle, because the decay constant
is the matrix element of the axial current of the in-medium pion state having the on-shell condition
q0 = m∗

π . However, in practice, we are allowed to evaluate the vertex correction at q0 = mπ , because
the difference is in the higher-density orders.

Summing up all the contributions, we obtain the density dependence of f̂t up to O(k4
F ):

f̂t (q0 = mπ) = f̂1 + f̂2 + f̂3 + f̂4 + f̂5 (66)

= f + 2ρ

f

(
c2 + c3 − g2

A

8m N

)
+ g2

Ak4
F

6π4 f 3 F

(
mπ

2kF

)

−
[

1

8
− (c2 + c3)(2c1 − c2 − c3)

]
8m2

πk4
F

3π4 f 3 G(0)

= fπ
[
1 − 2ρ

f 2
π

(σπ N

2m2
π

+ f 2
π b+

2m2
π

)
+ g2

Ak4
F

6π4 f 4
π

F

(
mπ

2kF

)

− m2
πk4

F

π4 f 4
π

[
1

8
+
(

f 2
π b+

2m2
π

− g2
A

8m N

)(
σπ N

2m2
π

+ f 2
π b+

2m2
π

− g2
A

8m N

)]
(67)

where we have used G(0) = 3/8.
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Fig. 5. Density dependence of the temporal decay constant normalized by the in-vacuum pion decay constant
fπ in symmetric nuclear matter. The dotted line is for the result in the leading linear density and the solid line
is for the result including the next-to-leading order.

With f̂t , we can calculate the in-medium pion decay constant:

ft = f̂
√

Z

= fπ

[
1 − ρ

f 2
π

(
σπ N

2m2
π

+ f 2
π b+

2m2
π

)
+ g2

Ak4
F

6π4 f 4
π

F

(
mπ

2kF

)
− k4

F

16π4 f 4
π

]
. (68)

The LECs are determined by the π N sigma term σπ N and the isoscalar π N scattering length b+.
We show in Fig. 5 the density dependence of the temporal decay constant. In this figure, the dotted

line is for the result of the leading linear density and the solid line is for the result including the
next-to-leading order O(k4

F ). We find that the NLO correction produces a change of a few percent
in the low-density region but, in the high-density region, an NLO correction about three times the
normal nuclear density contributes 10 percent and is not small.

Let us make some comments on the perturbative expansion in terms of the Fermi momentum. In the
in-medium CHPT, the expansion parameter is to be kF/(4π fπ) and it amounts to around 0.3 to 0.4,
even at a higher-density region than the saturation density. With this small value, we could say that the
perturbative expansion in terms of the Fermi momentum may have good convergence. Nevertheless,
if one wants to judge whether the Fermi momentum expansion is good or not in nuclear matter,
one should describe the nuclear matter and reproduce the saturation properties first, and see the
higher-density effects. The nuclear matter cannot be described essentially in the perturbation theory
of in-vacuum fields. One would need a nonperturbative treatment to obtain the nuclear matter. In such
a case, naive perturbative expansion in terms of the Fermi momentum would break down before the
nuclear density.

4.5. In-medium pseudoscalar coupling

The pseudoscalar coupling G∗
π is also calculated as

G∗
π ≡ 〈�|Pa|π∗b〉 = Ĝπ

√
Z . (69)

In Fig. 6, we show the Feynman graphs that contribute to the one-particle irreducible vertex correc-
tion Ĝπ . Performing the same calculation as for the pion decay constant f̂t , we obtain the density
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Fig. 6. Feynman diagrams contributing to the one-particle irreducible vertex correction for the pseudoscalar
coupling Ĝπ . The wavy line is the pseudoscalar density. The left-hand diagram is the leading order density
contribution, while the middle and right-hand diagrams contribute to the next-to-leading order correction.

dependence of the in-medium pseudoscalar coupling:

G∗
π

Gπ

= 1 + ρ

f 2

(
4c1 − c2 − c3 + g2

A

8m N

)
+ g2

Ak4
F

12 f 4π4 F

(
kF

2mπ

)

+ k4
F

f 4π4

(
1

16
+ m2

π(2c1 − c2 − c3)
2
)

. (70)

4.6. In-medium low-energy theorems

It is known that the Gell-Mann–Oakes–Renner (GOR) relation is satisfied in medium up to the linear
density (see, e.g., Ref. [8]). Having obtained the density dependences of the pion decay constant and
the pion mass in medium up to O(k4

F ), we are going to examine the GOR relation satisfied at O(k4
F ).

The density dependence of the quark condensate is obtained in Ref. [32] up to O(k4
F ). Using the

expressions for the in-medium quantities, we obtain

f 2
t

f 2
π

m∗2
π

m2
π

− 〈ūu + d̄d〉∗
〈ūu + d̄d〉0

= 8m2
πk4

F

3π4 f 4

[
(2c1 − c2 − c3)

2G(0) − 4c2
1G1

(
m2

π

4k2
F

)]
(71)

G1(x2) = G(−x2) = 3

8
− x2

4
− x arctan

1

x
+ x2

4
(x2 + 3) ln

∣∣∣∣1 + x2

x2

∣∣∣∣ . (72)

From this equation, we find that the GOR relation is not satisfied at this order and the double scattering
terms break the relation. The reason for the breaking is as follows: The GOR relation connects the
chiral condensate and the pion quantities. The chiral condensate is calculated in the soft limit by
taking q → 0 in the correlation function, while the pionic quantities are evaluated for the pion on
the mass shell. Off the chiral limit, where the pion is massive, the two energy points are different.
This difference causes the GOR relation to break.

In the chiral limit in vacuum, one has the Glashow–Weinberg (GW) relation fπ Gπ = −〈q̄q〉. This
relation is known to be satisfied in medium in the chiral limit and at the linear density [8]. Here we
also directly check whether the relation is satisfied in the order O(k4

F ) off the chiral limit:

f ∗
t

fπ

G∗
π

Gπ

− 〈ūu + d̄d〉∗
〈ūu + d̄d〉0

= 8m2
πk4

F

3π4 f 4

[
(2c1 − c2 − c3)

2G(0) − 4c2
1G1

(
m2

π

4k2
F

)]
. (73)

As seen in this equation, the GW relation is broken by the double scattering term and the breaking
terms correspond to the right-hand side in Eq. (72).

It is also interesting to discuss the in-medium sum rule for the in-medium quark condensate derived
in Ref. [8] model-independently in the chiral limit:

− 〈q̄q〉 = Re
∑
α

fαGα, (74)
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where α is the label of the zero-modes in nuclear matter, such as pions and particle–hole excita-
tions, and the summation is taken over all of the zero modes. It has been shown that, in the linear
density, only the pion zero mode can contribute to the sum rule and one obtains the in-medium
Glashow–Weinberg relation ft G∗

π = −〈q̄q〉∗. The other zero modes, such as particle–hole excita-
tions, contribute only as higher-density corrections. As discussed in Ref. [32], the NN correlation
effects come into the chiral effective theory from the order of O(ρ2). Thus, we expect that the pion
mode dominates the sum rule beyond the linear density but below the square density order in the
chiral limit. We can check this by taking the chiral limit in Eq. (73). This means that the GW relation
is satisfied up to O(k4

F ) in the chiral limit:

ft G
∗
π = −〈ūu + d̄d〉. (75)

With this relation, realizing that both ft and G∗
π decrease as the density increases, we find that the

chiral condensate decreases more rapidly than the pion decay constant. Although one might have
some corrections from O(ρ2) contributions, this observation could be a hint that at a certain higher
density the chiral condensate would become zero before the pion decay constant was zero. In this
situation, even though the quark condensate is zero, the chiral symmetry is spontaneously broken.

4.7. In-medium π0 decay to 2γ

The neutral π0 meson decays dominantly into 2γ in vacuum through the quantum effect known as
the axial anomaly. Here let us estimate the medium modification of the decay rate of π0 to 2γ by
following the formulation presented in Sect. 3. The decay amplitude may be written, as required by
Lorentz invariance, in the form

〈π0∗|γ γ 〉 = −i M∗
γ γ εμναβε∗

μkνε
′∗
α k′

β, (76)

where M∗
γ γ stands for the decay amplitude in medium, εμναβ is the totally antisymmetric tensor, ε∗

μ

and ε∗′
α are the polarization vectors of the emitted photons, and kν and k′

β are the momenta of the
photon. According to the argument given in Sect. 3, the in-medium amplitude M∗

γ γ can be written as

M∗
γ γ =

√
Z M̂γ γ (77)

with the wave function renormalization Z and the medium correction of the one-particle irreducible
π0γ γ vertex M̂γ γ .

In the nuclear medium, the π0 meson may decay into 2γ through non-anomalous diagrams because
of the presence of nucleons, which can bring out the intrinsic parity violated in the π0 → 2γ pro-
cess. Nevertheless, in Ref. [7], it was found that there are no medium corrections to the π0 → 2γ

amplitude up to O(p5), i.e., the linear density correction in the density expansion. The argument is
based on the spin and flavor structure of the vertices. The nucleon 1-loop with the π0γ γ N N contact
vertex should vanish because the contact vertex contains γ5 and there are no other vertices that can
bring γ5 into the nucleon loop, which makes the trace of the Dirac matrices vanish. The diagrams
in which the photons and the neutral pion emit sequentially from a nucleon also turn out to vanish
according to careful calculation of the flavor matrix. Hence, the in-medium correction up to the linear
density vanishes and the in-medium vertex correction M̂γ γ amplitude is equivalent to the in-vacuum
amplitude Mγ γ . This leads to the conclusion that the in-medium correction of the decay amplitude
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M∗
γ γ can be calculated solely by the wave function renormalization as

M∗
γ γ

Mγ γ

=
√

Z . (78)

Ignoring the small density correction of the pion mass in the phase space of the decay process, we
find that the modification of the π0 decay rate to 2γ in nuclear matter is given by the wave function
renormalization as

�∗

�0
= Z . (79)

This implies that the π0 decay into 2γ in nuclear matter measures directly the in-medium renor-
malization of the π0 wave function in lower density. Using the result discussed in the previous
subsections, we obtain the linear density approximation as

�∗

�0
= 1 + 0.4

ρ

ρ0
. (80)

At normal nuclear density the decay rate is enhanced 1.4 times and the partial width becomes
about 10 eV.

5. Summary

We have discussed in-medium pion properties, such as the pion decay constant, the pion mass, and
the wave function renormalization based on the in-medium chiral perturbation theory. First, we have
provided a general formalism of the in-medium chiral perturbation theory and have discussed an
expansion in terms of Fermi momentum. Assuming that the renormalization for the in-vacuum quan-
tities is performed in an appropriate way, we use the observed values to determine the low-energy
constants (LECs) in the chiral Lagrangian. Since we have used the physical values, the higher-order
corrections for the momentum expansion are implicitly included in the calculation. Thus, we focus
on the expansion of the Fermi momentum of the physical quantities, which are calculated by the QCD
current Green functions. To calculate the in-medium quantities, we carefully define the in-medium
pion state, and we have found that the in-medium wave function renormalization plays an essen-
tial role in defining the in-medium coupling constants, such as the decay constant and pseudoscalar
coupling constant.

We have evaluated the density dependence of the decay constant, the pion mass, the pion wave
function renormalization, and the pseudoscalar coupling including the next-to-leading order of the
density expansion beyond the well known linear density approximation based on the in-medium
chiral perturbation theory. We have found that the O(k4

F ) corrections cause a change of a few percent
in the low-density region for the decay constant and the pion mass, while at higher densities, such as
three times saturation density, the corrections can be of the order of 10 to 20 percent and can make a
significant contribution. We have also found that the wave function renormalization is enhanced by
as much as 50 percent at the saturation density. The main contribution among the corrections comes
from the double scattering term. In addition, we have checked whether the low-energy theorems,
the Gell-Mann–Oakes–Renner relation and the Glashow–Weinberg relation, are satisfied in medium
beyond the linear density approximation. We have found that these relations are not satisfied at O(k4

F )

off the chiral limit. The origin of this breaking is that we use different energy values to evaluate the
pion quantities and the chiral condensate; we take the soft limit to obtain the chiral condensate, while
we take the pion on the shell point, i.e. q0 = m∗

π , to evaluate the pion quantities. Finally, we have
discussed the density dependence of the π0 → γ γ decay width. Considering the spinor and flavor
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vertex structure of the chiral interactions, we have found that the density dependence of the π0 width
comes from the wave function renormalization alone at linear density order. With this observation,
the wave function renormalization Z would be measured directly in the decay process.
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Appendix A. Explicit expression for each interaction term

In order to simplify the perturbative calculation, we use the following parametrization of pion field
U given by Refs. [38,39], as we did in our previous paper [32]:

U = exp

[
iπ iτ i y(π2)

2
√

π2

]
(A1)

where y(π2) satisfies

y − sin y = 4

3

(
π2

f 2

) 3
2

. (A2)

The expansion of the chiral field U in terms of the pion field is given in Ref. [38] as

U = 1 + iπ iτ i

f
− π2

2 f 2 − iπ iτ iπ2

10 f 3 − (π2)2

40 f 4 + · · · (A3)

and for the chiral field u

u = 1 + iπ iτ i

2 f
− π2

8 f 2 + iπ iτ iπ2

80 f 3 − 9(π2)2

640 f 4 + · · · . (A4)

In this parametrization, the soft pion theorems, such as Adler’s condition, remain satisfied in simple
perturbation theory. In addition, we show chiral interactions that we use in the following calculation.

With this parametrization, one finds the explicit expression for each interaction term in the chiral
Lagrangian. The chiral interactions for pions are as follows:

L(2)

π4 = − 1

10 f 2 ∂μπ i∂μπ jπkπ l(δi jδkl − 3δikδ jl) − mq B0

20 f 2 π iπ jπkπ lδi jδkl, (A5)

L(2)

π3a
= 1

5 f
ai
μ∂μπ jπkπ l(3δi jδkl − 4δikδ jl). (A6)

The interactions containing the nucleon in the bilinear form read

A(1)
π = gA

2 f
γ μγ5∂μφiτ i (A7)

A(1)
a = −gAγ μγ5ai

μ

τ i

2
(A8)

A(1)
πa = i

2 f
γ μ[φ, aμ] = − 1

2 f
γ μφi a j

μεi jkτ k (A9)

A(2)
πa = − 2c2

f m2
N

∂μφi ai
ν∂

μ∂ν + 2c3

f
∂μφi aμi . (A10)
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Appendix B. Details of self-energy calculations

In this appendix, we show the details of the self-energy calculations shown in Sect. 4. We consider
the isospin symmetric limit and the symmetric nuclear matter. The external momentum is fixed as
q = (q0, 0) for simplicity. We write the nucleon propagator in the Fermi sea as

iGm(p) = −2π(	 p + m N )δ(p2 − m2
N )θ(p0)θ(kF − |p|). (B1)

For the Pauli-blocked nucleon propagator in the symmetric nuclear matter iG(p), we use the
following expression, which is equivalent to Eq. (10):

iG(p) = i
	 p + m N

2E(p)

(
1 − θ(kF − |p|)
p0 − E(p) + iε

+ θ(kF − |p|)
p0 − E(p) − iε

+ 1

p0 + E(p) − iε

)
(B2)

= i
	 p + m N

2E(p)
Gr (p). (B3)

We also define the propagator iGr (p) in which the spinor structure and the nucleon energy are fac-
tored out from iG(p). In the following calculation, the trace symbol Tr implies taking the trace in
both the spinor and isospin spaces, while Trs means the trace for only the spinor space.

1-loop integrals

We first calculate the pion self-energy given by the diagram on the left of Fig. 1(a):

−i�1(q0)δ
i j = −

∫
d4 p

(2π)4 Tr
[
(−i A(1)

π )iG(p + q)(−i A(1)
π )iG(p)

]

= −
∫

d4 p

(2π)4 Tr

[
(−i)

gA

2 f
γ5i 	qτ i i

	 p+ 	q + m N

2E(p + q)
Gr (p + q)

× (−i)
gA

2 f
(−γ5)i 	qτ j i

	 p + m N

2E(p)
Gr (p)

]

= −δi j g2
A

2 f 2

∫
d4 p

(2π)4 Trs

[
	q(	 p+ 	q − m N ) 	q(	 p + m N )

]Gr (p + q)Gr (p)

2E(p)2E(p + q)
. (B4)

The spinor trace can be calculated as

fTr(p0) = Trs [ 	q(	 p+ 	q − m N ) 	q(	 p + m N )] = 4(p · q){(p + q)2 − p2} − 4q2(p2 + m2
N ).

For the calculation of the integral, we perform the p0 integral first using the Cauchy theorem along
a contour of the upper semicircle in the complex p0-plane:∫

dp0

2π
fTr(p0)Gr (p + q)Gr (p)

= 2i

[
fTr(E(p) − q0)

(E(p) − q0)θ(kF − |p|)
q0(q0 − 2E(p))

+ fTr(E(p))
(E(p) + q0)θ(kF − |p|)

q0(q0 + 2E(p))

]

= 8iq2
0 m N θ(kF − |p|).

Here we have picked up only the terms including the step function, because the vacuum part should
be subtracted for the calculation of the in-medium quantities, and in the final expression we have
taken the leading term in the 1/m N expansion.

Finally we obtain

− i�1(q0)δ
i j = −δi j ig2

Aq2
0

f 2m N

∫
d3 p

(2π)3 θ(kF − |p|) = − ig2
Aq2

0

4 f 2m N
δi jρ, (B5)

where we have used ρ = 2k3
F/(3π2).
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Next we consider the self-energy given by the right-hand diagram in Fig. 1(a):

−i�2(q0) = (−1)

∫
d4 p

(2π)4 Tr
[
(−i A(2)

ππ )iGm(p)
]

=
∫

d3 p

(2π)3 (−4i)

(
8B0c1mq

f 2 − 2c2

f 2m2
N

(q · p)2 − 2c3

f 2 q2

)
θ(kF − |p|)

= −2iρ

f 2 (4c1 B0mq − (c2 + c3)q
2
0 ). (B6)

Here we have taken the leading term of the 1/m N expansion.

2-loop integrals

Next we calculate the next-to-leading contributions in the density expansion. Here we denote the
pion propagator as i Dπ(p).

First we consider the left-hand diagram in Fig. 1(b), �3(q0): With symmetric factor 1/2, the
contribution is written as

− i�3(q0) = 1

2

∫
d4k

(2π)4 iL(2)

π4 (i Dπ(k))2(−i�m(k)), (B7)

where �m(k) is defined as

−i�m(k) = −
∫

d4 p

(2π)4 Tr
[
(−i A(1)

π )iGm(p + k)(−i A(1)
π )iGm(p)

]
.

Using the on-shell conditions (p + k)2 = m2
N , p2 = m2

N for the nucleon propagators in the Fermi
sea, the spinor trace is calculated as follows:

Trs

[
	k(	 p+ 	k − m N ) 	k(	 p + m N )

]
= −8m2

N k2.

Hence, we obtain �(q0):

−i�3(q0) = ig2
Am2

π

2 f 4

∫
d3k

(2π)3

d3 p

(2π)3 (i Dπ(k))2k2θ(k f − |p + k|)θ(k f − p)

= ig2
Am2

π

2 f 4

∫
d3k

(2π)3

d3 p

(2π)3

k2

(k2 + m2
π)2

θ(k f − |p + k|)θ(k f − p)

= ig2
Am2

πk4
F

12π4 f 4 F

(
m2

π

4k2
F

)
, (B8)

where we have used the following integral formula:∫
d3k

(2π)3

d3 p

(2π)3

k2

(k2 + m2
π)2

θ

(
kF −

∣∣∣∣p + k

2

∣∣∣∣
)

θ

(
kF −

∣∣∣∣p − k

2

∣∣∣∣
)

= k4
F

6π4 F

(
m2

π

4k2
F

)
,

with function F(a2):

F(a2) =
∫ 1

0
dx

(
x2

x2 + a2

)2
1

2
(1 − x)2(x + 2)

= 3

8
− 3a2

4
− 3a

2
arctan

1

a
+ 3a2

4
(a2 + 2) ln

a2 + 1

a2 .
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We consider the contribution coming from the middle diagram in Fig. 1(b), �4(q0):

− i�4(q0)

= −
∫

d4 p

(2π)4

d4k

(2π)4 Tr
[
(−i A(1)

ππ )iGm

(
k − p

2

)
(−i A(1)

ππ )iGm

(
k + p

2

)
i Dπ(q − p)

]

= −
∫

d4 p

(2π)4

d4k

(2π)4 Tr

[
εikmτm

4 f 2 (2 	q− 	 p)iGm

(
k − p

2

) εk jmτm

4 f 2 (2 	q− 	 p)iGm

(
k + p

2

)]
.

Performing the integration in terms of p0 and k0, we obtain

k0 = 1

2
(E(k + p/2) + E(k − p/2)) (B9)

p0 = E(k + p/2) − E(k − p/2), (B10)

which also provide k · p = 0, k2 + p2/4 = m2
N . With these expressions, the spinor trace is calcu-

lated as

Trs

[
(2 	q− 	 p)

(
	k − 	 p

2
+ m N

)
(2 	q− 	 p)

(
	k + 	 p

2
+ m N

)]
= 32(q · k)2 − 8(q · p)2 + 8q2 p2.

In the leading term of the 1/m N expansion, we have the relation k0 = m N , p0 = 0 and we obtain

−i�4(q0) = −
∫

d3 p

(2π)3

d3k

(2π)3

2q2
0

f 4 θ
(

k f −
∣∣∣k − p

2

∣∣∣) θ
(

k f −
∣∣∣k + p

2

∣∣∣) i

p2 − (q2
0 − m2

π)
.

Using the following integral formula [40]:∫
d3k

(2π)3 θ
(

k f −
∣∣∣k − p

2

∣∣∣) θ
(

k f −
∣∣∣k + p

2

∣∣∣) = k3
F

6π2

(
1 − 3

2
x + 1

2
x3
)

θ(1 − x),

with x = |p|/(2kF ), we get

− i�4(q0) = − iq2
0 k4

F

3π4 f 4 G

(
q2

0 − m2
π

4k2
F

)
, (B11)

where we have used

G(a2) =
∫ 1

0

x2

x2 − a2 (1 − x)2(x + 2)dx = 3

8
+ a2

4
+ a

2
ln

∣∣∣∣1 − a

1 + a

∣∣∣∣+ a2

4
(a2 − 3) ln

∣∣∣∣1 − a2

a2

∣∣∣∣ .
Finally we consider �5(q0), given by the right-hand diagram in Fig. 1(b). This graph corresponds

to the double scattering correction called the Ericson–Ericson term [37] and is calculated as:

−i�5(q0) = −
∫

d4 p

(2π)4

d4k

(2π)4 Tr
[
(−i A(2)

ππ )iGm

(
k − p

2

)
(−i A(2)

ππ )iGm

(
k + p

2

)
i Dπ(p + q)

]

=
∫

d3 p

(2π)3

d3k

(2π)3 Trs

[(
	k − 	 p

2
+ m N

)(
	k + 	 p

2
+ m N

)]
δi j

2m2
N

i Dπ(p + q)

×
(

8c1 B0mq

f 2 − 2c2

f 2m2
N

{
q ·
(

k − p

2

)}{
(p + q) ·

(
k − p

2

)
− 2c3

f 2 q · (p + q)

})

×
(

8c1 B0mq

f 2 − 2c2

f 2m2
N

{
q ·
(

k + p

2

)}{
(p + q) ·

(
k + p

2

)
− 2c3

f 2 q · (p + q)

})

× θ
(

k f −
∣∣∣k − p

2

∣∣∣) θ
(

k f −
∣∣∣k + p

2

∣∣∣) .
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The spinor trace is reduced to

Trs

[(
	k − 	 p

2
+ m N

)(
	k + 	 p

2
+ m N

)]
= 4k2 − p2 + m2

N = 8m2
N − 2p2.

Finally �5(q0) is obtained as

−i�5(q0) = − 4i

f 4

(
8c1 B0mq − 2c2q2

0 − 2c3q2
0

)2
∫

d3 p

(2π)3

d3k

(2π)3

× θ
(

k f −
∣∣∣k − p

2

∣∣∣) θ
(

k f −
∣∣∣k + p

2

∣∣∣) 1

p2 − (q2 − m2
π) − iε

= − 4i

f 4

(
8c1 B0mq − 2c2q2

0 − 2c3q2
0

)2 k4
F

6π4 G

(
q2 − m2

π

4k2
F

)
. (B12)

In the last equality, we have performed the integral in the same way as for �4.

Appendix C. Singularity in the derivative of the double scattering term

The loop integral of the double scattering term reads

Ids(q0) =
∫

d3 p

(2π)3

1

q2
0 − m2

π − p2 + iε

∫
d3k

(2π)3 θ
(

k f −
∣∣∣k − p

2

∣∣∣) θ
(

k f −
∣∣∣k + p

2

∣∣∣)

where q0 is the energy of the external line and we have taken q = 0 for the external momentum.
Performing the following integral:

∫
d3k

(2π)3 θ
(

k f −
∣∣∣k − p

2

∣∣∣) θ
(

k f −
∣∣∣k + p

2

∣∣∣) = k4
F

6π2

(
1 − 3

2
x + 1

2
x3
)

θ(1 − x), (C1)

where x = |p|/(2kF ), we write the loop integral Ids(k0) as

Ids(q0) = − k4
F

6π4

∫ 1

0
dx

(
1 − 3

2
x + 1

2
x3
)

x2

x2 − a − iε
(C2)

where we have defined a ≡ (q2
0 − m2

π)/(4k2
F ). The integral with respect to x can be done straight-

forwardly and we obtain

Ids(q0) = − k4
F

6π4

[
3

8
+ a

4
+

√
a

2
ln

∣∣∣∣1 − √
a

1 + √
a

∣∣∣∣+ a

4
(a − 3) ln

∣∣∣∣1 − a

a

∣∣∣∣
]

. (C3)

This function is finite in the limit of k0 → mπ , i.e. a → 0.
But the derivative of Ids(q0) with respect to q2

0 has a singularity at a → 0. The derivative is
obtained as

∂ Ids(q0)

∂q2
0

= − k2
F

24π4

1

4

[
− 2

1 + √
a

+ 1

2
√

a
ln

∣∣∣∣1 − √
a

1 + √
a

∣∣∣∣+ (2a − 3) ln

∣∣∣∣1 − a

a

∣∣∣∣
]

. (C4)

This function is logarithmically divergent at a → 0. In addition, this loop integral starts from k2
F ln kF

in the expansion of small kF . This behavior contradicts the low-density expansion where the leading
order should be ρ ∼ k3

F . Consequently, the wave function renormalization could have such a strange
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density dependence, and thus this contribution is pathologic. We do not take the exact limit of q0 →
mπ in the evaluation. Nevertheless, we have to deal with the singularity, because the wave function
renormalization would have an inconsistent density dependence with the low-density expansion and
we may make an evaluation of the physical quantities very close to the singular point, where the
results are numerically unreliable.

The origin of the singularity seen in the derivative of the loop function at q0 = mπ can be identified
when one performs the derivative of Eq. (C2) in terms of q0 and takes a = 0:

Ids(mπ) = − k2
F

14π4

∫ 1

0
dx

(
1 − 3

2
x + 1

2
x3
)

x2

(x2 − iε)2 .

The integral becomes divergent when the integrand takes x = 0 at the end point of the integral. This
singularity is very similar to the infrared divergence in quantum field theory. Such infrared divergence
should be canceled with other diagrams emitting soft pions, when one calculates the scattering rates,
not in the amplitude itself. Thus, the singularity found in the derivative of the loop function should be
canceled with other terms, when one calculates the cross sections. Relying on the above argument,
we simply drop the term that includes the infrared singularity in this work.
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