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A calling male of Tago’s brown frog, Rana tagoi (above) and an amplectant pair of Stream brown frog,  

R. sakuraii (below). 
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CHAPTER 1 

 

Introduction 

 

 

As is well known, Mayr et al. (1953) recognized three levels (alpha, beta, and gamma) 

in the study of taxonomy, although they are mutually correlated and are not clear-cut. For 

Japanese amphibians, the alpha-level taxonomic studies started in the middle of 19th century 

(Temminck & Schlegel 1838), and through the later studies by authors like Stejneger (1907), 

Okada (1930), and Nakamura & Ueno (1963), basic species classification was established by 

the 1960s. Then the introduction of modern methodologies like molecular analyses enabled 

studies of relationships among species, i.e., beta taxonomy (Matsui 2000). Studies using 

allozymic techniques started over 30 years ago, and resulted in many findings related to 

taxonomy (e.g., Matsui & Miyazaki 1984; Matsui 1987, 1994; Matsui et al. 1992; Nishioka et 

al. 1987a, 1990). Later, the direct sequencing method was introduced in early 1990s, and 

molecular phylogenetic analysis using DNA sequences revealed inter-specific relationships of 

many Japanese and continental amphibians (Tanaka et al. 1994; Tanaka-Ueno et al. 1998). 

More recently, many studies also focus on the gamma taxonomy, which treats intra-specific 

variations, evolutionary history, and process of speciation (Mayr et al. 1953). Recent gamma 

level taxonomic studies revealed intra-specific diversity of several Japanese amphibians (e.g., 

Matsui et al. 2006a; Igawa et al. 2006; Yoshikawa et al. 2008), and some of them dealt with 

problems of cryptic species diversity (e.g., Nishikawa et al. 2007; Tominaga & Matsui 2008; 

Yoshikawa & Matsui 2013; Kuramoto et al. 2011; Sekiya et al. 2012).  

Rana tagoi Okada 1928, endemic to Japan is very abundant in the montane regions of 

Honshu, Shikoku, and Kyushu. This species is a member of so-called brown frogs (Anura: 

Ranidae: Rana) that are distributed widely in the Holarctic region and have extended its range 

to a part of the Oriental region. Unlike the great majority of brown frogs that breed in the open, 

still waters, R. tagoi lays eggs in lotic environment of subterranean streams. This species is 

currently split into three subspecies, and the nominotypical subspecies (R. t. tagoi) is common 

and widespread throughout Japan excepting Hokkaido. However, intra-subspecific variations 
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of R. t. tagoi have been reported, and some more cryptic taxa are thought to be included in this 

subspecies (e.g., Sugahara 1990; Ryuzaki et al. 2006: see Chapter 2). On the other hand, R. 

sakuraii Matsui & Matsui 1990, a close relative of R. tagoi, occurs in Honshu and often 

sympatric with the latter species. Rana sakuraii breeds in open streams in contrast to 

subterranean breeding R. tagoi. Although R. sakuraii and R. tagoi differ in morphology and 

breeding ecology, genetic relationships of the two species is complicated, and R. sakuraii is 

included in R. tagoi on the mitochondrial genealogy (Tanaka et al. 1996). In spite of many 

previous studies on intra- and inter-specific variations of the two species, no comprehensive 

research has been conducted, and details of their variations, taxonomic relationships, and 

evolutionary history, are still unclear. 

In this study, I conducted molecular phylogenetic and population genetic surveys on R. 

tagoi and R. sakuraii to assess their cryptic diversity and evolutionary history. First, in Chapter 

2, I performed basic molecular phylogenetic analysis using samples of two species from their 

entire distributional ranges, and examined their genetic variations and phylogenetic patterns. 

Next, in Chapter 3, I focused on the two morphotypes of R. tagoi from the Kinki region 

(Sugahara 1990) and investigate their detailed genetic relationships using multiple genes to 

evaluate their taxonomic status. Finally in Chapter 4, I expanded the multilocus analysis to 

entire samples, and discussed the taxonomic relationships and evolutionary history of R. tagoi 

and R. sakuraii.  

Of these chapters, Chapters 2 and 3 have been published in Zoological Science vol. 29 

and 30, respectively. The remaining one, Chapter 4, is now under preparation for submission to 

an international journal. 

 

 

 

Chapter 2:  

Eto K, Matsui M, Sugahara T, Tanaka-Ueno T (2012) Highly complex mitochondrial DNA 

genealogy in an endemic Japanese subterranean breeding brown frog Rana tagoi (Amphibia, 

Anura, Ranidae). Zoological Science, 29, 662–671. 

 



 

 

 

3 

 

Chapter 3: 

Eto K, Matsui M, Sugahara T (2013) Discordance between mitochondrial DNA genealogy and 

nuclear DNA genetic structure in the two morphotypes of Rana tagoi tagoi (Amphibia: 

Anura: Ranidae) in the Kinki region, Japan. Zoological Science, 30, 553–558. 
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CHAPTER 2 

 

Highly Complex Mitochondrial DNA Genealogy in an Endemic Japanese 

Subterranean Breeding Brown Frog Rana tagoi (Amphibia, Anura, Ranidae) 

 

 

2-1 INTRODUCTION 

The genus Rana historically represented a very large group of frogs that occurred 

almost worldwide (Boulenger 1920; Frost 1985; Dubois 1992), but is now restricted to smaller 

number of Holarctic brown frogs (Frost et al. 2006) that are generally similar in adult 

morphology and ecology. Most congeners breed in still (lentic) waters, such as ponds and rice 

paddies (e.g., R. temporaria Linnaeus 1758 from Europe: Nöllert & Nöllert 1992), and only a 

few (e.g., R. graeca Boulenger 1891 from Europe and R. sauteri Boulenger 1909 from Taiwan) 

in flowing (lotic) waters of open streams (Nöllert & Nöllert 1992; Tanaka-Ueno et al. 1998). 

Compared with such species, Japanese R. tagoi (type locality: restricted by Shibata [1988] to 

Kamitakara Village, currently included in Takayama City, Gifu Prefecture) is unique in that it 

breeds in small underground streams (Maeda & Matsui 1999). This subterranean breeding 

habit is highly specialized and is not known in any other congeneric species. 

 Rana tagoi is endemic to the main (Honshu, Shikoku, and Kyushu) and some adjacent, 

smaller (Yakushima, Oki, and Goto) islands of Japan. Eggs laid in subterranean streams are 

few in number and large in size, and once hatched tadpoles can metamorphose without feeding 

(Maeda & Matsui 1999). Such traits appear to be an adaptation to this unique breeding 

environment. Another brown frog, R. sakuraii (type locality: Okutama Town, Tokyo 

Prefecture) occurs only on Honshu Island and breeds in wider open streams in mountain 

regions. Other than the difference in breeding environment, this species is generally similar to 

R. tagoi in morphology and ecology, and is thought to be a close relative of R. tagoi, having 

originated from a R. tagoi-like subterranean breeding ancestor (Maeda & Matsui 1999). 

Steep mountains that provide many streams and rivers occupy the larger part of the 

main islands of Japan. Reflecting this environmental trait, there are various amphibian species 

that are adapted to lotic environments (e.g., Bufo torrenticola Matsui 1976; Buergeria buergeri 
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[Temminck & Schlegel 1838]). Recent extensive surveys have revealed high cryptic diversity 

in some lotic breeding salamanders of the genera Hynobius and Onychodactylus (Nishikawa et 

al. 2007; Yoshikawa et al. 2008). A similar situation is expected in the case of lotic breeding R. 

tagoi, as the species is unique among Japanese frogs in that it contains three distinct subspecies 

(R. t. tagoi from main islands of Japan, R. t. okiensis Daito 1969 from Oki Islands, and R. t. 

yakushimensis Nakatani & Okada 1966 from Yakushima Island). In addition, morphological, 

breeding ecological (Sugahara 1990; Sugahara & Matsui 1992, 1993, 1994, 1995, 1996, 1997), 

and karyological variations reported within R. t. tagoi suggest that it includes cryptic species. 

Genetically, R. tagoi is also diversified as shown by the analyses of allozymes (Nishioka et al. 

1987b) and mitochondrial DNA (mtDNA; Tanaka et al. 1994). In contrast, variations within R. 

sakuraii have been poorly studied. 

These previous studies suggest the presence of phylogenetic and/or taxonomic 

problems in R. tagoi, while such information is lacking for R. sakuraii. To date, few studies 

(e.g., Ryuzaki et al. 2006) have compared a large number of samples from the entire 

distributional range of the two species, leaving the comprehensive patterns of intra- or 

inter-specific variations unresolved. In this chapter, I conducted a phylogenetic analysis using 

two mitochondrial genes, relatively conservative 16S ribosomal RNA (16S) and rapidly 

evolving NADH dehydrogenase subunit 1 (ND1; Mueller 2006), to reveal patterns of genetic 

differentiation and genealogical relationships in terms of mtDNA among samples of R. tagoi 

and R. sakuraii. 

 

 

2-2 MATERIALS AND METHODS 

I collected 183 specimens of R. t. tagoi, including the topotypic population, from 145 

localities covering its entire distributional range in Honshu, Shikoku, and Kyushu. The “large” 

and “small” types of R. t. tagoi from Kinki (Sugahara 1990) were distinguished according to 

the diagnosis of Sugahara & Matsui (1994). I also collected two specimens of R. t. 

yakushimensis from Yakushima Island and three specimens of R. t. okiensis from the Oki 

islands. Furthermore, I collected 19 specimens of R. sakuraii, including the topotype, from 16 

localities in Honshu. Detailed sampling localities are shown in Fig. 2-1 and Table 2-1. 
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As outgroups, I used R. tsushimensis from Tsushima Islands, Japan, and Lithobates 

sylvaticus from Quebec, Canada. The latter species is morphologically and ecologically similar 

to members of the genus Rana, but has been placed recently in another ranid genus, Lithobates 

(Frost et al. 2006). 

Total DNA was extracted from frozen or ethanol-preserved tissues by standard 

phenol-chloroform extraction procedures (Hillis et al. 1996). Fragments containing the entire 

16S and ND1 sequences, approximately 2.9 kb long, were amplified by polymerase chain 

reaction (PCR). The PCR cycle included an initial heating at 94°C for 4 min; 33 cycles of 94°C 

(30 s), 50°C (30 s), and 72°C (2 min 30 s); and a final extension at 72°C for 7 min. The 

amplified PCR products were purified by polyethylene glycol (PEG) precipitation procedures. 

The cycle sequence reactions were carried out with ABI PRISM Big Dye Terminator v3.1 

Cycle sequencing Kit (Applied Biosystems) and sequencing was performed on an ABI 3130 

automated sequencer. I used the primers listed in Table 2-2 to amplify and sequence the 

fragments, and all samples were sequenced in both directions. The obtained sequences were 

deposited in GenBank (Table 2-1). 

Sequences obtained were aligned using Clustal W (Thompson et al. 1994), and gaps 

and ambiguous areas were excluded from alignments using Gblocks 0.91b (Castresana 2000) 

with default settings. I then constructed phylogenetic trees from the combined alignments 

using maximum parsimony (MP), maximum likelihood (ML), and Bayesian inference (BI). 

The MP analysis was performed using PAUP*4.0b10 (Swofford 2002). I used a heuristic 

search with the tree bisection and reconnection (TBR) branch-swapping algorithm and 100 

random additions replicates, and the number of saved trees was restricted to 5,000. Transitions 

and transversions were equally weighted. The ML and BI analyses were respectively 

performed using TREEFINDER ver. Oct. 2008 (Jobb 2008) with Phylogears 1.5.2010.03.24 

(Tanabe 2008) and MrBayes ver. 3.1.2 (Ronquist & Huelsenbeck 2003). Different substitution 

models were applied for each gene partition in both of the analyses. The optimum substitution 

model for each gene was selected by using Kakusan4 (Tanabe 2011), based on the Akaike 

information criterion (AIC). The best model was calculated for each codon position (1st, 2nd, 

and 3rd positions) of the ND1 genes. In the BI analysis, two independent runs of four Markov 

chains were conducted for 7,000,000 generations (sampling frequency: one tree per 100 
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generations). I used TRACER v. 1.4 (Rambaut & Drummond 2009) to determine the burn-in 

size and when the log likelihood of sampled trees reached stationary distribution, and the first 

7,001 trees were discarded (burn-in = 700,000).  

The robustness of the MP and ML trees were tested using non-parametric bootstrap 

analysis (Felsenstein 1985) with 1000 replicates. I regarded tree topologies with bootstrap 

value (BS) 70% or greater as sufficiently supported (Huelsenbeck & Hillis 1993). For the BI, I 

regarded Bayesian posterior probability (BPP) 0.95 or greater as significant support 

(Huelsenbeck & Ronquist 2001; Leaché & Reeder 2002). Uncorrected p-distances for each 

gene were also calculated using PAUP* ver. 4.0b10. 

 

 

2-3 RESULTS 

2-3-1 Sequences and statistics 

I obtained complete 16S (1625 bp long) and ND1 (973 bp) sequences from 207 

individuals and two outgroup taxa. After excluding gaps and ambiguous areas, a combined 

2521 nucleotide sites, of which 624 were variable and 456 were parsimoniously informative 

(Table 2-3), were used for phylogenetic analysis. I detected 190 haplotypes within the ingroup, 

of which 168 were in R. t. tagoi, two in R. t. yakushimensis, three in R. t. okiensis, and 17 in R. 

sakuraii. 

The MP analysis produced 5,000 equally most parsimonious trees (L = 2007, CI = 

0.519, RI = 0.901). For the ML analysis, the best substitution model of 16S estimated by 

Kakusan 4 was J2 model with a Gamma (G) shape parameter. In ND1, 

Hasegawa-Kishino-Yano-1985 (HKY85) model + G, HKY85 + G, and J2 + G were selected 

for the 1st, 2nd, and 3rd codon positions, respectively. For the BI analysis, the general time 

reverse (GTR) model + G was selected for 16S. In ND1, HKY85 + G, HKY85 + G, and GTR + 

G were selected for the 1st, 2nd, and 3rd codon positions, respectively. The likelihood values 

(–lnL) of the ML and BI trees were 14439.77 and 15102.97, respectively.  

 

2-3-2 Phylogenetic relationships 

The ML and BI analyses yielded essentially identical topologies. The MP tree was also 
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similar to these, although support values tended to be lower. The BI tree is shown in Fig. 2-2. 

Rana tagoi and R. sakuraii formed a fully supported monophyletic group, but both were 

paraphyletic with respect to each other. The ingroup was divided into two major clades, Clade 

A (MP-BS = 79%, ML-BS = 83%, BPP = 0.99) and Clade B (98%, 87%, 1.00, respectively), 

with uncorrected p-distances of 2.1% to 3.9% in 16S and 4.9% to 8.5% in ND1 between them. 

Each clade contained several subclades, some of which were further divided into two or three 

groups. Sequence divergences as measured by the mean uncorrected p-distances among these 

subclades and groups are shown in Table 2-4.  

Clade A, which contained a subset of R. t. tagoi, R. t. yakushimensis, and R. sakuraii 

samples, was divided into nine subclades (Subclade A-1 to A-9). Subclade A-1 (94%, 98%, 

1.00) contained R. t. tagoi samples from Tohoku, northern Chubu, and northern Kinki regions. 

This subclade was divided into two groups, Group A-1a (97%, 99%, 1.00) and A-1b (96%, 

99%, 1.00), with sequence divergences of 0.9% to 1.9% in 16S and 3.3% to 4.9% in ND1 

between them. 

Group A-1a contained R. t. tagoi from Tohoku, northern Chubu, and northeastern Kinki 

(localities 1 to 41), including topotypic samples (locality 33) and a part of the R. t. tagoi “large 

type” (Sugahara 1990) (locality 41). Except for samples from localities 11 to 13, which were 

divergent from the others, genetic variation within Group A-1a was small, despite its wide 

range of distribution. Group A-1b contained all samples of the R. t. tagoi “small type” from 

northern Kinki (localities 41 to 52). Within this group, genetic variation among haplotypes was 

significant, and four divergent subgroups were recognized.  

Subclade A-2 (96%, 99%, 1.00) contained R. t. tagoi from Kanto region (localities 18 

and 53 to 64) and was divided into two divergent groups. Interestingly, R. sakuraii from 

eastern Honshu (localities 20, 60, and 149 to 154), including topotypic samples (locality 151), 

was completely embedded in one of these groups. Within Subclade A-2, R. sakuraii was not 

much divergent from R. t. tagoi (0.8% to 1.3% in 16S; 1.3% to 3.0% in ND1). 

Subclade A-3 (99 %, 99%, 1.00) contained R. sakuraii from western Honshu (localities 

35, 44, 114, 123, and 155 to 158), and was divided into three groups. Subclades A-2 and A-3 

tended to form a clade, but their monophyly was not supported (< 50%, 66%, 0.86). 

Subclade A-4 contained only one sample of R. t. tagoi from Nakanojo Town (former 
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Kuni Village), Gunma (locality 65), while Subclade A-5 (78%, 75%, 1.00) contained divergent 

haplotypes of R. t. tagoi from central Chubu (localities 66 to 68). Subclade A-6 (all 100%, or 

1.00) contained R. t. tagoi from southern Chubu (localities 69 to 77) and Shima Peninsula 

(locality 78), where variation among haplotypes was small. This subclade included R. t. tagoi 

with 2n = 28 chromosomes (vs. 2n = 26 chromosomes in R. tagoi samples from other localities 

so far studied) from Neba Village, Nagano (Ryuzaki et al. 2006; locality 76). Subclades A-4 to 

A-6 tended to form a clade, but their monophyly was not unambiguously supported (< 50%, 

68%, 1.00). Subclades A-1 to A-6 also tended to form a clade, but the MP support of this node 

was low (< 50%, 77%, 1.00). 

Subclade A-7 (99%, 99%, 1.00) contained R. t. tagoi from Shikoku (localities 80 to 86) 

and Awaji Island (locality 79), with small genetic variations within the group. Subclade A-8 

(all 100%, or 1.00) contained R. t. yakushimensis from Yakushima Island (locality 146), and 

was close to Subclade A-7, although their monophyly was not supported (< 50%, 63%, 0.54). 

Subclade A-9 (90%, 99%, 1.00) contained R. t. tagoi from Kyushu and tended to form a 

clade with A-7 and A-8 but their monophyly was not supported (< 50%, 66%, 0.98). Subclade 

A-9 was divided into three groups, Groups A-9a (99%, 100%, 1.00), A-9b (93%, 94%, 1.00), 

and A-9c (only one sample) with divergences between them being 1.3% to 1.7% in 16S, and 

2.9% to 3.2% in ND1. Group A-9a contained samples from northwestern Kyushu (localities 87 

to 103), and genetic variation within the group was small. Group A-9b consisted of samples 

from southern Pacific side of the island (localities 104 to 110) and was divided into two 

subgroups. Group A-9c contained one sample from Narujima Island (locality 111). 

Clade B contained R. t. okiensis and a part of R. t. tagoi samples, and was divided into 

two subclades. One of them, Subclade B-1 (all 100% or 1.00) contained R. t. okiensis from Oki 

islands (localities 147 and 148), while another, Subclade B-2 (99%, 95%, 1.00), consisted of R. 

t. tagoi from western Honshu. Two groups, with divergences of 0.8% to 1.6% in 16S and 2.1% 

to 4.0% in ND1, were recognized within this subclade; Group B-2a (99%, 95%, 1.00) and 

Group B-2b (88%, 69%, 1.00). Group B-2a contained samples from Kinki (localities 42 to 48, 

50, and 112 to 135) and was divided into three subgroups. A large portion of the R. t. tagoi 

“large type” (Sugahara, 1990) samples (localities 42 to 48 and 50) was included in this group. 

Group B-2b contained samples from Chugoku (localities 136 to 145) and was divided into two 
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subgroups.  

 

2-3-3 Geographic distribution of genetic groups 

Genetic groups recognized in two major clades of R. tagoi (sensu lato) and R. sakuraii 

(totally 15 subclades/groups) showed a complex pattern of geographic distribution, with 

sympatric or parapatric occurrence in some (Figs. 2-1, 2-3 and Table 2-4). Only R. t. 

yakushimensis (A-8), R. t. okiensis (B-1), R. t. tagoi from Awaji Island and Shikoku (A-7), and 

R. t. tagoi from Kyushu (A-9a, b, and c) were allopatric from the other genetic groups, 

although A-9a and A-9b were parapatric within Kyushu. 

Rana t. tagoi Group A-1a was widely distributed throughout northeastern Honshu to 

the northern part of central Honshu. It was transposed by R. t. tagoi Groups A-1b and B-2a in 

northeastern Kinki, the westernmost area of its distributional range. Group A-1a and A-1b were 

parapatric, with the exception of one sympatric site (locality 41). Group A-1b was distributed 

in northern part of Kinki, and was sympatric with B-2a in almost all ranges of its distribution 

(localities 42 to 48 and 50). 

Group A-1a transposed by R. t. tagoi in Subclade A-2 in northern Kanto. They were 

mostly parapatric, but were sympatric in one site (locality 18). Rana t. tagoi in Subclade A-2 

was replaced by Subclade A-6 (southern Chubu) in western Kanto. Subclades A-4 and A-5 

occurred in northwestern Kanto to central Chubu, between Group A-1a in the Sea of Japan side 

and Subclade A-6 in the Pacific side. Subclade A-4 was sympatric with A-1a, and A-5 also 

seemed to overlap with A-1a. Subclade A-6 widely occurred covering southern Chubu, and 

was replaced by Group B-2a in the Shima Peninsula (locality 78). 

Group B-2a of R. t. tagoi from Kinki, which was sympatric with the R. t. tagoi “small 

type” (A-1b) as shown above, was transposed in the west by B-2b, which widely occurred in 

Chugoku, western Honshu. 

Rana sakuraii was divided into two genetic groups, eastern (A-2) and western (A-3) 

subclades. In western Kanto, R. sakuraii was sympatric with R. t. tagoi and together formed 

Subclade A-2. Also, in the northern part of its distribution, R. sakuraii in Subclade A-2 was 

sympatric with R. t. tagoi A-1a (locality 20) and parapatric with A-4 (localities 160 and 67), 

and furthermore, seemed to overlap with A-5 in central Chubu. Subclade A-2 was transposed 
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by R. sakuraii Subclade A-3 in the most western range of its distribution. Subclade A-3 largely 

overlapped with R. t. tagoi genetic groups in western Honshu (e.g., A-5, A-6, and B-2b), and 

sympatric with A-1a (locality 35), A-1b (locality 44), and B-2a (localities 44 and 114). 

 

 

2-4 DISCUSSION 

2-4-1 Phylogenetic relationships and genetic differentiation 

Using allozymes and proteins, Nishioka et al. (1987b) constructed a phenogram in 

which R. t. yakushimensis (A-8 in this study) was shown to be divergent from R. t. tagoi from 

western Japan. Within the latter, populations from Kinki (B-2a), Chugoku (B-2b), and Shikoku 

(A-7) formed one group, and those from Kyushu (A-9a) and R. t. okiensis (B-1) formed 

another. These results are completely discordant with results obtained by us or by Tanaka et al. 

(1996) from the mitochondrial cyt b gene. Present results showed common features with those 

reported by Tanaka et al. (1994, 1996: i.e., paraphyly of R. tagoi; large differentiation between 

the “large” [B-2a] and “small” [A-1b] types of R. t. tagoi from Kyoto). Although there are 

superficial differences between Tanaka et al. (1994, 1996) and the present study, in the 

relationships of R. t. tagoi, R. t. yakushimensis, and R. t. okiensis, such discrepancies surely 

resulted from insufficient sampling in the Tanaka et al. (1994, 1996) study (e.g., Tanaka et al. 

[1996] used seven samples from five localities of R. t. tagoi, one sample of R. t. yakushimensis, 

three samples of R. t. okiensis, and six samples from three localities of R. sakuraii), and results 

obtained from mtDNA analyses are considered essentially similar. 

Discordance between trees based on nuclear (i.e., allozymes) and mitochondrial 

markers is generally explained by the paralogy of genes, introgressive hybridization, and 

incomplete lineage sorting with ancestral polymorphism (Ballard & Whitlock 2004). However, 

these factors are difficult to differentiate without additional studies, in which nuclear marker 

analyses are made on the samples used in the present mtDNA analysis. In contrast to 

mitochondrial genes, allozymes are of limited value in estimating phylogenies, as historical 

relationships among alleles remain unclear (Avise 2000). Thus, phylogenetic trees based on 

mitochondrial genes should be more valid than the allozymic ones, although the possibility of 

mitochondrial gene introgression, which leads to a strongly biased gene tree, is not precluded.  
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The geographic pattern of genetic differentiations obtained for R. tagoi is quite unique 

among Japanese anurans in that samples from western Honshu (Clade B) first diverge from the 

others (Clade A). In wide-ranging Japanese anurans (e.g., Bufo japonicus: Matsui 1984; Igawa 

et al. 2006; R. japonica: Sumida & Ogata 1998; R. rugosa: Sekiya et al. 2010; Buergeria 

buergeri: Nishizawa et al. 2011), populations from western Honshu and those from Shikoku 

and Kyushu tend to form a clade, unlike in R. tagoi, in which populations from eastern to 

central Honshu, Shikoku, and Kyushu form a clade (Clade A). This unique distribution 

suggests that geographical and environmental factors that separated Clades A and B of R. tagoi 

differ from those that affected the distribution of other Japanese anurans. Present results do not 

contradict Matsui & Matsui’s (1990) hypothesis that the probable common ancestor of R. tagoi 

and R. sakuraii would have a habit of subterranean breeding, which is quite unique among 

Japanese anurans. The availability of subterranean environments, which was not so critical in 

other anurans, may have been a major factor that caused population fragmentation and 

subsequent genetic divergence in the ancestor of R. tagoi and R. sakuraii. 

The current wider distribution of Clade A compared to Clade B indicates the Clade A 

ancestor was dominant throughout Honshu, including Kinki and Chugoku, in the past, whereas 

Clade B now predominates. Later, ancestral Clade B appears to have arisen somewhere in 

western Honshu and expanded its range towards east while affecting Clade A by exclusion 

through competition, and/or causing gene introgression to lose its original haplotypes. Rana 

sakuraii and the “small type” of R. t. tagoi are sympatric with, and specifically distinct from 

Clade B in Kinki and Chugoku. It is possible that these two groups have already sufficiently 

differentiated ecologically to avoid competition or introgressive hybridization with Clade B for 

coexistence in these regions. 

 

2-4-2 Taxonomic relationships 

Of the many genetic groups recognized, Group A-1a should be considered true R. t. 

tagoi as it included the topotypic population from Kamitakara of the current Takayama City 

(locality 33), Gifu (Okada 1928; Shibata 1988). The “small type” of R. t. tagoi, one of the two 

types of R. t. tagoi from Kinki (Sugahara 1990), represented Group A-1b and was sympatric 

with the “large type” (parts of A-1a and B-2a). The “small type” differs from the “large type” 
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in morphological, acoustic, and breeding ecological traits (Sugahara 1990; Sugahara & Matsui 

1992, 1993, 1994, 1995, 1996, 1997). Thus, R. t. tagoi “small type” (A-1b) should be regarded 

as a distinct species. In contrast, R. t. tagoi morphologically identified as the “large type” was 

placed in two genetic groups (A-1a and B-2a), both with samples from the regions other than 

Kinki, and its taxonomic status is still unclear. 

Subclade A-4 from one locality in Chubu has a unique breeding ecology and 

morphology different from sympatric Group A-1a (Misawa, private communication) and 

would be a distinct species. Rana t. tagoi from Neba Village, Nagano, in Subclade A6 could 

also be another distinct species as it has 2n = 28 chromosomes in contrast to 2n = 26 in other R. 

tagoi and R. sakuraii populations (Ryuzaki et al. 2006). In the resultant tree, however, samples 

from Neba Village (locality 76) were very close to and formed Subclade A6 with R. t. tagoi 

from southern Chubu and Shima Peninsula. It is thus necessary to investigate the chromosome 

number of the other populations in A-6 to determine taxonomic status of the Neba Village 

population.  

Details of morphological and ecological variations among other genetic groups of R. t. 

tagoi are generally poorly studied. Most of them are generally too similar to distinguish 

morphologically, but there are some exceptions. For example, representatives of Group A-1a 

and R. t. tagoi in Subclade A-2, at their range of sympatry in northern Kanto, are 

morphologically differentiated although slightly (Eto et al. unpublished data). Thus R. t. tagoi 

seems to include more cryptic taxa than previously suggested. 

Rana t. yakushimensis formed Subclade A-8 by itself, and was split from the other R. 

tagoi subspecies and R. sakuraii. This result suggests its specific, rather than subspecific status, 

although it is morphologically very similar to R. t. tagoi (Maeda & Matsui 1999). Supporting 

this idea, Nishioka et al. (1987b) reported that R. t. yakushimensis was slightly isolated from R. 

t. tagoi from Chugoku (B-2b) by a low degree of hybrid inviability. 

Another subspecies, R. t. okiensis also formed a distinct subclade (B-1) and split from 

other genetic groups. This subspecies is morphologically distinct from the other subspecies of 

R. tagoi and R. sakuraii (Maeda & Matsui 1999), and there is little doubt to treat it as a distinct 

taxon. Conlon et al. (2010) suggested R. t. okiensis and R. t. tagoi to be heterospecific from 

antimicrobial peptide structure, and Nishioka et al. (1987b) and Daito et al. (1998b) reported 
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postmating isolation of the two subspecies. These previous studies and present result strongly 

suggest that R. t. okiensis should be treated as a species distinct from R. t. tagoi. 

The phylogenetic relationships obtained, in which R. tagoi and R. sakuraii are revealed 

to be paraphyletic, are in disagreement with current taxonomy. This result may be partly due to 

imperfect taxonomy (i.e., insufficient detection of cryptic species), in addition to the 

evolutionary processes as mentioned above. Rana sakuraii was divided into two genetic 

groups (Subclades A-2 and A-3). Of these, Subclade A-2 includes topotypic samples and 

should be regarded as true R. sakuraii, in spite of the possibility of past gene introgression 

from R. t. tagoi as discussed above. Although both subclades of R. sakuraii are sympatric with 

some genetic groups of R. t. tagoi in Honshu (Table 2-4), the two species are known to be 

reproductively isolated by differences in the season, site, and behavior of breeding (Maeda & 

Matsui 1999). Moreover, R. sakuraii in A-2 is completely isolated from R. t. tagoi from Kinki 

(“large type” from Kyoto: B-2a) and R. t. okiensis (B-1) by post-mating isolating mechanisms 

(Daito et al. 1998a; Daito 1999). Because no obvious morphological and ecological differences 

have been detected between the two genetic groups of R. sakuraii, it seems safe at present to 

retain it as a single species. 

It is now popular to regard uncorrected p-distances in 16S of 3–5% to be thresholds 

between intra- and inter-specific divergence levels in anurans (Vences et al. 2005; Fouquet et 

al. 2007). However, Hillis & Wilcox (2005) reported interspecific sequence divergences of 16S 

among American ranid frogs to be 1.2–18.7% (uncorrected p-distances calculated from 

GenBank data). Thus, sequence divergence alone is not an absolute indicator to draw 

taxonomic conclusions, though it can be considered useful in detecting candidate species. As to 

ND1, Vredenburg et al. (2007) separated R. sierrae and R. muscosa, with 4.6% sequence 

divergence in ND1 and ND2, as distinct species. 

 In the light of these reports, divergences among genetic groups of R. tagoi and R. 

sakuraii (1.3–3.5% in 16S and 2.9–7.0% in ND1) are generally not very large. Of the cryptic 

lineages discussed above, A-1b (the “small type”) could be regarded as heterospecific with 

B-2a (the “large type”: divergences of 3.2% in 16S and 6.7% in ND1), although its divergence 

from true R. t. tagoi (A-1a) is not large enough to indicate specific separation (1.3% and 4.1%). 

Of other unique groups observed, Subclade A6, including a population with extra number of 
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chromosomes, differed from the other groups by divergences of 1.5–3.3% (16S) and 3.4–6.7% 

(ND1). Likewise, divergences were 1.8–3.3% and 4.1–6.4% between R. t. okiensis and the 

other groups, and 1.5–2.8% and 2.8–6.9% between R. t. yakushimensis and the other groups. 

These values partly exceed proposed thresholds or reported values for specific separation 

(Fouquet et al. 2007; Vredenburg et al. 2007). Other combinations produced even smaller 

divergences (1.4% and 3.9% between Subclade A-4 and Group A-1a; 1.7% and 4.0% between 

Group A-1a and R. t. tagoi in Subclade A-2; and 1.1% and 2.1% between R. sakuraii and R. t. 

tagoi in A-2), in spite of their sympatric occurrences, and posed questions about the 

universality of threshold values in DNA barcoding. 

In frogs, sister species sometimes exhibit very small sequence divergences in spite of 

their distinct morphological and/or ecological differences (e.g., Matsui et al. 2006b), and 

similar situations appear to apply to unique genetic groups recognized in R. tagoi and R. 

sakuraii. Small sequence divergences, like morphological and ecological similarities, suggest 

relatively recent separation among genetic groups of these frogs. 

This study provided a large amount of new information about the complex genetic 

diversity and consequential taxonomic problems with respect to R. tagoi and R. sakuraii. 

However, mtDNA along is not a conclusive indicator of reproductive isolation, due to its 

maternal mode of inheritance. Thus in the following chapters, I also analyzed nuclear DNA 

markers to clarify the reproductive isolation among genetic groups and detailed evolutionary 

history. 
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FIGURE LEGENDS 

 

Fig. 2-1. Map of Japan showing sampling localities of Rana t. tagoi (circles), R. t. 

yakushimensis (double circle), R. t. okiensis (stars), and R. sakuraii (triangles). Squares 

indicate localities with sympatry of R. t. tagoi and R. sakuraii. For names of localities and 

genetic groups, see Table 2-1. 

 

Fig. 2-2. Bayesian tree of total 16S and ND1 mitochondrial genes for three subspecies of R. 

tagoi, R. sakuraii, and outgroup taxa. Nodal values indicate bootstrap supports for MP and ML, 

and Bayesian posterior probability (MP-BS/ML-BS/BPP). Asterisks indicate nodes with 

MP-BS and ML-BS = 70% and BPP = 0.95. For locality numbers, see Table 2-1 and Fig. 2-1. 

 

Fig. 2-3. Distributional range of each genetic group of Rana tagoi (solid line) and R. sakuraii 

(dotted line). For names of genetic groups, see Table 2-1 and Fig. 2-2. 
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16S ND1

Rana tagoi tagoi 

1 Mutsu City, Aomori Pref. A-1a 44827 AB639413 AB639593

2 Goshogawara City, Aomori Pref. A-1a 36949 AB639413 AB639594

3 Towada City, Akita Pref A-1a 13932 AB639413 AB639603

4 Noda Village, Iwate Pref. A-1a 37028 AB639413 AB639595

5 Kamaishi City, Iwate Pref. A-1a 27750 AB639411 AB639596

6 Oshu City, Iwate Pref. A-1a 32889 AB639413 AB639597

7 Ichinoseki City, Iwate Pref. A-1a 35268 AB639412 AB639603

8 Fujisawa Town, Iwate Pref. A-1a 36699 AB639413 AB639598

9 Senboku City, Akita Pref. A-1a 27351 AB639413 AB639603

10 Ishinomaki City, Miyagi Pref. A-1a 41545 AB639414 AB639603

11 Sendai City, Miyagi Pref. A-1a 37121 AB639415 AB639599

12 Sakata City, Yamagata Pref. A-1a 37544 AB639416 AB639600

13 Yamagata City, Yamagata Pref. A-1a 37543 AB639417 AB639601

14 Kaminoyama City, Yamagata Pref. A-1a 29360 AB639420 AB639602

15 Nishikawa Town, Yamagata Pref. A-1a 37548 AB639418 AB639603

16 Nihonmatsu City, Fukushima Pref. A-1a 29595 AB639419 AB639604

17 Shirakawa City, Fukushima Pref. A-1a 21629 AB639420 AB639605

18a Daigo Town, Ibaraki Pref. A-1a 42344 AB639420 AB639605

18b A-2 43886 AB639421 AB639646

19 Nikko City, Tochigi Pref. A-1a 36719 AB639426 AB639609

20a Kanuma City, Tochigi Pref. A-1a 40166 AB639422 AB639609

21 Minakami Town, Gunma Pref. A-1a 27539 AB639429 AB639612

22 Nakanojo Town, Gunma Pref. A-1a 27930 AB639424 AB639606

23 Shibukawa City, Gunma Pref. A-1a 29485 AB639425 AB639607

24 Agano City, Niigata Pref. A-1a 29600 AB639426 AB639608

25 Aga Town, Niigata Pref. A-1a UN AB639426 AB639609

26 Yahiko Village, Niigata Pref. A-1a 27765 AB639427 AB639610

27 Kashiwazaki City, Niigata Pref. A-1a 36892 AB639428 AB639611

28 Uonuma City, Niigata Pref. A-1a 36896 AB639429 AB639612

29 Otari Village, Nagano Pref. A-1a 43367 AB639430 AB639613

30 Ueda City, Nagano Pref. A-1a 18752 AB639431 AB639614

31 Kiso Town, Nagano Pref. A-1a 43382 AB639432 AB639615

32 Hodatsushimizu Town, Ishikawa Pref. A-1a 41053 AB639433 AB639616

33 Takayama City, Gifu Pref. A-1a 27613, 43018 AB639434 AB639617

34 Shirakawa Village, Gifu Pref. A-1a 26104 AB639435 AB639618

35a Ibigawa Town, Gifu Pref. A-1a 27388 AB639436 AB639619

36 Ikeda Town, Fukui Pref. A-1a 40441 AB639438 AB639624

37 Nagahama City, Shiga Pref. A-1a 41470, 41471 AB639439 AB639621

38 Maibara City, Shiga Pref. A-1a 37610, 37614 AB639440 AB639622

39a Taga Town, Shiga Pref. A-1a 41287 AB639440 AB639622

39b 41551 AB639441 AB639623

40 Nagahama City, Shiga Pref. A-1a 40385 AB639442 AB639624

41a Takashima City, Shiga Pref. A-1a TMP_T3395 AB639443 AB639625

41b 40437 AB639444 AB639625

41c TMP_T3402 AB639445 AB639625

41d A-1b TMP_T3392 AB639446 AB639626

42a Takashima City, Shiga Pref. A-1b 25993 AB639447 AB639627

42b B-2a 43609 AB639448 AB639711

42c B-2a 25996 AB639453 AB639711

Table 2-1. Samples used for mtDNA analysis in this study with the information of voucher and collection locality. KUHE:
Graduate School of Human and Environmental Studies, Kyoto University; TMP: Temporary numbered; UN: Unnumbered.

Sample
no

Locality
genetic
group

Voucher (KUHE)
GenBank
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43a Otsu City, Shiga Pref. A-1b 41414, 43428 AB639449 AB639628

43b B-2a 41090 AB639450 AB639629

43c 43148 AB639451 AB639713

44a Nantan City, Kyoto Pref. A-1b 41408 AB639452 AB639630

44b B-2a 41406 AB639453 AB639711

44c 41426 AB639547 AB639713

45a Kyoto City, Kyoto Pref. A-1b 43324 AB639457 AB639635

45b B-2a 41730 AB639458 AB639633

45c 38698 AB639459 AB639634

46a Kyoto City, Kyoto Pref. A-1b 42034, 44828 AB639460 AB639635

46b B-2a 44835 AB639462 AB639711

46c 42396 AB639463 AB639711

46d 41439 AB639461 AB639713

46e 42319 AB639464 AB639712

47a Toyooka City, Hyogo Pref. A-1b 25664 AB639465 AB639636

47b B-2a 25662 AB639564 AB639729

48a Toyooka City, Hyogo Pref. A-1b 42711 AB639466 AB639637

48b B-2a 42714 AB639467 AB639729

49a Sasayama City, Hyogo Pref. A-1b 10285 AB639468 AB639638

49b 10307 AB639469 AB639639

50a Asago City, Hyogo Pref. A-1b 10319 AB639470 AB639642

50b B-2a 36586 AB639471 AB639640

51 Kobe City, Hyogo Pref. A-1b 22647 AB639472 AB639641

52 Wakasa Town, Tottori Pref. A-1b 34743 AB639473 AB639642

53 Nihonmatsu City, Fukushima Pref. A-2 36330 AB639474 AB639643

54 Hirono Town, Fukushima Pref. A-2 44829 AB639475 AB639644

55 Kitaibaraki City, Ibaraki Pref. A-2 27544 AB639476 AB639645

56 Hitachi City, Ibaraki Pref. A-2 27550 AB639477 AB639646

57 Hitachiomiya City, Ibaraki Pref. A-2 43711 AB639478 AB639647

58a Tsukuba City, Ibaraki Pref. A-2 42747 AB639479 AB639648

58b 42751 AB639480 AB639649

59 Mashiko Town, Tochigi Pref. A-2 25968 AB639481 AB639650

60a Akiruno City, Tokyo Pref. A-2 42452 AB639483 AB639651

61 Ichihara City, Chiba Pref. A-2 28409 AB639482 AB639652

62 Otsuki City, Yamanashi Pref. A-2 28064 AB639483 AB639653

63a Izu City, Shizuoka Pref. A-2 36715 AB639484 AB639654

63b 43468 AB639485 AB639655

64 Fuji City, Shizuoka Pref. A-2 43473 AB639486 AB639656

65 Nakanojo Town, Gunma Pref. A-4 22930, 22936 AB639487 AB639657

66 Nagano City, Nagano Pref. A-5 18005 AB639488 AB639658

67 Hokuto City, Yamanashi Pref. A-5 43483 AB639489 AB639659

68a Gujo City, Gifu Pref. A-5 14228 AB639490 AB639660

68b 44832 AB639491 AB639661

69 Hayakawa Town, Yamanashi Pref. A-6 14208 AB639492 AB639662

70 Fujikawaguchiko Town, Yamanashi Pref. A-6 43480 AB639493 AB639663

71a Shizuoka City, Shizuoka Pref. A-6 42977 AB639494 AB639664

71b 24561 AB639495 AB639665

72 Shizuoka City, Shizuoka Pref. A-6 29933 AB639496 AB639666

73 Kawanehon Town, Shizuoka Pref. A-6 42270 AB639497 AB639667

74 Fujieda City, Shizuoka Pref. A-6 17955 AB639498 AB639668

75 Kakegawa City, Shizuoka Pref. A-6 39980 AB639499 AB639669

76 Neba Village, Nagano Pref. A-6 27335 AB639500 AB639670

77 Shitara Town, Aichi Pref. A-6 27251 AB639501 AB639671

Table 2-1. Continued.
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78a Ise City, Mie Pref. A-6 42829 AB639502 AB639672

78b 42830 AB639503 AB639672

79 Minamiawaji City, Hyogo Pref. A-7 43885 AB639504 AB639673

80 Manno Town, Kagawa Pref. A-7 TMP_T2882 AB639505 AB639674

81 Kamiyama Town, Tokushima Pref. A-7 TMP_T2876 AB639506 AB639675

82 Saijo City, Ehime Pref. A-7 27679 AB639507 AB639676

83 Imabari City, Ehime Pref. A-7 27506 AB639508 AB639677

84 Seiyo City, Ehime Pref. A-7 TMP_T2241 AB639509 AB639678

85 Toyo Town, Kochi Pref. A-7 29464 AB639510 AB639679

86 Kochi City, Kochi Pref. A-7 36184 AB639511 AB639680

87 Kitakyushu City, Fukuoka Pref. A-9a 28614 AB639512 AB639681

88 Koga City, Fukuoka Pref. A-9a 26841 AB639513 AB639682

89 Fukuoka City, Fukuoka Pref. A-9a 26238 AB639514 AB639683

90 Yame City, Fukuoka Pref. A-9a 26643 AB639515 AB639684

91 Asakura City, Fukuoka Pref. A-9a 27137 AB639516 AB639685

92 Isahaya City, Nagasaki Pref. A-9a 9660 AB639517 AB639686

93 Sasebo City, Nagasaki Pref. A-9a 27140 AB639518 AB639687

94 Beppu City, Oita Pref. A-9a 43637 AB639519 AB639688

95 Bungo-ohno City, Oita Pref. A-9a 27146 AB639520 AB639694

96 Kokonoe Town, Oita Pref. A-9a 26148 AB639521 AB639689

97 Gokase Town, Miyazaki Pref. A-9a 44834 AB639522 AB639690

98 Ebino City, Miyazaki Pref. A-9a 41284 AB639523 AB639694

99 Yatsushiro City, Kumamoto Pref. A-9a 27562 AB639524 AB639691

100 Amakusa City, Kumamoto Pref. A-9a 30342 AB639525 AB639692

101 Soo City, Kagoshima Pref. A-9a 42191 AB639526 AB639693

102 Izumi City, Kagoshima Pref. A-9a 27564 AB639527 AB639694

103 Kanoya City, Kagoshima Pref. A-9a 27295, 43404 AB639530 AB639697

104 Nobeoka City, Miyazaki Pref. A-9b 27121 AB639528 AB639695

105 Nishimera-son, Miyazaki Pref. A-9b 26088 AB639529 AB639696

106 Aya Town, Miyazaki Pref. A-9b 42194 AB639531 AB639698

107 Miyakonojo City, Miyazaki Pref. A-9b 30907 AB639532 AB639699

108 Kimotsuki Town, Kagoshima Pref. A-9b 43397 AB639533 AB639700

109a Kanoya City, Kagoshima Pref. A-9b 43401 AB639534 AB639701

109b 43403 AB639535 AB639702

110a Kinko Town, Kagoshima Pref. A-9b 27678 AB639536 AB639703

110b 41250 AB639537 AB639704

111 Goto City, Nagasaki Pref. A-9c 31539 AB639538 AB639705

112a Taga Town, Shiga Pref. B-2a 43508 AB639539 AB639706

112b 43509 AB639540 AB639707

113 Konan City, Shiga Pref. B-2a 18763 AB639541 AB639708

114a Koka City, Shiga Pref. B-2a 28466 AB639542 AB639709

115 Kyotango City, Kyoto Pref. B-2a 24566 AB639544 AB639729

116 Maizuru City, Kyoto Pref. B-2a TMP_T3345 AB639545 AB639711

117a Kyoto City, Kyoto Pref. B-2a 27168 AB639546 AB639712

117b 41431 AB639547 AB639714

118 Kameoka City, Kyoto Pref. B-2a 41553 AB639548 AB639713

119 Joyo City, Kyoto Pref. B-2a 41554 AB639549 AB639714

120 Komono Town, Mie Pref. B-2a 26744 AB639550 AB639715

121 Matsuzaka City, Mie Pref. B-2a 41484 AB639551 AB639716

122 Owase City, Mie Pref. B-2a 26990 AB639552 AB639717

123a Odai Town, Mie Pref. B-2a 40190 AB639553 AB639718

124 Izumi City, Osaka Pref. B-2a TMP_T3425 AB639556 AB639721

125 Soni Village, Nara Pref. B-2a 24435 AB639557 AB639722

Table 2-1. Continued.
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126 Sakurai City, Nara Pref. B-2a 18893 AB639558 AB639723

127 Kudoyama Town, Wakayama Pref. B-2a 24546 AB639559 AB639724

128 Hongu Town, Wakayama Pref. B-2a 26784 AB639560 AB639725

129 Shingu City, Wakayama Pref. B-2a 24540 AB639560 AB639726

130 Gobo City, Wakayama Pref. B-2a 41229 AB639561 AB639727

131 Kami Town, Hyogo Pref. B-2a 43603 AB639562 AB639728

132 Taka Town, Hyogo Pref. B-2a 10330 AB639564 AB639729

133 Sayo Town, Hyogo Pref. B-2a 41021 AB639563 AB639729

134 Kamigori Town, Hyogo Pref. B-2a 41022 AB639563 AB639729

135 Mimasaka City, Okayama Pref. B-2a 27659 AB639564 AB639730

136 Misasa Town, Tottori Pref. B-2b 24574 AB639565 AB639731

137 Daisen Town, Tottori Pref. B-2b 36824 AB639566 AB639732

138 Unnan City, Shimane Pref. B-2b 18877 AB639567 AB639734

139a Shobara City, Hiroshima Pref. B-2b 36037 AB639568 AB639733

139b 36040 AB639569 AB639734

140 Shobara City, Hiroshima Pref. B-2b 24553 AB639570 AB639735

141 Hatsukaichi City, Hiroshima Pref. B-2b UN AB639571 AB639736

142 Higashihiroshima City, Hiroshima Pref. B-2b 30262 AB639572 AB639737

143 Higashihiroshima City, Hiroshima Pref. B-2b 30220 AB639573 AB639738

144 Hagi City, Yamaguchi Pref. B-2b 42848 AB639574 AB639739

145 Shimonoseki City, Yamaguchi Pref. B-2b 34516 AB639575 AB639740

R. t. yakushimensis 

146a Yakushima Town, Kagoshima Pref. A-8 10182 AB639578 AB639741

146b 43326 AB639577 AB639741

R. t. okiensis 

147a Okinoshima Town, Shimane Pref. B-1 10818 AB639576 AB639742

147b 22341 AB639579 AB639742

148 Nishinoshima Town, Shimane Pref. B-1 43647 AB639580 AB639742

R. sakuraii 

20b Kanuma City, Tochigi Pref. A-2 43635 AB639423 AB639744

35b Ibigawa Town, Gifu Pref. A-3 36297 AB639437 AB639620

44d Nantan City, Kyoto Pref. A-3 UN AB639454 AB639631

44e 41412 AB639455 AB639632

44f 41413 AB639456 AB639632

60b Akiruno City, Tokyo Pref. A-2 42450 AB639583 AB639744

114b Koka City, Shiga Pref. A-3 TMP_T2666 AB639543 AB639710

123b Odai Town, Mie Pref. A-3 27647 AB639554 AB639719

123c 40309 AB639555 AB639720

149 Naganohara Town, Gunma Pref. A-2 27937 AB639581 AB639744

150 Chichibu City, Saitama Pref. A-2 43736 AB639582 AB639743

151 Okutama Town, Tokyo Pref. A-2 UN AB639583 AB639744

152 Kiyokawa Village, Kanagawa Pref. A-2 14276 AB639584 AB639745

153 Matsumoto City, Nagano Pref. A-2 22887 AB639585 AB639746

154 Fujikawa Town, Yamanashi Pref. A-2 43481 AB639586 AB639747

155 Itoigawa City, Niigata Pref. A-3 31300 AB639587 AB639748

156 Hamamatsu City, Shizuoka Pref. A-3 UN AB639588 AB639749

157 Nakatsugawa City, Gifu Pref. A-3 18201 AB639589 AB639749

158 Iwakuni City, Yamaguchi Pref. A-3 43893 AB639590 AB639750

R. tsushimensis

Tsushima City, Nagasaki Pref. 11606 AB639592 AB639752

Lithobates sylvaticus

Quebec, Canada UN AB639591 AB639751

Table 2-1. Continued.
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Table 2-2. Primers used to amplify mtDNA in this study.
Target Name Sequence Reference
16S L1507 TACACACCGCCCGTCACCCTCTT Shimada et al. (2011)

H1923 AAGTAGCTCGCTTAGTTTCGG Shimada et al. (2011)
L1879 CGTACCTTTTGCATCATGGTC Shimada et al. (2011)
H2315 TTCTTGTTACTAGTTCTAGCAT Shimada et al. (2011)
L2188 AAAGTGGGCCTAAAAGCAGCCA Matsui et al. (2006)
Wilkinson_6 CCCTCGTGATGCCGTTGATAC Wilkinson et al. (2002)
16L1 CTGACCGTGCAAAGGTAGCGTAATCACT Hedges (1994)
16H1 CTCCGGTCTGAACTCAGATCACGTAGG Hedges (1994)

ND1 L3032 CGACCTCGATGTTGGATCAGG Shimada et al. (2011)
ND1_Htago GRGCRTATTTGGAGTTTGARGCTCA this study
ND1_Ltago GACCTAAACCTCAGYATYCTATTTAT this study
tMet_H AGGAAGTACAAAGGGTTTTGATC Shimada et al. (2011)
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bp vs pi ti/tv
16S 1554 310 206 6.65
ND1 967 314 250 9.38
Combined 2521 624 456 8.04

Table 2-3. Alignment statistics for total 16S rRNA and ND1. The number of base pairs (bp), variable sites (vs),
number of parsimony informative sites (pi), the transition-transversion ratio (ti/tv) are given for ingroups only.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1. A-1a - 1.3 1.6 1.9 1.6 1.4 1.5 1.9 1.9 1.7 1.8 2.0 1.7 3.0 3.3 3.0
2. A-1b 4.1 - 1.8 2.1 1.7 1.6 1.6 1.9 2.1 1.6 2.0 2.3 1.8 2.8 3.2 2.9
3. A-2 (R. t. tagoi) 3.9 4.3 - 1.1 1.7 1.3 1.6 1.9 1.9 1.7 1.9 2.2 1.8 2.9 3.1 2.8
4. A-2 (R. sakuraii) 4.2 4.2 2.1 - 1.9 1.4 1.8 2.0 2.1 1.9 2.1 2.4 2.1 3.0 3.1 2.8
5. A-3 4.7 5.0 3.7 3.6 - 1.4 1.5 1.9 2.1 1.8 1.9 2.2 1.8 2.7 3.0 2.6
6. A-4 3.9 4.3 3.0 3.3 4.1 - 1.3 1.7 1.8 1.5 1.7 2.0 1.6 2.7 2.8 2.6
7. A-5 4.4 4.9 3.5 3.8 4.4 3.0 - 1.5 2.1 1.7 2.0 2.3 1.9 2.9 3.1 2.8
8. A-6 5.0 4.7 4.3 4.3 5.4 3.4 4.1 - 2.3 2.0 2.3 2.5 2.1 2.9 3.3 2.8
9. A-7 4.7 5.2 3.8 4.4 5.1 4.1 4.7 5.3 - 1.8 2.0 2.4 1.9 3.0 3.1 2.7
10. A-8 4.0 4.4 3.1 3.4 3.9 2.8 3.6 4.0 3.1 - 1.8 2.1 1.6 2.7 2.82.7
11. A-9a 5.2 5.3 4.2 4.4 5.4 4.4 4.8 5.4 4.4 3.4 - 1.7 1.3 3.2 3.22.9
12. A-9b 4.7 5.1 3.8 4.1 4.8 3.7 4.2 4.9 4.1 2.8 3.0 - 1.4 3.3 3.53.1
13. A-9c 5.0 5.2 4.1 3.9 5.0 4.0 4.7 5.3 4.1 3.3 3.2 2.9 - 2.9 3.12.8
14. B-1 6.1 6.4 5.6 6.0 6.5 5.3 5.9 6.1 5.9 5.4 6.3 6.2 6.4 - 2.0 1.8
15. B-2a 6.9 6.7 5.9 6.3 6.5 5.9 6.3 6.7 6.3 5.8 6.7 6.6 6.6 4.1 -1.3
16. B-2b 7.0 6.9 5.7 6.1 7.0 5.9 6.5 6.6 6.3 6.0 6.4 6.4 6.4 4.4 2.9 -

Table 2-4. Mean uncorrected p-distances (%) among genetic groups of three subspecies of R. tagoi and R. sakuraii for 16S
rRNA (above diagonal) and ND1 (bellow diagonal). Darkly shaded areas indicate distances among groups with sympatric
distribution and lightly shaded areas indicate distances among groups with parapatric distribution.
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Figure 2-1
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Figure 2-2
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Figure 2-3
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CHAPTER 3 

 

Discordance between Mitochondrial DNA Genealogy and Nuclear DNA Genetic 

Structure in the Two Morphotypes of Rana tagoi tagoi in the Kinki Region, Japan 

 

 

3-1 INTRODUCTION  

In Chapter 2, I showed that R. tagoi and its close relative R. sakuraii are highly divergent 

genetically with complex evolutionary histories, and at least R. tagoi is thought to include 

many cryptic taxa. Within the resultant mitochondrial genealogy, one of the two morphotypes 

of R. t. tagoi from the Kinki region (Sugahara 1990), “large type”, is split into two major 

clades (A and B). Moreover, one of the two “large” lineages (Group A-1a) is more closely 

related to the “small type” lineage (Group A-1b) in Clade A, while the other (Group B-2a) is 

nested in Clade B.  

Mitochondrial (mt) DNA used in Chapter 2 is very widely employed in phylogenetic 

studies, given its high variability and many traits suitable for experiments and analyses (Avise 

2000). However, the results of some recent studies have revealed that phylogenies derived 

from mtDNA do not always agree with those obtained from other sources like morphology 

(e.g., Liu et al. 2010; Hamidy et al. 2011), as is the case in two morphotypes of R. t. tagoi 

described above. Thus, it is desirable to confirm the validity of phylogenetic relationships from 

mtDNA using other genetic markers. 

In this Chapter, I conducted phylogenetic and population genetic analyses using nuclear 

(n) DNA sequences in order to assess detailed genetic and taxonomic relationships of the two 

morphotypes with three mt-lineages of R. t. tagoi in the Kinki region. By doing this, I tried to 

infer the states of reproductive isolations among each of the mitochondrial lineages in 

question. 

 

 

3-2 MATERIALS AND METHODS 

For samples from the Kinki region, I distinguished the “large” and “small” types based 
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on body size and other diagnostic characters as described by Sugahara & Matsui (1994). In fact, 

some samples with mtDNA and morphological traits of the “large type” showed body sizes 

intermediate between the two types, but these were treated as the “large type”. 

I first ascertained the mtDNA phylogeny obtained in Chapter 2 using 186 samples of R. t. 

tagoi from 41 localities in the Kinki region and nine samples from the type locality in the 

Chubu region (Fig. 3-1 and Table. 3-1). The data include 23 mtDNA sequences from GenBank 

(accession numbers AB639617, AB639621-AB639630, AB639633–AB639635, AB639706–

AB639709, and AB639711–AB639715). I used R. sauteri and R. tsushimensis (AB685767 and 

AB639752) as outgroup taxa. 

Based on the results of mtDNA analysis, I selected 126 samples from six locality groups 

of the Kinki region (see result) and nine topotypic samples, and conducted genetic analyses 

using nDNA sequences. These localities were chosen to represent sites where (1) a single 

mitochondrial genetic group occurs, (2) two or three groups occur sympatrically, and/or (3) 

each mitochondrial group occurs parapatrically, exhibiting boundary areas. When samples 

belonging to different mitochondrial groups co-occurred in a locality, I treated them as 

different units in the analyses. 

Following the experimental conditions and techniques described in Chapter 2, I first 

analyzed approximately 600 bp of ND1 (NADH dehydrogenase subunit 1) fragments of 

mtDNA. Then phylogenetic trees based on maximum likelihood (ML) and Bayesian inference 

(BI) were constructed by using TREEFINDER ver. Mar. 2011 (Jobb 2011) and MrBayes ver. 

3.2.0 (Ronquist & Huelsenbeck 2003), respectively. Methods for construction of trees also 

follow the previous chapter. I then amplified partial sequences of three nuclear genes (NCX1 

[sodium-calcium exchanger 1], POMC [pro-opiomelanocortin], and RAG1 [recombination 

activating gene 1]) by PCR using primer sets listed in Table 3-2. The experimental conditions 

and techniques were essentially same as those in mtDNA analysis. I used PHASE ver. 2.1 

(Stephens et al. 2001) to separate and determine haplotypes of heterozygotic individuals. I 

considered haplotypes supported by BPP 0.95 or greater as significant; others were treated as 

missing data. 

To estimate relationships between nDNA haplotypes, statistical parsimony networks for 

each gene were constructed by using TCS version 1.21 (Clement et al. 2000). I also performed 
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population genetic analyses based on nDNA haplotypes. For each population, genetic 

variability was assessed by calculating the mean observed (Ho) and expected (He) 

heterozygosities, and all genes were checked with chi-square goodness-of-fit tests to determine 

whether or not they were deviated from Hardy-Weinberg (HW) equilibrium. All these analyses 

were conducted by using GENALEX 6.41 (Peakall & Smouse 2006). To estimate population 

genetic structure, I used STRUCTURE ver. 2.3.3 (Pritchard et al. 2000) with admixture model. 

The most likely number of clusters (K) was estimated according to the delta K value (Evanno 

et al. 2005). 

  

 

3-3 RESULTS 

3-3-1 Phylogenetic relationships based on mtDNA sequences 

I obtained 564 bp of the mitochondrial ND1 gene for all samples, and after combining 

identical sequences, total 51 sequences were used in the subsequent analysis. Within the 

ingroup sequences, 83 variable sites (vs) and 55 parsimony-informative sites (pi) were included. 

Newly obtained sequences were deposited in GenBank (AB779781–AB779812). The best 

substitution models estimated by Kakusan 4 (Tanabe 2011) for ML and BI were J1 model 

(Jobb 2011) with a gamma shape parameter (G) and Hasegawa-Kishino-Yano-1985 (HKY85) 

+ G, respectively. 

Phylogenetic analyses based on ML and BI yielded essentially identical topologies (-InL 

= 2029.55 and 2290.28, respectively), and only BI tree is shown in Fig. 3-2. Just same as 

Chapter 2, the ingroup was divided into three clades corresponding to Groups A-1a (ML-BS = 

97% and BPP = 1.00, respectively), A-1b (96% and 1.00), and B-1a (91% and 1.00). Groups 

A-1a and A-1b formed a clade (99% and 1.00) with closer genetic similarity in between (mean 

p-distance = 3.7%) than to B-2a (p-distance between A-1a = 6.7% and between A-1b = 6.5%).  

Geographically, Groups A-1a and B-2a of the “large type” occurred parapatrically, with 

the former distributed in northeastern part and the latter in southwestern part of the sampling 

area. In contrast, distribution of the “small type” Group A-1b samples largely overlapped with 

them in the western side of Lake Biwa (Fig. 3-1). 
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3-3-2 Genetic variations in nuclear genes 

Samples selected for nDNA analyses were 126 from six locality groups, consisting of 

localities (Locs.) 7, 13-16, 27, 31, 35, and 38–40 (Fig. 3-1), and nine topotypic ones from Loc. 

1. Among them, a single mitochondrial genetic group was recognized in Locs. 1 (A-1a), 7 

(A-1a), 31 (B-2a), and 35 (B-2a), and two groups occurred sympatrically in Loc. 27 (A-1b and 

B-2a). The boundary areas of multiple groups were located in 13-16 (A-1a and B-2a, with 

sympatric samples of A-1b) and 38-40 (A-1a and B-2a). For subsequent analyses, I 

differentiated these mitochondrial lineages in a given locality group (Table 3-3).  

After a haplotype reconstruction using PHASE ver. 2.1, a total of 13 haplotypes (“a” to 

“m” in Fig. 3-3A) were obtained in NCX1 (535bp; vs = 14, pi = 8), 23 haplotypes (“a” to “w” 

in Fig. 3-3B) in POMC (552bp; vs = 24, pi = 12), and 13 haplotypes (“a” to “m” in Fig. 3-3C) 

in RAG1 (454bp; vs = 14, pi = 11). Each haplotype was deposited in GenBank (AB779768–

AB779780, AB779813–AB779848). In some samples (two in NCX1, one in POMC, and 11 in 

RAG1), I could not reconstruct their haplotypes with significant support (< 0.95). Thus these 

samples were omitted in the haplotype network analyses, although I used them in the structure 

analysis by applying missing data value. 

Haplotype networks and frequencies of each gene are shown in Fig. 3-3 and Table 3-3, 

respectively. Two haplotype groups were recognized in the network of NCX1 (Fig. 3-3A): one 

of them mainly consisted of the haplotypes specific to samples belonging to Group A-1a and 

B-2a (e.g., haplotypes “a” and “b”), and another one mainly consisted of haplotypes specific to 

Group A-1b (e.g., “l” and “m”). The haplotype network of POMC (Fig. 3-3B) also included 

several haplotype groups, which exhibited following tendencies: haplotypes specific to or 

frequently observed in Group A-1b samples (e.g., haplotypes “v” and “w”) tended to form a 

group; haplotypes frequently observed in A-1a and B-2a samples from Locs. 7, 13-16, 27, and 

31 (e.g., “a” and “c”) tended to form a group; topotypic samples from Loc. 1 possessed some 

unique haplotypes (“q” and “r”), although they largely shared haplotypes (“a” and “c”) with 

A-1a and B-2a samples from the other localities. The haplotype network of RAG1 (Fig. 3-3C) 

included three distinct haplotype groups that did not clearly match the groupings by either 

mitochondrial genealogy or geographic distribution, but weakly showed the following 

tendencies: haplotypes frequently observed in samples of Group B-2a from Locs. 27 and 31, 



 

 

 

31 

 

and A-1b (e.g., haplotypes “b” and “m”) tended to form a group, which also included several 

haplotypes from other mitochondrial groups or localities; haplotypes specific to samples of 

A-1a and B-2a from Locs. 35 and 38-40 (“g” and “h”) formed a group. 

Statistics on the genetic variability of mitochondrial groups from each locality are shown 

in Table 3-3. No significant deviation from HW expectations was observed in each 

gene/locality. The structure analysis was performed for up to K = 10, and resultant barplots for 

K = 2 to 4 are shown in Fig. 3-4. The likelihood values reached a plateau after K = 2, and the 

estimated delta K value was highest at K = 2 (data not shown). At K = 2, two clusters, one 

including mitochondrial Groups A-1a and B-2a and another corresponding to Group A-1b were 

recognized. At K = 3, the cluster of A-1a + B-2a at K =2 was further divided into two clusters, 

but the division did not support the separation of two mitochondrial groups. Based on the test 

of delta K and clustering patterns of each bar plot, the most plausible number of clusters was 

considered to be two, by which the “large type” (mitochondrial Groups A-1a and B-2a) and the 

“small type” (mitochondrial Group A-1b) were split.  

 

3-4 DISCUSSION 

3-4-1 Discordance of estimated relationships among genetic markers 

As shown in Chapter 2, the results of phylogenetic analyses based on mtDNA did not 

support morphological delimitation of R. t. tagoi from the Kinki region. Obtained genealogy 

showed that the R. t. tagoi “large type” was not monophyletic, and was split into two highly 

differentiated lineages. In contrast, the results of nDNA analyses did not support such a 

mitochondrial relationship, but were congruent with morphological delimitation. 

Discordance of results between mt- and n-DNA analyses could be explained by 

mitochondrial incomplete lineage sorting (ILS) or gene introgression derived from past 

hybridization among ancestral lineages (Avise 2000; Ballard & Whitlock 2004). Because 

lineage sorting normally progresses rapidly in mtDNA, ILS of mtDNA is rare compared to that 

of nDNA (Ballard & Whitlock, 2004). However, lineages of R. tagoi are thought to have 

diverged recently from their relatively small genetic divergences (see the previous and the next 

chapters), and therefore the possibility of mtDNA ILS, even at the species level, is not 

completely rejected (e.g., as a product of budding speciation: Funk & Omland 2003). In this 
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scenario, the ancestor of the R. t. tagoi “small type” (A-1b) originated as an internal lineage of 

the “large type” (A-1a and B-2a). The ancestral populations of A-1b subsequently underwent 

morphological and ecological differentiation toward the smaller body size, while ancestral 

A-1a and B-2a populations retained their larger body size.  

On the other hand, past mitochondrial introgression among ancestors of each lineage can 

also explain the discordance of mtDNA and nDNA properties. Based on this hypothesis, 

hybridization between the ancestral populations of A-1b (or other Clade A lineages) and B-2a 

had occurred in past, resulting in mtDNA introgression from the former to the latter. After the 

introgression event, mtDNA in the ancestral populations of B-2a, A-1b, and the introgressed 

populations of B-2a (ancestral A-1a) independently experienced mutations and resulted in the 

formation of present relationships.  

Mitochondrial ILS and past gene introgression are often difficult to distinguish (Funk & 

Omland 2003; Ballard & Whitlock 2004). In the case of present study, if ILS caused the 

discordance, the small type (A-1b) should be genetically close to one of the “large type” 

lineages (A-1a) not only in mtDNA, but also in nDNA. However, present results actually did 

not support close relationship of A-1a and A-1b in nDNA, thus not favoring ILS. Nonetheless, 

however, the ILS scenario may be supported by male-biased gene flow. In such a case, the 

original nuclear haplotypes and genetic structure of A-1a would have been similar to those of 

A-1b, but were completely overwritten via male-biased gene flow with B-2a. However, nDNA 

is fundamentally less likely to be introgressive than mtDNA, and no behavioral data for 

male-biased dispersal in this species are available at present. Compared with the ILS 

hypothesis, the past mtDNA introgression hypothesis is less problematic and is considered 

more plausible. 

In addition to discordance of mt- and n-DNA, each nuclear gene also showed more or 

less discordant patterns on their haplotype networks. Among three nuclear genes, only NCX1 

showed obvious relationships between the haplotype network and the morphotype. This result 

suggests that the ILS of the remaining two genes (POMC and RAG1) may have caused 

discordance among nuclear genes. These results seem to indicate that phylogenetic analyses 

using direct sequences of nuclear genes may not be efficient in the study of R. tagoi, and that 

population genetic analyses based on frequency data of nuclear genotypes could be more 
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effective (Avise 2000). 

 

3-4-2 Taxonomic status of two morphotypes of Rana t. tagoi 

Sympatric occurrence of two types of Rana t. tagoi was first reported from Kyoto 

Prefecture in the Kinki region by Sugahara (1990). Later, Sugahara & Matsui (1992, 1993, 

1994, 1995, 1996, and 1997) performed morphological, acoustic, and ecological comparisons, 

and suggested that these two types were not conspecific, being reproductively isolated from 

each other. Subsequent genetic survey using mtDNA (Tanaka et al. 1994) clarified remarkably 

large genetic divergences between the large (corresponding to B-2a in this paper) and the small 

(A-1b) types from Kyoto. Furthermore, as shown in Chapter 2, the “large type” was further 

divided into two genetic lineages (A-1a and B-2a), and one of them (A-1a) was 

phylogenetically close to the “small type” (A-1b). Present result of mtDNA analysis supported 

those in the previous chapter. 

In contrast, analyses based on nDNA suggested a closer relationship of A-1a to B-2a 

than to A-1b. Present structure analysis indicated unlimited gene flow between A-1a and B-2a, 

and the existence of genetic isolation of A-1b from sympatric A-1a or B-2a was also suggested. 

These results are congruent with previous results of morphological and ecological studies 

(Sugahara & Matsui 1992, 1993, 1994, 1995, 1996, 1997), which indicated that the R. t. tagoi 

“large type” (A-1a and B-2a) and the “small type” (A-1b) from the Kinki region are 

specifically distinct. 

In the nDNA analyses, the “large type” was genetically also close to topotypes of R. t. 

tagoi that have body size intermediate between the “large” and “small” types. These facts 

suggest that the “large type” is in fact conspecific with the topotypes, and should be treated as 

true R. t. tagoi, while the “small type” is a distinct but unnamed species. The reason for the 

presence of size variation within true R. t. tagoi (the “large” and the “medium” types) is 

unknown, but may be the result of character displacement derived from co-occurrence of the 

“large” and “small” lineages and their interspecific interference (Sugahara & Matsui 1996), 

unlike singly occurring “medium type”.  
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FIGURE LEGENDS 

 

Fig. 3-1. Map of the Kinki region, Japan, showing sampling localities of Rana t. tagoi. Open, 

closed, and shaded circles indicate localities with mitochondrial genetic groups B-2a, A-1b, 

and A-2a, respectively, and the star shows the type locality in the Chubu region. Ranges 

encircled by dashed lines indicate localities used in nDNA analyses. Figures indicate localities 

shown in Table 3-1. 

 

Fig. 3-2. Bayesian tree of mitochondrial ND1 gene for Rana t. tagoi and outgroup taxa. Nodal 

values indicate bootstrap supports for ML (above) and Bayesian posterior probability (below). 

For locality information, see Table 3-1 and Fig. 3-1. 

 

Fig. 3-3. Statistical parsimony networks of (A) NCX1, (B) POMC, and (C) RAG1 haplotypes 

of Rana. t. tagoi from northeastern Kinki region and type locality. Filled circles indicate 

missing haplotypes. The size of each open circle is proportional to the haplotype frequency. 

 

Fig. 3-4. Assigned genetic clusters of 135 individuals of R. t. tagoi from six locality groups in 

the Kinki and the type locality by structure analysis (k = 2-4). For locality numbers, see Fig. 

3-1 and Table 3-1. 
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No. Locality
MtDNA

group
n

Rana t. tagoi
1 Takayama City, Gifu Pref. A-1a 9
2 Ibigawa Town, Gifu Pref. A-1a 1
3 Nagahama City, Shiga Pref. A-1a 1
4 Maibara City, Shiga Pref. A-1a 2
5 Nagahama City, Shiga Pref. A-1a 2
6 Nagahama City, Shiga Pref. A-1a 2
7 Nagahama City, Shiga Pref. A-1a 11
8 Nagahama City, Shiga Pref. A-1a 1
9 Mihama Town, Fukui Pref. A-1a 1
10 Mihama Town, Fukui Pref. A-1a 1
11 Mihama Town, Fukui Pref. A-1a 1
12 Mihama Town, Fukui Pref. A-1a 1

A-1b 1
13 Takashima City, Shiga Pref. A-1a 5

A-1b 9
14 Takashima City, Shiga Pref. A-1b 1
15 Takashima City, Shiga Pref. A-1a 15

A-1b 2
B-2a 7

16 Takashima City, Shiga Pref. A-1b 2
B-2a 3

17 Takashima City, Shiga Pref. A-1b 1
B-2a 1

18 Takashima City, Shiga Pref. B-2a 7
19 Takashima City, Shiga Pref. A-1b 2

B-2a 2
20 Takashima City, Shiga Pref. B-2a 2
21 Otsu City, Shiga Pref. A-1b 4

B-2a 6
22 Otsu City, Shiga Pref. B-2a 2
23 Oi Town, Fukui Pref. A-1b 1
24 Nantan City, Kyoto Pref. A-1b 2

B-2a 6
25 Kyoto City, Kyoto Pref. A-1b 1

B-2a 1
26 Kyoto City, Kyoto Pref. A-1b 1

B-2a 3
27 Kyoto City, Kyoto Pref. A-1b 16

B-2a 14
28 Otsu City, Shiga Pref. B-2a 3
29 Kyoto City, Kyoto Pref. B-2a 2
30 Kyoto City, Kyoto Pref. B-2a 1
31 Kyoto City, Kyoto Pref. B-2a 12
32 Kyoto City, Kyoto Pref. B-2a 1
33 Otsu City, Shiga Pref. B-2a 1
34 Konan City, Shiga Pref. B-2a 1
35 Koka City, Shiga Pref. B-2a 9
36 Higashiomi City, Shiga Pref. B-2a 1
37 Komono Town, Mie Pref. B-2a 1
38 Taga Town, Shiga Pref. B-2a 5
39 Taga Town, Shiga Pref. A-1a 1
40 Taga Town, Shiga Pref. A-1a 5
41 Maibara City, Shiga Pref. A-1a 2

Rana tsushimensis
Tsushima City, Nagasaki Pref., Japan 1

Rana sauteri

Alishan, Chiayi Country, Taiwan 1

Table 3-1. Numbers and names of sampling localities, assigned mitochondrial genetic groups, and sample sizes of Rana t. tagoi examined.
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Target Name Sequence Reference
NCX1 NCX1F ACAACAGTRAGRATATGGAA Shimada et al. (2011)

NCX1R1 GCCATATCTCTCCTCGCTTCTTC This study 
POMC POMC1 GAATGTATYAAAGMMTGCAAGATGGWCCT Wiens et al. (2005)

POMC7 TGGCATTTTTGAAAAGAGTCAT Smith et al. (2005)
RAG1 Rag-1 Meristo1 CAGTTCCTGAGAAAGCAGTACG Shimada et al. (2008)

Rag-1 Meristo2 GGCTTTGCTGAAACTCCTTTC Shimada et al. (2008)

Table 3-2. Primers used to amplify nuclear genes in this study.
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Loc. 1 7 31 35
MtDNA A-1a A-1a A-1a A-1b B-2a A-1b B-2a B-2a B-2a A-1a B-2a

n 9 11 20 14 10 16 14 12 9 6 5
NCX1 a0.722 a0.455 a0.342 h0.036 a0.300 b0.031 a0.731 a1.000 a1.000 a0.583 a0.900

c0.111 b0.091 b0.526 j0.036 b0.650 h0.031 b0.269 g0.250 h0.100
f0.056 c0.227 c0.079 k0.250 c0.050 i0.031 h0.167
m0.111 f0.091 d0.026 l0.071 l0.281

h0.136 e0.026 m0.607 m0.625
Ho 0.556 0.727 0.632 0.429 0.300 0.467 0.538 - - 0.667 0.200
He 0.451 0.707 0.598 0.561 0.485 0.524 0.393 - - 0.569 0.180

POMC a0.056 a0.250 a0.700 a0.071 a0.591 c0.063 a0.821 a0.375 a0.300 a0.083 a0.100
c0.611 c0.250 b0.075 t0.071 b0.227 s0.094 c0.179 c0.208 j0.350 j0.333 j0.400
q0.278 f0.150 c0.100 u0.071 c0.091 y0.156 o0.083 m0.200 l0.333 k0.200
r0.065 g0.100 d0.075 v0.214 e0.045 v0.438 p0.333 o0.100 m0.167 l0.100

h0.100 e0.050 w0.571 v0.045 w0.250 v0.050 n0.083 m0.200
i0.050
j0.050
v0.050

Ho 0.667 0.900 0.500 0.571 0.700 0.867 0.214 0.750 0.667 0.833 0.600
He 0.543 0.825 0.486 0.612 0.570 0.700 0.293 0.698 0.716 0.736 0.740

RAG1 a0.214 a0.250 a0.575 a0.167 a0.650 a0.344 a0.179 a0.045 b0.118 a0.250 b0.125
b0.429 b0.250 b0.150 b0.208 b0.100 b0.063 b0.643 b0.409 c0.294 g0.500 c0.125
f0.286 d0.063 c0.050 j0.042 c0.050 j0.063 m0.179 c0.182 d0.176 h0.167 g0.375
m0.071 f0.250 d0.100 l0.125 f0.100 k0.031 i0.045 g0.176 m0.083 h0.375

j0.063 e0.025 m0.458 i0.050 l0.156 m0.318 h0.118
m0.125 j0.050 m0.050 m0.344 m0.118

m0.050
Ho 0.571 0.750 0.684 0.500 0.600 0.800 0.500 0.727 0.875 0.833 0.500
He 0.684 0.789 0.597 0.701 0.550 0.720 0.523 0.694 0.820 0.653 0.688

13-16 27 38-40

Table 3-3. Haplotype frequencies and genetic variabilities at three nuclear genes (NCX1, POMC, and RAG1) among
localities and mitochondrial genetic groups of Rana t. tagoi. For locality numbers, refer to Fig. 1 and Table 1.
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CHAPTER 4 

 

Cytonuclear Discordance and Historical Demography of Two Brown Frogs Rana 

tagoi and R. sakuraii 

 

 

4-1 INTRODUCTION 

Rana tagoi is known to breed in subterranean environment, which is quite unique 

reproductive ecology among brown frog species (Matsui & Matsui 1990; Maeda & Matsui 

1999). This distinctive trait may be the product of adaptation to the highly mountainous 

environment of the Japanese archipelago. On the other hand, R. sakuraii breeds in the stream 

and the adult frogs have several characters suitable for highly lotic environment (e.g., 

possession of fully developed toe webs, which are more poorly developed in R. tagoi), 

although its eggs and larvae largely share traits with those of R. tagoi. These facts suggest that 

R. sakuraii speciated from a R. tagoi-like ancestor in adaptation to stream environment (Maeda 

& Matsui 1999). This hypothesis is supported by molecular phylogenetic analyses, in which R. 

sakuraii is totally embedded in R. tagoi lineages (Tanaka et al. 1996; Chapter 2). However, a 

part of R. sakuraii forms a clade with samples of R. tagoi, and neither of the two species are 

monophyletic in mitochondrial genealogy (Chapter 2). Because these previous studies 

analyzed only mtDNA, what process (e.g., introgression or incomplete lineage sorting [ILS] at 

the species level) caused this mutually paraphyletic pattern is undetermined. In this chapter, I 

analyzed sequence data of two mitochondrial and five nuclear loci to estimate phylogenetic 

relationships, divergence times, and demographic patterns of these two species, and discuss 

their speciation and evolutionary history.   

 

 

4-2 MATERIALS AND METHODS 

4-2-1 Sampling strategy 

For each species, I chose samples belonging to representative localities/mt-lineages 

based on previous studies (Chapters 2 and 3). I analyzed 107 samples of R. tagoi (containing 
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each three samples of its subspecies R. t. yakushimensis Nakatani & Okada 1968 and R. t. 

okiensis Daito 1972 from peripheral islands) and 21 of R. sakuraii from 81 localities of Japan, 

(Fig. 4-1, Table 4-1). In the phylogenetic analysis using mtDNA, I also added GenBank data of 

R. kobai (AB685768), R. sauteri (AB685767), R. tsushimensis (AB639592, AB639752), and R. 

ulma (AB685780) as outgroup taxa based on known phylogenetic relationships (Tanaka-Ueno 

et al.1996,1998). 

 

4-2-2 Sequencing of DNA 

Total DNA was extracted from frozen or ethanol preserved tissues by standard 

phenol-chloroform extraction procedures. I then amplified fragments containing target region 

(two mitochondrial genes: 16S ribosomal RNA [16S] and NADH dehydrogenase subunit 1 

[ND1]; five nuclear genes: sodium-calcium exchanger 1 [NCX1=SLC8A1], nuclear factor I/A 

[NFIA], pro-opiomelanocortin [POMC], sodium-calcium exchanger 3 [SLC8A3], and 

tyrosinase [TYR]) by polymerase chain reaction (PCR). The experimental conditions and 

techniques of PCR were essentially same as those reported in Chapter 2. The amplified PCR 

products were purified by polyethylene glycol (PEG) precipitation procedures. The cycle 

sequence reactions were carried out with ABI PRISM Big Dye Terminator v3.1 Cycle 

sequencing Kit (Applied Biosystems) and sequencing was performed on an ABI 3130 

automated sequencer. I used the primers listed in Table 4-2 for PCR and sequencing, and all 

samples/loci were sequenced in both directions.  

 

4-2-3 Alignment of DNA, haplotype determination, and data characteristics 

Sequence alignment was conducted using MUSCLE (Edgar 2004). For heterogenic 

nuclear genes, I used PHASE ver. 2.1 (Stephens et al. 2001) to determine haplotypes. In this 

analysis, the threshold of probability was set to small values (0.5–0.6) following Garrick et al. 

(2010). Before analyzing the historical demography, I also used IMgc (Woerner et al. 2007) to 

detect the largest non-recombining block of nDNA for IM analysis, because IMa2 assumes no 

intra-locus recombination (Hey & Nielsen 2004). As data parameters, I calculated the summary 

statistics of variable sites (vs), number of haplotypes (h), haplotype diversity (Hd), and 

nucleotide diversity (π). I also checked neutralities of five nuclear loci with Tajima’s D (Tajima 
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1989). Because none of them showed significant deviation from zero (Table 4-3), these loci 

were considered to be neutral markers. I conducted all these analyses by DnaSP (Rozas et al. 

2003). 

 

4-2-4 Population assignment based on mtDNA 

Phylogenetic analysis was conducted using two mitochondrial genes. I first selected 

the best substitution model for each gene using Kakusan4 (Tanabe 2011) based on Akaike 

information criterion (AIC). Then phylogenetic trees based on maximum likelihood method 

(ML) and Bayesian inference (BI) were constructed using TREEFINDER ver. Mar. 2011 (Jobb 

2011) and MrBayes ver. 3.2.1 (Ronquist & Huelsenbeck 2003), respectively. For ML tree, I 

conducted non-parametric bootstrap analysis with 1000 replicates, and branches with bootstrap 

value (BS) 70% or greater were regarded as significantly supported. In BI analysis, two 

independent runs of four Markov chains were conducted for 10 million generations (sampling 

frequency: one tree per 100 generations), then the first three million generations were 

discarded as burn-in. Convergence of parameters was checked using Tracer ver. 1.5 (Rambaut 

& Drummond 2009). I considered Bayesian posterior probability (BPP) 0.95 or greater as 

significant support. According to results of both analyses, I defined mitochondrial clades and 

lineages, which were treated as population units based on mtDNA in descendant analyses. 

 

4-2-5 Population assignment based on nDNA 

Rana tagoi and R. sakuraii are genetically so close as to cause difficulties in 

constructing phylogenetic trees using nDNA sequences (Chapters 2 and 3). Therefore, I 

alternatively conducted clustering analysis using STRUCTURE ver. 2.3.3 (Pritchard et al. 

2000) to define population units based on nDNA. I applied admixture and allele frequency 

independent model to haplotype data of nuclear loci, and calculated a half million generations 

following 100,000 generations of burn-in. The number of cluster (K) was set from 1 to 10, and 

10 independent iterations were conducted for each K. The most likely number of K was 

determined by likelihood distribution of each iterations and delta K value (Evanno et al. 2005). 

I also constructed haplotype networks of each gene based on median joining method using 

Network ver. 4.6 (Bandelt et al. 1999) to examine the relationships among nuclear haplotypes. 
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4-2-6 Divergence dating based on mtDNA 

To estimate the divergence time between mt-lineages, I conducted Bayesian analysis 

using BEAST ver. 1.7.5 (Drummond et al. 2012). For each calibration, a total of 10 million 

generations of run (within which the first three millions were discarded as burn-in) were 

conducted under non-autocorrelated log-normal relaxed clock model. Tracer ver. 1.5 (Rambaut 

& Drummond 2009) was used to check parameter distributions and effective sample size 

(ESSs). I applied three different calibrations as follows:  

Calibration I: I set a calibration point on the divergence of R. kobai from Amami Island 

and R. ulma from Okinawa Island (node O-1 in Fig. 4-2). The divergence time estimated for 

the separation of Amami and Okinawa populations of Cynops ensicauda, 5.18 ± 0.17 MYA 

(Tominaga et al. 2013), was applied to this node. Although much younger divergence time was 

also proposed between populations/species of the two islands (e.g., 1.70 [2.40–1.10] MYA for 

Odorrana amamiensis and O. narina; 2.30 [3.20–1.50] MYA for O. splendida and O. 

ishikawae: Matsui et al. 2005), sequence divergence between R. kobai and R. ulma (4.7–5.3% 

in 16S: Matsui 2011) is much larger than those of Odorrana species (e.g., 1.4–2.2% for O. 

splendida and O. ishikawae: Kuramoto et al. 2011), and older estimates of Cynops will be 

more plausible in this case. 

Calibration II: The molecular evolutionary rate of 1.38% (0.69% per lineage) per MY 

was applied. This value was estimated for ND1 and ND2 regions of Bufo (Macey et al. 1998), 

and only ND1 data were used in this calculation. 

Calibration III: Using only 16S data, I applied the evolutionary rate of 0.66% (0.33% 

per lineage) per MY estimated for 16S of Leiopelma (Fouquet et al. 2009). 

  

4-2-7 Estimation of historical demography 

The historical demography, especially patterns of gene flow and divergence times 

among species or genetic groups, was examined by coalescent analysis with Bayesian IM 

model. I analyzed nDNA data using the program IMa2 (Hey 2010), and estimated effective 

population sizes (Ne, calculated from population size parameter θ), migration rate parameters 

(m, calculated from migration rate M), population migration rates (2NeM, calculated from θ 
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and m), and population divergence times (T, calculated from splitting time parameter t). As the 

mutation rate of nuclear genes, I applied 0.047% per MY per lineage for NCX1 (reported in the 

genus Hydromantes: Rovito 2010), 0.072 (0.061–0.083) % for POMC (Hyperolius: Lawson 

2010), and 0.047 (0.027–0.067) % for SLC8A3 (amphibians in general: Roelants et al. 2007). 

The geometric mean of these values, approximately 2.71 × 10-7 mutations per year per locus, 

was used as the mutation rate (µ) to scale each demographic parameter. Based on several test 

runs, upper bounds for parameters were set at θ = 10–20, t = 3–5, and m = 10–25, and five 

million steps (sampling frequency: one tree per 50 steps) of calculations were performed for 30 

heated chains after two millions of burn-in. I conducted three independent runs, and finally 

combined the results using L-mode option of IMa2. Because a majority of R. tagoi and R. 

sakuraii start to breed at the age of three years old (Kusano et al. 1995a; b), I applied this value 

as the generation time of the two species. Trendline plots and ESSs were monitored to ensure 

good mixing and convergence of parameters.  

Significances of m and 2NeM were determined by the log-likelihood ratio (LLR) test of 

Nielsen & Wakeley (2001). I also used the parameter comparison option (with -p6 command) 

of IMa2 and output the list of probability, which indicates one parameter to be greater than the 

other. The relative strength of genetic isolation was evaluated by 2NeM values (strong [2NeM ≤ 

1], moderate [1 < 2NeM ≤ 5], and weak [5 < 2NeM ≤ 25]: Wright 1931; Waples & Gaggiotti 

2006; Reilly et al. 2012). 

 

4-3 RESULTS 

4-3-1 Sequence characteristics 

I obtained complete sequences of mitochondrial 16S (1612bp) and ND1 (967bp) for all 

samples. Parsimoniously informative sites within the ingroup were 489bp in total (244 for 16S 

and 245 for ND1). The other statistics are listed in Table 4-3. 

 In the sequences of five nuclear loci for all 128 samples, only POMC had 

insertion-deletion sites, and these sites were omitted in the following analyses. In the haplotype 

determination using PHASE, all haplotypes in all samples/loci were successfully determined 

except for one sample for POMC and two for TYR, which were treated as null allele in 

descendant analyses. The sequence length and statistics of each locus are listed in Table 4-3. 
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Overall, each locus generally showed large parameter values, indicating great genetic diversity 

in R. tagoi and R. sakuraii. Among five nuclear loci, TYR was most variable (Hd = 0.955 and π 

= 0.017 for overall samples) and NFIA was least variable (0.735 and 0.003, respectively).  

 

4-3-2 Population assignment: Mitochondrial DNA results 

The best substitution model selected in ML analysis was general time reverse (GTR: 

Tavaré 1986) model with a gamma shape parameter (G) of 0.158 and a proposition of 

invariable sites (I) of 0.144 for 16S and J1 (Jobb 2011) model + G (0.543) + I (0.312) for ND1. 

In BI, GTR + G (0.082) + I (0.226) and GTR + G (0.892) + I (0.226) for 16S and ND1, 

respectively. Constructed ML (-lnL = 15500.618) and BI (15863.190) trees were essentially 

identical in topology, and only ML tree is shown in Fig. 4-2. I followed Chapter 2 for names of 

each genetic group. 

 The phylogenetic relationships obtained were fundamentally same as those already 

reported (Chapter 2). The ingroup was divided into two large clades (A and B), and both of 

them included several lineages (A-1ab to A-9abc and B-1 to B-2ab); Clade B (ML-BS = 82% 

and BPP = 1.00) contained only R. tagoi samples, while Clade A (ML-BS = 93% and BPP = 

1.00) included both the R. tagoi and R. sakuraii samples. Monophyly of each clade/lineage was 

also well supported (ML-BS≧70%, BPP≧0.95). Statistical supports for nodes were generally 

better than in the previous study, and more detailed phylogenetic relationships were clarified. 

Especially the relationships among lineages in Clade A became clear. In Clade A, lineages 

from Honshu Island (A-1ab to A-6) formed a subclade (A’ in Fig. 4-2. ML-BS = 73% and BPP 

= 0.98) against Shikoku and Kyushu subclade (A”. ML-BS = 79% and BPP = 0.95). Within 

Subclade A’, further three lineage groups were recognized: the group consisted of Lineages 

A-1a and A-1b (ML-BS = 82% and BPP = 1.00); Lineages A-2 and A-3 (ML-BS = 70% and 

BPP = 0.98); Lineages A-4, A-5, and A-6 (ML-BS = 79% and BPP = 1.00). Samples identified 

as R. sakuraii were included in Lineages A-2 and A-3. Lineages A-2 also contained R. tagoi 

samples (i.e., neither of two species were monophyletic), although haplotypes were not shared 

between the two species. 

  

4-3-3 Population assignment: Nuclear DNA results 
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Results of clustering analysis using STRUCTURE are shown in Fig. 4-3. For overall 

samples, K = 2 was supported by the test of delta K, and two clusters (I and II) were 

recognized. Almost all samples were clearly assigned to each cluster (posterior probabilities > 

80%), indicating the presence of strong genetic isolation between two nDNA clusters. 

Although the division of two nuclear clusters (I and II) did not completely correspond to that 

of two mitochondrial clades (A and B), Cluster II was largely concordant with mitochondrial 

Subclade A’ except for Lineage A-1a (Fig. 4-3). Clusters I and II also tended to be separated on 

haplotype networks of some nuclear genes (e.g., NCX1, NFIA, and SLC8A3; Fig. 4-4). 

However, in relatively more variable genes like TYR, the relationships of haplotypes were 

highly complicated and separation of the clusters was not clear (Fig. 4-4). 

Because the two large clusters obtained seemed to contain several subclusters, I 

independently reanalyzed samples for the two clusters. In this analysis I excluded some 

samples that could not be clearly assigned in the overall analysis as mentioned above (posterior 

probabilities < 80%). Within Cluster I, the population assignment with K = 2 was supported 

(Fig. 4-3). In this clustering, division of subclusters was still roughly correlated with 

mt-lineages: lineages from main islands (A-1a, A-7, A-9a, and B-2ab) tended to form a 

subcluster, and lineages from peripheral islands (A-8, A-9c, and B-1) formed another. One 

lineage, A-9b, included samples assigned to both of these subclusters. Except for Lineage A-9b, 

samples of the two subclusters were clearly assigned to either subcluster. On the other hand, K 

= 3 was supported for Cluster II by delta K test and likelihood distribution. In this division, 

each of R. tagoi Lineages A-1b and A-4, R. tagoi A-2, and R. sakuraii (A-3 and a part of A-2) 

formed a unique subcluster (Fig. 4-3). Separation of these subclusters was complete (posterior 

probabilities > 80%), with few exceptional samples in the R. sakuraii subcluster. In contrast, a 

large portion of samples of lineages A-5 and A-6 was not clearly assigned to particular 

subclusters, and showed intermediate genetic structures between R. tagoi of A-2 and R. 

sakuraii. In the larger K value like K = 4, Lineages A-1b and A-4 were separated. 

 

4-3-4 Divergence times of mitochondrial lineages 

Results of divergence dating for major nodes in the mitochondrial genealogy are listed 

in Table 4-4. Divergence times obtained for ingroup were similar in the three calibrations, 
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although estimated ages tended to be younger in Calibration I and older in III. Two major 

mt-clades (A and B: node 1 in Fig. 4-2) were estimated to have diverged at 4.2–3.0 (95% 

highest posterior density interval [HPD] of 6.2–2.3) MYA. Then Subclades A’ and A” (node 2) 

were split at 2.8–2.0 (4.1–1.1) MYA, followed by the separation within Clade B (node 22) at 

2.7–1.9 (4.3–0.9) MYA. Two lineages including R. sakuraii samples, A-2 and A-3, were 

separated from each other at 2.1–1.6 (3.1–0.8) MYA (node 7), followed by internal divergence 

during 1.4–0.8 (2.2–0.4) MYA (nodes 8 and 9). The most recently divergent lineages were 

B-2a and B-2b (node 23), which were split at 1.4–1.0 (2.2–0.5) MYA. These estimates indicate 

that the divergence of each mitochondrial clade/lineage has begun around the middle to the late 

Pliocene and nearly completed at the middle Pleistocene.  

 

4-3-5 Historical demography 

As shown above, results of population assignment were not completely concordant 

between mt- and n-DNA (Figs. 4-2 and 4-3). In estimating demographic parameters, I used 

only nDNA data because nuclear marker is thought to be more conservative than mitochondrial 

one, which is more likely to be affected by introgressions than the nuclear marker (Ballard & 

Whitlock 2004). 

First, I conducted a coalescent analysis using IMa2 for the two large nuclear clusters I 

and II. Each parameter showed single peaks in their probability density distributions (Fig. 4-5). 

Parameter values obtained are listed in Table 4-5. Estimated migration parameter (m) and 

population migration rate (2NeM) for I to II (I > II) were 0.16 (95%HPD of 0.07–0.35) and 

0.52 (0.24–1.12), respectively. In the opposite direction, II > I, values of these parameters 

tended to be larger, with m II > I being 0.30 (0.17–0.53) and 2NeM II > I being 1.23 (0.70–2.14). 

The LLR test showed all these values to be significantly larger than zero (p < 0.01), suggesting 

clusters I and II to have kept a certain degree of gene flow after their divergence. However, 

strong to moderate genetic isolation would exist between the two clusters, because 2NeM 

values obtained were relatively small (around 1 or smaller: Wright 1931; Waples & Gaggiotti 

2006; Reilly et al. 2012). In the migration parameter for each direction, m II > I was shown to be 

larger than m I > II (posterior probability > 0.95). Effective population size estimated for I, II, 

and their ancestor was 2.2 (1.7–2.9), 1.7 (1.3–2.3), and 0.4 (0.2–0.8) million individuals, 
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respectively. The ancestral population size was smaller than the present ones, as supported by 

parameter comparison of θ (posterior probabilities were 1.00 for each comparison). The 

population size of II tended to be smaller than that of I, but the tendency was not supported 

statistically (BPP < 0.95). The population divergence time (T) of I and II was estimated as 2.7 

(4.4–2.2) MYA. Although its 95%HPD was relatively wide, this estimate was younger than the 

divergence time of two major mt-clades (A/B: ca. 4.2–3.0 MYA) but nearly equal to those of 

A’/A’’ (ca. 2.8–2.0 MYA) and B-1/B-2 (ca. 2.7–1.9 MYA) (Table 4-4).  

I then estimated demographic parameters between R. tagoi and R. sakuraii. As R. tagoi, 

I chose mt-lineages of A-2, 5, and 6, that were genetically close to R. sakuraii in the 

mitochondrial and nuclear DNA analyses as shown above (see Figs. 4-2 and 4-3). Because 

present data set would be not sufficiently informative to analyze four populations model, I 

combined Lineages A-5 and A-6 as a single group; they are phylogenetically close (Fig. 4-2) 

and united in nDNA analysis (Fig. 4-3). I applied two different schemes to the topology of 

population tree for the three groups (R. sakuraii/R. tagoi of A-2/R. tagoi of A-5 and 6). In 

Scheme 1, R. sakuraii (Rs) and R. tagoi (Rt) Lineage A-2 are assumed to be mutually close 

against A-5 and 6, based on the mtDNA genealogy, and in Scheme 2, R. tagoi A-2 and A-5+6 

form a group based on the current taxonomy.  

Resultant estimates of m, Ne, and 2NeM for the three groups were fundamentally similar 

in the two schemes (Fig. 4-6 and Table 4-5). Significant gene flow (p < 0.01 in LLR test) was 

detected in A-5+6 to R. tagoi A-2 (m A-5+6 > A-2Rt  was 3.61 [0.79–10.26] in Scheme 1 and 4.81 

[3.04–7.52] in Scheme 2) and in A-5+6 to R. sakuraii in Scheme 2 (m A-5+6 > Rs of 1.17 [0.45–

2.90]). Of these values, m A-5+6 > A-2Rt was larger than all the others in both schemes (BPP > 0.95). 

Some other combinations also showed relatively large migration estimates (e.g., m A-5+6 > Rs of 

0.91 [0.14–4.31] in Scheme 1), but were not supported statistically (p > 0.05). Similar 

tendency was also recognized in 2NeM parameters, and only 2NeM A-5+6 > A-2Rt (6.68 [3.56–

21.31] in Scheme 1 and 5.31 [3.68–9.58] in Scheme 2) and 2NeM A-5+6 > Rs (0.95 [0.36–1.93] 

only in Scheme 2) were supported statistically (p < 0.05). These 2NeM values indicated the 

genetic isolation between R. tagoi A-2 and A-5+6 to be weak (5 < 2NeM), but gene flow was 

strongly biased to one direction (from A-5+6 to A-2). The degree of isolation between R. 

sakuraii and R. tagoi A-5+6 was strong to moderate in Scheme 2, in agreement with no 
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significant gene flow in Scheme 1. In other combinations, gene flows between species/lineages 

were limited, indicating their strong genetic isolation. Estimated effective population sizes 

(million individuals) were nearly same between R. tagoi A-2 (0.80 [0.34–2.06] in Scheme 1 

and 0.86 [0.35–2.07] in Scheme 2) and A-5+6 (0.79 [0.38–1.76] and 0.86 [0.41–1.96]), but 

were smaller in R. sakuraii (0.15 [0.07–0.31] and 0.16 [0.05–0.32]).  

In contrast to these parameters, estimated m and 2NeM between ancestral populations 

were more or less different between the two schemes. In Scheme 2, large gene flow  (p < 

0.05) was detected between ancestral populations of R. sakuraii and R. tagoi A-2+5+6 in both 

directions (m Rs > A-2+5+6  and 2NeM Rs > A-2+5+6 were 18.05 [6.50–24.64] and 10.86 [8.34–64.80], 

respectively, and, m A-2+5+6 > Rs  and 2NeM A-2+5+6 > Rs were 13.90 [1.76–24.75] and 5.71 [0.82–

8.05], respectively), whereas no obvious peaks of probability for these parameters were 

recognized  in Scheme 1 (Fig. 4-6 and Table 4-5). Genetic isolation between ancestral 

populations was evaluated as weak in Scheme 2 (2NeM > 5) and strong in Scheme 1 (2NeM ≤ 

1). The effective population size estimated for R. sakuraii + R. tagoi A-2 (0.26 [0.03–1.19]: 

Scheme 1) was similar to that of R. tagoi A-2+5+6 (0.30 [0.05–3.60]: Scheme 2). The 

estimated size for the ancestor of all three groups was larger in Scheme 1 (0.43 [0.23–0.77]) 

than in Scheme 2 (0.26 [0.04–1.77]). Estimated Ne for the ancestor all tended to be smaller 

than present Ne for R. tagoi (A-2, A-5+6) and larger than that for R. sakuraii, but the tendencies 

were not supported statistically (BPP < 0.95). Population divergence time estimated was 

younger for R. sakuraii/R. tagoi A-2 (0.88 [3.90–0.42] MYA: Scheme 1) than for R. tagoi 

A-2/A-5+6 (1.12 [1.67–0.77] MYA: Scheme 2). In Scheme 1, much older (1.80 [4.52–0.96] 

MYA) estimate for split of ancestral R. sakuraii, R. tagoi A-2 and R. tagoi A-5+6 was obtained, 

but no reliable estimate was obtained in Scheme 2. 

 

4-4 DISCUSSION 

4-4-1 Discordance between classification and pattern of genetic variation based on 

different markers 

In this study, the phylogenetic pattern similar to that reported in previous studies using 

mtDNA (e.g., Chapter 2) was obtained. Rana sakuraii was embedded in R. tagoi, and both of 

them were not monophyletic in the mitochondrial genealogy. Rana sakuraii formed a unique 
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lineage (Lineage A-3) within one of the two major clades (Clade A) containing the two species, 

although it also formed another lineage with R. tagoi (A-2). To explain such a phylogenetic 

pattern, I inferred past mitochondrial introgression between the two species in Chapter 2, but in 

the previous chapter I analyzed only mtDNA and could not discuss the issue further. These two 

lineages, A-2 and A-3, showed sister relationships in the present analysis (Fig. 4-2). Thus, the 

following three different scenaios can be proposed to explain this phylogenetic pattern: (1) 

recent speciation of R. sakuraii from R. tagoi, which led ILS of mtDNA at the species level; 

(2) past mitochondrial introgression from R. tagoi to R. sakuraii; and (3) the opposite direction 

of introgression (Fig. 4-7). If the recent separation between R. sakuraii and R. tagoi was the 

case, ILS hypothesis would be supported. But if the speciation was shown to be old (especially 

much older than the divergence time within Lineage A-2), this hypothesis will be rejected. In 

contrast, past introgression hypothesis would be supported when the significant historical gene 

flow was detected between the two species, although this is not exclusive evidence for ILS.  

The obtained genetic relationship based on structure analysis using nDNA discorded 

with mitochondrial genealogy, and samples of R. sakuraii and R. tagoi (Lineage A-2) tended to 

be separated in different subclusters (Fig. 4-3). This result should reflect their heterospecific 

status. The demographic analysis based on coalescent theory showed that the historical gene 

flow between R. sakuraii and R. tagoi A-2 was limited, with the time of their separation (ca. 

0.9 MYA in Scheme 1: Table 4-5) younger than the separation of A-2 and A-3 (ca. 2.1–1.6 

MYA: Table 4-4), and similar to or still younger than the divergence within these lineages (ca. 

1.4–0.8 MYA). These results seem to be concordant with ILS hypothesis.  

Compared to results obtained in IM analysis of Scheme 1, estimated divergence time 

was relatively old or unreliable in Scheme 2 (Table 4-5), in which R. tagoi A-2 was presumed 

to be closer to other R. tagoi lineages (A-5, 6) than to R. sakuraii. In contrast, significant 

historical gene flow between ancestral populations was not detected in Scheme 1, but large 

mutual migration was estimated in Scheme 2 (2NeM > 5 in both directions: Table 4-5). These 

results suggest that the assumption about ancestral population in Scheme 2 is incorrect, and 

Scheme 1, which assumes sister relationship of R. tagoi A-2 and R. sakuraii, would be more 

plausible. Therefore, the mutually paraphyletic relationships of two species on mitochondrial 

genealogy are thought to be caused by ILS resulted from recent speciation of R. sakuraii from 



 

 

 

53 

 

R. tagoi.  

The estimated time of split of the two species (ca. 0.9 MYA) is younger than those of 

other Japanese frog lineages (e.g., ca. 2.3 MYA in O. ishikawae/O. splendida and ca. 1.7 MYA 

in O. amamiensis/O. narina: Matsui et al. 2005; around 4.0 MYA in B. torrenticola/B. j. 

japonicus: Igawa et al. 2006), and seems to have occurred after the rough formation of the 

Japanese archipelago (see next section). Although ILS of mtDNA at the species level is 

relatively rare because of its small effective number of gene copy, it occasionally happens in 

some situations such as rapid, sympatric speciation (Funk & Omland 2003). It could be 

applicable in the case of R. sakuraii and R. tagoi, because they show sympatric distribution in 

wide range keeping isolation in breeding habitats. Rana sakuraii has several traits adaptive to 

stream breeding in contrast to subterranean breeding R. tagoi, although they share many other 

characters (Matsui & Matsui 1990). This indicates that the speciation of R. sakuraii was 

triggered by adaptation to a new breeding habitat, which is a process which often promotes 

rapid speciation (Coyne & Orr 2004).  

         

4-4-2 Evolutionary history of two species 

Rana tagoi and R. sakuraii are endemic to the Japanese archipelago and no close relatives have 

been known from the continent, although R. sauteri, another lotic breeding brown frog from 

Taiwan,is thought to be their sister lineage (Tanaka-Ueno et al. 1998). Present result did not 

conflict with this idea, although their divergence was estimated to be old (22.0–11.6 [36.0–5.7] 

MYA: Table 4-4), around the middle Miocene. Because continental allies of R. sauteri are also 

unknown, invasion route of the ancestor of R. tagoi and R. sakuraii to the Japanese mainlands 

is uncertain. Two species do not occur in Hokkaido and central to southern Ryukyus, and 

genetic diversity in R. tagoi is lower in northern Honshu than in central to western part of 

Japan. Thus the ancestral population is suspected to have invaded from southern area including 

the present Taiwan and the Ryukyu regions, which was a vast land and not yet separated from 

the continent in the middle Miocene (Chinzei & Machida 2001), or have entered from the 

Korean peninsula to northern Kyushu via the Tsushima land bridge, which often connected the 

Eurasian continent and Japanese archipelago since ca. 11 MYA (Iijima & Tada 1990). In each 

hypothesis, ancestral brown frogs possibly distributed in the continent or the Ryukyus would 
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have already extinguished, leaving the relict species in Japan and Taiwan.  

In any case, ancestral population is thought to have been split into two major Clades, A 

and B, in the middle to late Pliocene (ca. 4.2–3.0 MYA). The ancient Japanese archipelago was 

already roughly formed by the late Miocene (Chinzei & Machida 2001), and the separation of 

clades is thought to have occurred on the archipelago. The ancestor at this period would have 

been a R. tagoi–like subterranean breeder because all the present species/lineages have a 

common larval trait (e.g., no need to feed until metamorphosis) that is thought to have derived 

in such an environment. The ancestral effective population size (ca. 0.4 million individuals for 

the ancestor of nuclear clusters I and II: Table 4-5) estimated in IM analysis is much smaller 

than the present one (ca. 3.9 million individuals for sum of I and II: Table 4-5), indicating 

relatively small original population size.  

Then in the late Pliocene to the early Pleistocene (ca. 2.0–2.8 MYA), the separation of 

Subclades A’ and A” occurred, and nearly simultaneously, Clusters I and II split (ca. 2.7 MYA). 

The division of nu-Clusters I and II largely corresponded to division of mt-Subclade A’ and the 

others, although there was one exceptional lineage (A-1a). Lineage A-1a was an internal 

lineage of Subclade A’, while it was included in Cluster I (Figs. 4-2 and 4-3). This lineage, 

however, is thought to be generated by introgression of mtDNA from A-1b (included in Cluster 

II) to B-2a (Cluster I) (Chapter 3). Present results of IM analysis (Table 4-5) supported the 

existence of historical gene flow between Clusters I and II (especially from II to I), which is 

congruent with this hypothesis. Thus the n-Cluster II is thought to have originated together 

with mt-Subclade A’, then the mitochondrial introgression from II to I would have occurred 

around 1.8–1.4 MYA (the divergence time of A-1a and A-1b). Divergences of A’, A”, and B 

have started around 2.7–1.8 MYA, before the split of present mt-lineages by the middle 

Pleistocene (around 1.4–1.0 MYA). In this period, populations on peripheral islands were 

isolated geographically, and some survived and evolved to be present subspecies, i.e., R. t. 

yakushimensis of Lineage A-8 and R. t. okiensis of B-1.  

The date of speciation of R. sakuraii was estimated to be younger than the formation of 

major mt-lineages, and the event would have occurred around 0.9 MYA based on IM analysis 

(Table 4-5), probably in association with the adaptation to a new breeding environment as 

discussed above. The effective population size of R. sakuraii (ca. 0.2 million individuals) is 
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smaller than in the closest mt-lineage of R. tagoi (ca. 0.8 for Lineage A-2), and suggests that 

small-sized ancestral population adapted for stream breeding led to R. sakuraii. Although the 

place of the origin of R. sakuraii is unknown, it could have been somewhere in central Honshu, 

where the distributional boundary of two R. sakuraii mt-lineages (A-2 and A-3) occurs. Further 

studies such as estimation of population dispersal patterns, and comparison of the patterns 

obtained with geohistorical information, would elucidate more definite evolutionary history of 

R. sakuraii. 

 

4-4-3 Taxonomic implications 

As is clear from previous and present studies, R. tagoi and R. sakuraii have complicate 

genetic relationships and can be regarded as forming a species complex. In this complex, 

taxonomy of diversified lineages is far from complete. However, present results of nDNA 

analyses provided some insights into the taxonomy of this complex.  

Rana tagoi (sensu lato, including subspecies and cryptic taxa) and R. sakuraii were 

divided into several clusters/subclusters in the structure analysis, whereas they were also split 

into numerous clades/lineages in the mtDNA analysis (Figs. 4-3 and 4-2). Because mt-Lineage 

A-1a and the main islands subcluster within n-Cluster I included topotypic samples of R. tagoi 

(loc. 25), this lineage/subcluster should be true R. t. tagoi (R. t. tagoi sensu stricto). Other 

genetic groups already have names include R. sakuraii (Lineages A-2 and A-3; R. sakuraii 

subcluster in Cluster II), R. t. yakushimensis (Lineage A-8 in Cluster I), and R. t. okiensis 

(Lineage B-1 in Cluster I).  

Taxonomic status of the remaining lineages/subclusters were not fixed in the present 

study, but Lineage A-1b should be a cryptic species (= R. t. tagoi “small type” in Sugahara 

1990), because it forms a unique subcluster in Cluster II (but together with Lineage A-4: Fig. 

4-3) isolated from sympatric samples of R. t. tagoi (Lineages A-1a [R. t. tagoi sensu stricto] 

and B-2a) and R sakuraii (Lineage A-3). Lineage A-2 of R. t. tagoi also tended to form a 

unique subcluster in Cluster II, and seemed to be genetically isolated from sympatric R 

sakuraii (Lineages A-2 and A-3) and R. t. tagoi sensu stricto (Lineage A-1a). On the other hand, 

R. t. tagoi Lineage A-6 has been considered as a cryptic taxon of R. tagoi based on 

karyological evidence (Ryuzaki et al. 2006), but their uniqueness was not supported in nDNA 
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analyses. Demographic parameters obtained in IM analysis showed relatively large migration 

rate between Lineages A-5/A-6 and A-2 of R. t. tagoi (although it was strongly biased to the 

direction from A-5/A-6 to A-2), and status of these lineages is still unclear. Other 

lineages/subclusters, which might be also cryptic taxa, are as follows: Lineage A-4 of R. t. 

tagoi from Honshu, which seems to be genetically isolated from sympatric R sakuraii (Lineage 

A-2) and R. t. tagoi sensu stricto (A-1a), although it was included in the subcluster together 

with A-1b within Cluster II (K = 3 for Cluster II in Fig. 4-3); and Lineage A-9c of R. t. tagoi 

from Goto Islands, which was isolated from populations of main islands but was close to 

peripheral subspecies in nDNA analysis (K = 2 for Cluster I in Fig. 4-3).  

In contrast to these genetic groups, some populations of R. t. tagoi were separated in 

mtDNA genealogy but integrated in nDNA analysis. For example, each of lineages A-1a, A-7, 

A-9a, and B-2ab diverged in mitochondrial genealogy, but altogether formed a single nuclear 

subcluster within Cluster I (K = 2 for cluster I in Fig. 4-3). Although they were subdivided in 

larger K schemes, the division was not clear and seemed to be clinal (K = 3 for Cluster I in Fig. 

4-3). Relatively young origin of R. sakuraii estimated in IM analysis suggested that taxonomic 

units in the R. tagoi species complex, in particular sympatrically occurring ones, have arisen 

recently. So it is possible that some of them still do not form a monophyletic group in 

mitochondrial genealogy, as is the case with R. sakuraii. In addition, each of R. sakuraii, R. 

tagoi, and its cryptic taxa was not clearly separated in the haplotype networks of five nuclear 

loci (Fig. 4-4). This should be largely because of the ILS of nDNA, which evolves much 

slower than mtDNA. These facts imply that mitochondrial and nuclear monophyly is not 

simply be adopted in classifying this species complex, but more inclusive studies containing 

detailed population assignment and comparisons of morphological/ecological traits are needed 

to fix the taxonomic status of lineages/clusters contained. 

Present results of nDNA might not have achieved sufficient resolution for the genetic 

structure, because there were still more probable subdivisions of each cluster in the K values 

larger than those supported by the delta K test (Fig. 4-3). This is also suggested from 

taxonomic viewpoints. For example, two island subspecies R. t. yakushimensis and R. t. 

okiensis are isolated geographically and differentiated morphologically/phylogenetically from 

each other (Fig. 4-2), but they were allied to a single subcluster within the Cluster I (Fig. 4-3). 
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This may possibly be because the data set in the present study was not sufficient to detect 

detailed genetic structure of this group. Thus further studies using greater number of genetic 

markers as well as different methods (e.g., a large data set of SSRs and/or SNPs) may clarify 

much finer diversification patterns in the R. tagoi species complex. 
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FIGURE LEGENDS 

 

Fig. 4-1. Sampling localities. Distributional ranges of each mitochondrial lineage of R. tagoi 

(solid lines) and R. sakuraii (broken lines) were modified from Chapter 2. Lineages of R. 

sakuraii, R. t. okiensis, and R. t. yakushimensis were indicated by Rs, Rto, and Rty, respectively, 

and the others are R. t. tagoi lineages.   

 

Fig. 4-2. Maximum likelihood tree based on complete sequences of mitochondrial 16S and 

ND1 (2579 bp in total) for Rana tagoi and R. sakuraii. For locality numbers, refer to Fig. 4-1.  

 

Fig. 4-3. Results of STRUCTURE analyses based on five nuclear genes. Each mitochondrial 

lineage is separated by black vertical lines. (top) The best clustering result (K = 2 clusters) for 

whole 128 samples; (left bottom) Results with K=2 (best) and 3 for Cluster I; (right bottom) 

Results with K=3 (best) and 4 for Cluster II. Hatched lines indicate individuals excluded in the 

analysis. 

 

Fig. 4-4. Median-joining networks of five nuclear loci. The size of each circle reflects the 

relative sample size of each haplotype. The color indicates nuclear clusters and species as 

follows: red = n-Cluster I of R. tagoi; green = n-Cluster II of R. tagoi; light green = n-Cluster II 

of R. sakuraii. Black circles and bars indicate median vectors and missing haplotypes, 

respectively. 

 

Fig. 4-5. Posterior probability densities for divergence time (T), effective population size (Ne), 

and population migration rate (2NeM) of cluster I and II obtained by IM analyses. Resultant 

values and 95% confidence intervals for each estimate are listed in Table 4-5.  

 

Fig. 4-6. Posterior probability densities for divergence time (T, left top), effective population 

size (Ne, left middle and bottom) and population migration rate (2NeM, right top, middle, and 

bottom) of R. tagoi (Rt) lineage A-2, A-5+6, and R. sakuraii (Rs). Parameters obtained in 

Scheme 1 and 2 are respectively shown as triangle and circle markers. Estimates with no 



 

 

 

59 

 

statistical support were indicated by ns. Resultant values and 95% confidence intervals for 

each estimate are listed in Table 4-5.  

 

Fig. 4-7. Hypothesized scenarios which caused mitochondrial paraphyly of two species. (1) 

Species level ILS hypothesis. (2) Past mitochondrial introgression hypothesis, in which 

introgression occurred from R. tagoi to R. sakuraii (a) or the opposite direction (b). Solid and 

broken lines indicate mt-lineages of R. tagoi and R. sakuraii, respectively. Grey arrows 

indicate massive mitochondrial introgression.   
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voucher 

(KUHE)

Rana tagoi tagoi
1 Mutsu City, Aomori Pref. 44827 A-1a
2 Noshiro City, Akita Pref. 46598 A-1a
3 Ichinoseki City, Iwate Pref. 36699 A-1a
4 Sendai City, Miyagi Pref. 45622 A-1a
5 Yamagata City, Yanagata Pref. 37543 A-1a
6 Nihonmatsu City, Fukushima Pref. 29595 A-1a
7 Nihonmatsu City, Fukushima Pref. 36330 A-2
8 Daigo town, Ibaraki Pref. 42344 A-1a

43723 A-1a
43886 A-2

TMP_081122-1 A-2
9 Tsukuba City, Ibaraki Pref. 42747 A-2

10 Ichihara City, Chiba Pref. 28409 A-2
46172 A-2

11 Kanuma City, Tochigi Pref. 40166 A-1a
12 Uonuma City, Nigata Pref. 36896 A-1a
13 Nakanojo Town, Gunma Pref. 44810 A-1a

44811 A-1a
22930 A-4
22936 A-4
44797 A-4

14 Saku City, Nagano Pref. 43980 A-2
15 Akiruno City, Tokyo Pref. 42452 A-2

42453 A-2
16 Fujikawaguchiko Town, Yamanashi Pref. 45558 A-2

43480 A-6
17 Minobu Town, Yamanashi Pref. 45552 A-2

45549 A-6
18 Izu City, Shizuoka Pref. 43468 A-2
19 Hokuto City, Yamanashi Pref. 43483 A-5
23 Nagano City, Nagano Pref. 18005 A-5
24 Kurobe City, Toyama Pref. 45102 A-1a

45103 A-1a
45014 A-5
45099 A-5

25 Takayama City, Gifu Pref. 42048 A-1a
43018 A-1a

26 Gujo City, Gifu Pref. 14228 A-5
27 Fujieda City, Shizuoka Pref. 17955 A-6
28 Neba Village, Nagano Pref. 27335 A-6

27337 A-6
29 Shinjo City, Aichi Pref. 45913 A-6
30 Okazaki City, Aichi Pref. 45910 A-6
31 Ise City, Mie Pref. 42829 A-6
33 Ibigawa Town, Gifu Pref. 27388 A-1a
34 Takashima City, Shiga Pref. 43925 A-1a

43924 A-1b

locality
loc.
nos.

mt-lineage

Table 4-1. Samples used in present study with the information of sampling localities and
vouchers. KUHE: Graduate School of Human and Environmental Studies, Kyoto University;
TMP: Temporary numbered.
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Table 4-1. Continued.

35 Taga Town, Shiga Pref. 43512 B-2a
36 Matsuzaka City, Mie Pref. 41484 B-2a
37 Joyo City, Kyoto Pref. 41554 B-2a
38 Odai Town, Mie Pref. 40190 B-2a

45047 B-2a
39 Gobo City, Wakayama Pref. 41229 B-2a
40 Kyoto City, Kyoto Pref. 42342 A-1b

44828 A-1b
42319 B-2a

41 Nantan City, Kyoto Pref. 41408 A-1b
41405 B-2a
41430 B-2a

42 Sasayama City, Hyogo Pref. 10307 A-1b
43 Kobe City, Hyogo Pref. 45392 A-1b
44 Taka Town, Hyogo Pref. 10330 B-2a
45 Kyotango City, Kyoto Pref. 14171 A-1b
46 Toyooka City, Hyogo Pref. 42711 A-1b

42714 B-2a
47 Wakasa Town, Tottori Pref. 34743 A-1b
49 Mimasaka City, Okayama Pref. 27659 B-2a
52 Misasa Town, Tottori Pref. 24574 B-2b
53 Kagamino Town, Okayama Pref. 29739 B-2b
54 Shobara City, Hiroshima Pref. 36040 B-2b
55 Izumo City, Shimane Pref. 18877 B-2b
57 Higashihiroshima City, Hiroshima Pref. 30262 B-2b
58 Hatsukaichi City, Hiroshima Pref. unnumbered B-2b

43167 B-2b
60 Shimonoseki City, Yamaguchi Pref. 34516 B-2b
61 Minamiawaji City, Hyogo Pref. 43885 A-7
62 Manno Town, Kagawa Pref. TMP_T2882 A-7
63 Miyoshi City, Tokushima Pref. TMP_T3498 A-7
64 Toyo Town, Kochi Pref. 29464 A-7
65 Saijo City, Ehime Pref. 27679 A-7

43078 A-7
66 Saiyo City, Ehime Pref. T2241 A-7
67 Kitakyushu City, Fukuoka Pref. 28612 A-9a
68 Beppu City, Oita Pref. 43637 A-9a
69 Yatsushiro City, Kumamoto Pref. 27562 A-9a
70 Amakusa City, Kumamoto Pref. 30342 A-9a
71 Kanoya City, Kagishima Pref. 27295 A-9a
72 Sasebo City, Nagasaki Pref. 27140 A-9a
73 Goto City, Nagasaki Pref. 45359 A-9a

45362 A-9a
74 Nobeoka City, Miyazaki Pref. 27121 A-9b
75 Nishimera Village, Miyazaki Pref. 26088 A-9b
76 Miyakonojo City, Miyazaki Pref. 30907 A-9b
77 Kimotsuki City, Kagoshima Pref. 43397 A-9b
78 Kinko Town, Kagoshima Pref. 27678 A-9b
79 Goto City, Nagasaki Pref. 31539 A-9c
79 Shinkamigoto City, Nagasaki Pref. 45149 A-9c

TMP_110216-1 A-9c
80 Goto City, Nagasaki Pref. 44316 A-9c
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Table 4-1. Continued.

44317 A-9c
45355 A-9c

R. t. okiensis
50 Okinoshima Town, Shimane Pref. 10818 B-1

22341 B-1
51 Nishinoshima Town, Shimane Pref. 43647 B-1

R. t. yakushimensis
81 Yakushima Town, Kagoshima Pref. 10182 A-8

45177 A-8
45182 A-8

R. sakuraii
11 Kanuma City, Tochigi Pref. 43633 A-2

43634 A-2
43635 A-2

15 Akiruno City, Tokyo Pref. 42450 A-2
43740 A-2

17 Minobu Town, Yamanashi Pref. 45620 A-2
20 Shizuoka City, Shizuoka Pref. unnumbered A-2

44254 A-3
44286 A-3

21 Shizuoka City, Shizuoka Pref. 44256 A-2
22 Matsumoto City, Nagano Pref. 22887 A-2
24 Kurobe City, Toyama Pref. 45105 A-3
24 Kurobe City, Toyama Pref. 45106 A-3
32 Katsuyama City, Fukui Pref. 43591 A-3
38 Odai Town, Mie Pref. 27647 A-3

40309 A-3
45049 A-3

41 Nantan City, Kyoto Pref. 41412 A-3
unnumbered A-3

48 Wakasa Town, Tottori Pref. 34740 A-3
59 Iwakuni City, Yamaguchi Pref. 43893 A-3

R. tsushimensis
Tsushima City, Nagasaku Pref. 10606

R. kobai
Amami City, Kagoshima Pref. 10051

R. ulma
Higashi Village, Okinawa Pref. 10056

R. sauteri
Chiayi Country, Taiwan 6894
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Table 4-2. Primers used to amplify mt- and n-DNA in this study.

Target Name Sequence Reference

16S rRNA L1507 TACACACCGCCCGTCACCCTCTT Shimada et al (2011)
H1923 AAGTAGCTCGCTTAGTTTCGG Shimada et al (2011)
L1879 CGTACCTTTTGCATCATGGTC Shimada et al (2011)
H2315 TTCTTGTTACTAGTTCTAGCAT Shimada et al (2011)
L2188 AAAGTGGGCCTAAAAGCAGCCA Matsui et al (2006)
Wilkinson_6 CCCTCGTGATGCCGTTGATAC Wilkinson et al (2002)
16L1 CTGACCGTGCAAAGGTAGCGTAATCACT Hedges (1994)
16H1 CTCCGGTCTGAACTCAGATCACGTAGG Hedges (1994)

ND1 L3032 CGACCTCGATGTTGGATCAGG Shimada et al (2011)
ND1_Htago GRGCRTATTTGGAGTTTGARGCTCA Eto et al (2012)
ND1_Ltago GACCTAAACCTCAGYATYCTATTTAT Eto et al (2012)
tMet_H AGGAAGTACAAAGGGTTTTGATC Shimada et al (2011)

NCX1 NCX1F ACAACAGTRAGRATATGGAA Shimada et al. (2011)
NCX1R1 GCCATATCTCTCCTCGCTTCTTC Eto et al (2013)

NFIA NFIA-005_F TTTGTCACATCAGGTGTTTT This study
NFIA-005_R CTTGCCTTGGCTGCT This study

POMC POMC1 GAATGTATYAAAGMMTGCAAGATGGWCCT Wiens et al. (2005)
POMC7 TGGCATTTTTGAAAAGAGTCAT Smith et al. (2005)

SLC8A3 SCF_2F CAAACACAGRGSAATTATGAT Shimada et al (2011)
SCF_2R ATAATYCCAACTGARAACTC Shimada et al (2011)

TYR Tyr_L1 CCCCAGTGGGYRCCCARTTCCC Kuraishi et al (2013)
Tyr_H1 CCACCTTCTGGATTTCCCGTTC Kuraishi et al (2013)
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Calibration I Calibration II Calibration III

Node 1 3.04 (4.80–1.59) 4.00 (5.96–2.33) 4.16 (6.16–2.44)

2 2.01 (3.09–1.05) 2.58 (3.82–1.60) 2.82 (4.07–1.69)

3 1.81 (2.74–0.90) 2.31 (3.38–1.42) 2.46 (3.54–1.45)

4 1.40 (2.17–0.72) 1.84 (2.69–1.05) 1.73 (2.60–0.99)

5 0.88 (1.41–0.40) 1.16 (1.87–0.60) 1.04 (1.66–0.50)

6 1.04 (1.64–0.53) 1.32 (2.00–0.69) 1.35 (2.06–0.70)

7 1.57 (2.40–0.78) 1.87 (2.78–1.05) 2.08 (3.07–1.21)

8 0.82 (1.32–0.39) 0.95 (1.60–0.44) 1.13 (1.78–0.58)

9 0.85 (1.35–0.38) 0.88 (1.40–0.41) 1.39 (2.16–0.72)

10 1.59 (2.44–0.80) 1.92 (2.85–1.09) 2.12 (3.14–1.24)

11 1.41 (2.19–0.72) 1.75 (2.59–0.96) 1.69 (2.50–0.90)

12 0.35 (0.63–0.12) 0.50 (0.95–0.14) 0.42 (0.81–0.11)

13 1.06 (1.70–1.02) 1.15 (1.85–0.56) 1.50 (2.30–0.82)

14 0.33 (0.57–0.14) 0.36 (0.64–0.13) 0.53 (0.90–0.21)

15 1.83 (2.80–0.91) 2.31 (3.36–1.34) 2.54 (3.70–1.53)

16 0.64 (1.05–0.27) 0.79 (1.30–0.34) 0.85 (1.38–0.37)

17 0.12 (0.25–0.02) 0.20 (0.43–0.03) 0.17 (0.37–0.01)

18 1.39 (2.14–0.69) 1.68 (2.53–0.99) 1.98 (2.91–1.19)

19 0.43 (0.72–0.18) 0.53 (0.90–0.21) 0.59 (1.01–0.24)

20 0.95 (1.51–0.44) 1.04 (1.67–0.46) 1.40 (2.11–0.73)

21 1.18 (1.85–0.57) 1.46 (2.22–0.76) 1.54 (2.34–0.83)

22 1.85 (2.91–0.90) 2.71 (4.34–1.40) 2.29 (3.50–1.24)

23 1.03 (1.63–0.51) 1.40 (2.15–0.71) 1.35 (2.07–0.71)

24 0.62 (1.00–0.28) 0.80 (1.28–0.36) 0.82 (1.32–0.39)

25 0.75 (1.20–0.33) 0.90 (1.46–0.42) 1.08 (1.74–0.52)

26 0.10 (0.20–0.01) 0.04 (0.13–0.03) 0.26 (0.53–0.05)

O-1 5.02 (6.96–3.11) 7.99 (12.83–3.56) 5.44 (8.46–2.77)

O-2 12.04 (19.40–5.69) 22.02 (35.97–11.08) 11.59 (18.29–6.42)

Table 4-4. Mean estimated divergence times (MYA) for R. tagoi, R. sakuraii, and
outgroups. Values in parentheses are 95% highest posterior density interval. Bold
value indicates caribration point in Calibration I. For node numbers, refer to Fig. 2.
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N 1 N 2 N ancestor m1>2 m2>1 2NeM 1>2 2NeM 2>1 T

HiPt 2.18 1.73 0.40 0.16 0.30 0.52 1.23 2.72
HPD95 (1.70–2.87) (1.34–2.30) (0.17–0.79) (0.07–0.35) (0.17–0.53) (0.24–1.12) (0.70–2.14) (2.10–4.29)

HiPt 0.15 0.80 0.26 0.41 0.06 0.84 0.03 0.88
HPD95 (0.07–0.31) (0.34–2.06) (0.03–1.19) (0.06–3.01) (0.04–2.79) (0.10–5.99) (0.01–0.74) (0.42–3.90)

HiPt 0.16 0.86 - 0.00 0.00 0.01 0.27 -
HPD95 (0.05–0.32) (0.35–2.07) - (0.00–1.48) (0.00–2.28) (0.00–2.70) (0.06–0.97) -

HiPt 0.15 0.79 - 0.56 0.91 0.95 0.44 -
HPD95 (0.07–0.31) (0.38–1.76) - (0.09–4.19) (0.14–4.31) (0.18–8.87) (0.05–1.05) -

HiPt 0.16 0.86 - 0.09 1.17 0.35 0.95 -
HPD95 (0.05–0.32) (0.41–1.96) - (0.02–1.40) (0.45–2.90) (0.11–7.13) (0.36–1.93) -

HiPt 0.80 0.79 - 0.20 3.61 0.41 6.68 -
HPD95 (0.34–2.06) (0.38–1.76) - (0.04–6.53) (0.79–10.26)(0.04–9.78) (3.56–21.31) -

HiPt 0.86 0.86 0.30 0.16 4.81 0.41 5.31 1.12
HPD95 (0.35–2.07) (0.41–1.96) (0.05–3.60) (0.01–12.25) (3.04–7.52) (0.04–3.67) (3.68–9.58) (0.77–1.67)

HiPt 0.26 0.79 0.43 0.41 0.01 0.06 0.04 1.80
HPD95 (0.03–1.19) (0.38–1.76) (0.23–0.77) (0.00–23.46) (0.00–14.03) (0.00–81.15) (0.00–34.07) (0.96–4.52)

HiPt 0.16 0.30 0.26 18.05 13.90 10.86 5.71 14.70
HPD95 (0.05–0.32) (0.05–3.60) (0.04–1.77) (6.50–24.64) (1.76–24.75) (8.34–64.80) (0.82–8.05) (7.53–15.03)

(1) R. tagoi lineage A–2 vs. (2) R. tagoi lineage A–5, 6: scheme 1

(1) R. tagoi lineage A–2 vs. (2) R. tagoi lineage A–5, 6: scheme2

(1) ancestor of R. sakuraii and R. tagoi lineage A–2 vs. (2) R. tagoi lineage A–5, 6: scheme 1

(1) R. sakuraii vs. (2) ancestr of R. tagoi lineage A–2, 5, 6: scheme 2

Table 4-5. Demographic parameters estimated by IM analysis. N e: effective population size (million individuals); m:

migration rate parameter (migration rate for gene copy/mutation event), of which m1>2 (m2>1) indicates the gene flow from

group 1 to 2 (2 to 1) forwards in time; 2N eM : effective population migration rate (number of gene copies/generation); T:
population divergence time (MYA). Values supported by highest probability were shown in HiPt, and HPD95 indicate 95%
highest posterior density interval. Parameters with bold and italic characters indicate the values with statistical support and
with no significant peak of posterior probability density, respectively.

(1) Cluster I vs. (2) Cluster II

(1) R. sakuraii vs. (2) R. tagoi lineage A–2: scheme1

(1) R. sakuraii vs. (2) R. tagoi lineage A–2: scheme2

(1) R. sakuraii vs. (2) R. tagoi lineage A–5, 6: scheme 1

(1) R. sakuraii vs. (2) R. tagoi lineage A–5, 6: scheme 2
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Figure 4-1
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Figure 4-2
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Figure 4-3
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Figure 4-4
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Figure 4-5
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Figure 4-6
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Figure 4-7
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CHAPTER5 

 

General Discussion 

 

 

Rana tagoi has been thought to include several cryptic taxa (e.g., R. tagoi “large type” 

and “small type: Sugahara 1990; R. tagoi with diploid chromosomes 2n = 28: Ryuzaki et al. 

2006) in this 20 years. As shown in Chapter 2, phylogenetic analyses using mtDNA revealed 

that this species contain numerous lineages, and some of them correspond to suspected cryptic 

taxa. However, the remaining lineages are also distinct genetically, although their 

morphological/ecological traits have never been sufficiently studied. Furthermore, R. sakuraii, 

a close relative of R. tagoi, is phylogenetically totally embedded in R. tagoi. Rana sakuraii 

formed two distinct lineages, one of which containing R. tagoi samples. Thus neither of the 

two species are monophyletic on the mtDNA genealogy.  

On the other hand, STRUCTURE analysis using nDNA indicates genetic patterns more 

or less discordant with mtDNA results (Chapters 3 and 4). For example, within the two 

morphotypes of R. tagoi in the Kinki region, the “small type” forms a unique mt-lineage, 

whereas the “large type” is divided into two lineages, one of which is closer to the “small” 

lineage than another (Chapters 2, 3). In contrast, analysis based on nDNA shows sharp genetic 

isolation between the two morphotypes, with the two mt-lineages of the “large type” assigned 

to a single cluster (Chapter 3). This result suggests heterospecific relationship of the two 

morphotypes, and conspecificity of the two mt-lineages of the “large type”. The divergence 

between the “small” and the closest “large” mt-lineage is estimated to occur at ca. 1.8–1.4 

MYA, younger than the separation of the “small” and “large” n-clusters around 2.7 MYA 

(Chapter 4). Considering the faster lineage sorting proses in mtDNA than in nDNA, 

discordance between the results of mt- and n-DNA analysis of the two morphotypes can be 

explained by mitochondrial introgression from the “small type” to the “large type” (Chapter 3). 

The situation is different between R. tagoi and R. sakuraii. In STRUCTURE analysis 

using nDNA, R. sakuraii forms a unique nuclear cluster, supporting its distinct specific status. 

However, the separation between R. sakuraii and the closest R. tagoi lineage/cluster is 
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estimated to be not old, only 0.9 MYA, by IM analysis (Chapter 4). This age is much younger 

than the divergence time between R. sakuraii mt-lineages (A-2 and A-3) and all the others (ca. 

2.5–1.8 MYA), and is still younger than the separation of two mt-lineages of R. sakuraii (ca. 

2.1–1.6 MYA). Thus cytonuclear discordance and genealogical paraphyly of R. sakuraii would 

have been induced by recent speciation of this species, which led incomplete lineage sorting 

(ILS) of mtDNA (Chapter 4).  

As discussed above, the R. tagoi species complex (including R. sakuraii) is a recently 

diversified group and its evolutionary history seems to be complicated. Thus in the taxonomic 

study of this complex, especially in describing cryptic taxa, standards often used recently at the 

specific level taxonomy of animals (e.g., genealogical monophyly and the threshold value of 

sequence divergence) are not necessarily applicable. Rather, traditional methods, such as 

comparison of morphological/ecological traits and assessment of reproductive isolation, are 

more important in classifying the R. tagoi species complex.  

Evolutionary history of the R. tagoi species complex provides a good example in the 

study of speciation and diversification in amphibians. Resultant phylogenetic relationships and 

historical demography indicate speciation and diversification of the complex to have occurred 

recently. The most distinctive trait of the complex is subterranean breeding (for secondary 

adaptation to open stream in R. sakuraii, see below), which is quite unique among brown frogs 

(genus Rana). Only the members of the R. tagoi species complex use this environment as the 

breeding site among anurans from the mainland of Japan. Thus, specialization to this unique 

niche would have led radiation of this complex, which is now very abundant throughout the 

three main islands of Japan.  

However, degree of dependence on subterranean environment is variable within the 

complex. For example, Sugahara (1990) reported that R. tagoi “small type” breeds in very 

small subterranean streams or water springs, whereas the “large type” lays eggs besides 

streams. In this case, different body size is thought to be an adaptation to each microhabitat. 

Such a tendency of microhabitat segregation is observed in several regions of Honshu where 

two or more lineages/clusters occur sympatrically (Eto, unpublished data). Furthermore, R. 

sakuraii has adapted secondarily to true stream environment (Chapters 2 and 4; Maeda & 

Matsui 1999) and does not use subterranean waters. Based on such a variation in the degree of 
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dependence on subterranean environment among the complex, two different hypotheses about 

their diversification can be proposed: (1) Some costs (e.g., hybrid infertility) for hybridization 

among genetic groups induced morphological/ecological character displacement to avoid 

reproductive interference when multiple groups met in the same place (i.e., reinforcement of 

reproductive isolation and sympatric speciation) and (2) Variation of reliance on subterranean 

environment independently arose to adapt various climate/environment of different place 

induced allopatric speciation of each genetic group. These hypotheses should be tested in 

future, but at least some taxa seem to have arisen sympatrically, supporting the first hypothesis 

(Chapter 4). 

The results of present study also provide some suggestions on conservation of the R. 

tagoi complex. Now R. t. tagoi (sensu lato) is considered as a common, widespread subspecies, 

and is not included in the Japanese Red List (Ministry of Environment of Japan 2012). 

However, as discussed in the present and previous studies (e.g., Sugahara 1990; Ryuzaki et al. 

2006), this species complex surely includes several cryptic taxa. Some of them are actually 

widespread (e.g., R. t. tagoi sensu stricto [mt-Lineage A-1a] and R. sakuraii [A-2 and A-3]), 

but each of candidate cryptic taxa is all restricted to a narrow area of distribution (see Fig. 2-1 

in Chapter 2). For example, the distributional range of R. t. tagoi “small type” is restricted to 

the northern Kinki region, although it was once reported from the Kii Peninsula (Sugahara & 

Matsui 1996). Geographically most limited lineage is R. t. tagoi A-4, which is found on only 

one mountain in the former Kuni Village, Gunma Prefecture, as far as I know. Two subspecies 

of R. tagoi from islands peripheral to the mainland (R. t. yakushimensis and R. t. okiensis) are 

categorized as Near Threatened (NT) in the Japanese Red List because their distributional 

ranges are narrow and environmental conditions of their habitats are becoming worse (Ministry 

of Environment of Japan 2012). The present study revealed that R. t. tagoi from the Goto 

Islands (mt-Lineage A-9c), whose distributional and environmental situation is considered to 

be similar to that of two island subspecies, is also differentiated genetically from lineages of 

other regions. Because R. t. tagoi from the Goto Islands has a unique acoustical traits (Matsuo 

et al. 2011), it could be also distinct taxon. Considering rapid degradation of montane 

environment, where this complex inhabits, immediate reevaluation of conservational status of 

these candidate cryptic taxa is required.
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SUMMARY 

 

 

In order to clarify the taxonomic relationships and the evolutionary history of two Japanese 

brown frogs Rana tagoi and R. sakuraii, I conducted molecular phylogenetic and population 

genetic studies. In the phylogenetic tree based on mitochondrial (mt-) DNA, two major clades 

(A and B) were recognized. Clade A contained both of two species, whereas Clade B consisted 

of only R. tagoi samples. Moreover, within these clades R. tagoi was divided into more than 10 

lineages, and R. sakuraii also divided into two. Because one of the two lineages of R. sakuraii 

also included some R. tagoi samples, neither of two species were monophyletic. Some of R. 

tagoi lineages corresponded to known subspecies and morphological/ecological variations, but 

the remaining ones were also distinctive genetically. These facts indicate that the diversity of R. 

tagoi is greater than previously recognized. Then I focused on the two morphotypes (“large” 

and “small”) of R. tagoi from the Kinki region, and performed detailed genetic survey using 

mt- and nuclear (n-) DNA. The results obtained in nDNA analysis largely corresponded to the 

morphological information, although mt-genealogy was more or less discordant with them. 

These results indicate that R. tagoi “large” and the “small” is reproductively isolated (i.e., 

heterospecific), although introgressive hybridization has occurred in the past. Considering the 

relationship with topotypic samples, the “large” is true R. tagoi, whereas the “small” should be 

unnamed. Finally, I expanded multilocus analysis to the entire samples. In the nDNA analysis, 

two major clusters (I and II) were recognized in two species, and the division of clusters was 

partially correlated to mt-genealogy. Rana sakuraii formed a specific subcluster within Cluster 

II, in agreement with its distinct specific status. The estimated divergence time between R. 

sakuraii and the closest R. tagoi population was not old, ca. 0.9 MYA. Thus the paraphyly of R. 

sakuraii on mt-genealogy is thought to be induced by the recent speciation and incomplete 

lineage sorting of mtDNA. On the other hand, R. tagoi was divided into multiple subclusters in 

nDNA analysis as same as mtDNA ones. The gene flow between subclusters seemed to be 

limited, so each of them could be different taxa. Present results suggest that genealogical 

monophyly is not definitive in the classification of R. tagoi species complex, and detailed 

comparison of ecological/morphological traits would be more important.    
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要旨要旨要旨要旨 

 

 

日本に分布するタゴガエル（タゴ）とその近縁種ナガレタゴガエル（ナガレ）について，

種間・種内の遺伝的変異を調査し，その分類学的関係と進化史について考察した．MtDNA

に基づく系統解析では全体として２つのクレード A・Bが認められ，そのうち Aは両種を，

B はタゴのみを含んだ．さらにそれらの内部で，タゴは 10 以上，ナガレは 2 つの系統に

細分された．このナガレ２系統のうち，片方はタゴをも内包することから，両種はいずれ

も単系統群でない．またタゴ系統のうち，少なくとも一部は既知の亜種や、形態・生態型

と対応したが，それらと同程度に分化した系統が多く見られ，本種の多様性は従来知られ

ていた以上に高いことが示された．タゴに見られる変異系統のうち，近畿地方産の大小二

型について核 DNA も併せて解析したところ，mtDNA の系統樹が形態的変異と必ずしも

対応しない一方で，核 DNA を用いた解析の結果は形態的区分とよく一致した．これは大

小間に生殖隔離が存在することを示し，基準産地との関係も踏まえると大型が真のタゴで，

小型は未記載種と考えられる．またmtDNA解析の結果が形態的（大小）区分と一致しな

いのは，過去に大小間で浸透性交雑が起こったためと考えられる．さらに，タゴ・ナガレ

全体について複数遺伝子を用いた解析を行ったところ，核 DNA の解析では大きく２つの

クラスターI・II が認められ，その区分は部分的にmtDNAの系統と一致した．ナガレはこ

のうち II の内部で固有のサブクラスターを成すことから，これを独立種とするのは妥当で

あろう．また同じく核 DNA の解析により，ナガレが最近縁のタゴ集団と分かれたのは約

90万年前と、比較的新しいことが示された．従って，ナガレがmtDNAの系統樹上で単系

統にならないのは，種分化からの歴史が浅く，系列選別が不完全なためと考えられる．一

方，タゴは核 DNA の解析でも複数のサブクラスターに分けられた．それらの間の遺伝的

交流は限定的であり，それぞれ独立種である可能性が高い．これらタゴ複合群の種分類に

おいては，単系統性のみを重視せず，詳細な生態的・形態的比較を行う必要がある． 
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Taxonomic Relationships among Turkish Water Frogs as 
Revealed by Phylogenetic Analyses Using mtDNA
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We assessed taxonomic relationships among Turkish water frogs through estimation of phyloge-

netic relationships among 62 adult specimens from 44 distinct populations inhabiting seven main 

geographical regions of Turkey using 2897 bp sequences of the mitochondrial Cytb, 12S rRNA and 

16S rRNA genes with equally-weighted parsimony, likelihood, and Bayesian methods of inference. 

Monophyletic clade (Clade A) of the northwesternmost (Thrace) samples is identified as Pelophylax 

ridibundus. The other clade (Clade B) consisted of two monophyletic subclades. One of these con-

tains specimens from southernmost populations that are regarded as an unnamed species. The 

other subclade consists of two lineages, of which one corresponds to P. caralitanus and another 

to P. bedriagae. Taxonomic relationships of these two species are discussed and recognition of P. 

caralitanus as a subspecies of P. bedriagae is proposed.

Key words: mitochondrial DNA, Pelophylax ridibundus, Pelophylax bedriagae caralitanus, Pelophylax 
bedriagae, taxonomy

INTRODUCTION

Turkish water frogs have long been treated as a single 
species: Rana ridibunda (Pallas, 1771) (e.g., Bodenheimer, 
1944; Başoğlu and Özeti, 1973). The species, originally 
described from Gurvev (now Atyrau), Kazakhstan (Dubois 
and Ohler, 1996 ‘‘1994’’), occurs very widely from Central 
Europe, northwards to the Baltic Sea and southwards to the 
Mediterranean regions, eastwards to Asiatic Russia, and 
southwards to the Middle East (Frost, 2011). However, 
Bodenheimer (1944) found specimens with an orange-
colored venter from Beyşehir Lake in the Central Anatolia 
region of Turkey, that were later described as a distinct sub-
species R. ridibunda caralitana by Arıkan (1988). Distribu-
tion area of this subspecies was thereafter widened to the 
Central Anatolia and Mediterranean regions of Turkey (e.g., 
Atatür et al., 1990; Ayaz et al., 2006). Joermann et al. (1988) 
and Schneider et al. (1992) called western Turkey water 
frogs as R. levantina, which name was later replaced by R. 
bedriagae (Dubois and Ohler, 1996 ‘‘1994’’), although iden-
tification of Anatolian water frogs as R. bedriagae was chal-
lenged by Plötner et al. (2001). Schneider and Sinsch 
(1999) and Sinsch and Schneider (1999) synonymzed R. r. 
caralitana with R. bedriagae, but Jdeidi et al. (2001) insisted 
that R. caralitana is specifically distinct from R. bedriagae.

Based on results of molecular phylogenetic studies, 

Frost et al. (2006) proposed to change the generic name of 
water frogs from Rana to Pelophylax. In the most recent list 
of Turkish water frogs, Franzen et al. (2008) recognized only 
two species, P. ridibundus and P. caralitanus, and omitted
R. bedriagae. Quite recently, Akın et al. (2010a) examined 
relationships between genetic and morphological character-
istics among water frogs from Turkish Lake District. In addi-
tion, Akın et al. (2010b) studied detailed genetic variations 
and estimated the history of diversifications among water 
frogs from eastern Mediterranean regions including Turkey. 
However, they did not make any definite conclusions about 
the taxonomy of these frogs.

In order to understand taxonomic relationships among 
water frogs within Turkey, we studied samples from across 
the country using mitochondrial DNA sequence variation. 
For this purpose we adopted both rapidly (Cytb) and slowly 
(12S rRNA and 16S rRNA) evolving genes, different from 
Akın et al. (2010b), who studied only rapidly evolving genes 
(ND2 and ND3). Finally, we made a taxonomic assessment, 
rather than divergence time estimation, unlike Akın et al. 
(2010b).

MATERIALS AND METHODS

Sampling

We examined DNA sequences of Cytb, 12S rRNA, and 16S 
rRNA genes from 62 adult specimens of 44 distinct populations 
inhabiting seven main geographical regions of Turkey (Fig. 1, Table 
1). Specimen collection was performed in 2007 and 2008. As 
outgroups, we used sequences of Pelophylax (as Rana) 
nigromaculatus and P. chosenicus from GenBank (Accession 
Number: NC002805 and EU386874, respectively).
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Sequencing

Total DNA was extracted from ethanol-preserved tissues by 
standard phenol-chloroform extraction (Hillis et al., 1996) or using a 
commercial kit (Macherey-Nagel, NucleoSpin Tissue Kit, 740952.50) 
according to the manufacturer’s instructions.

A partial sequence of mitochondrial cytochrome b (Cytb), the 
complete sequences of 12S rRNA, and a partial fragment of 16S 
rRNA genes were amplified by PCR using the primers listed in 
Table 2. Cytb amplification involved an initial denaturation step of 7 
min at 94°C and 40 cycles of denaturation for 40 s at 94°C, primer 
annealing for 30 s at 46°C, extension for 60 s at 72°C, and a final 
7 min extension at 72°C. The PCR cycle for 12S + 16S rRNA ampli-
fication included initial denaturation step of 4 min at 94°C and 33 
cycles of denaturation for 30 s at 94°C, primer annealing for 30 s at 
53°C, extension for 150 s at 72°C, and a final 7 min extension at 
72°C.

Amplified PCR products were purified using polyethylene glycol 
(PEG) purification procedures; these were used directly as tem-
plates for cycle sequencing reactions with fluorescent dye-labeled 
terminators (ABI Prism Big Dye Terminators v.3.1. cycle sequencing 
kits). We cycle sequenced the amplified fragments using the 
primers listed in Table 2. The sequencing reaction products were 
purified by ethanol precipitation following the manufacturer’s proto-
col and then run on an automated ABI PRISM 3130 genetic ana-
lyzer. All samples were sequenced in both directions. The obtained 
sequences have been deposited in GenBank (AB640897–640996: 
Table 1).

Phylogenetic analyses

The nucleotide sequences of each gene were aligned using the 
ClustalW option in the Bioedit software (Hall, 1999). Haplotypes 
were determined using DAMBE (Xia and Xie, 2001) program. After 
confirming the suitability for combination of all of the sequences of 
the three genes, by performing the partition-homogeneity test 
(parsimony method by Farris et al. [1995] as implemented in 
PAUP*4.0b10 [Swofford, 2000]), we combined the data on these 
three genes. Phylogenetic analyses based on the combined data 
were performed by maximum parsimony (MP), maximum likelihood 
(ML), and Bayesian inference (BI) methods. The MP analysis was 
implemented in MEGA v. 5.01 software package (Tamura et al., 
2011) using a heuristic search with the close-neighbor-interchange 

(CNI) branch-swapping algorithm and ten 
random-addition replicates. Transitions 
and transversions were equally weighted, 
and gaps were treated as missing data. 
The ML and BI analyses, respectively, 
were performed using TREEFINDER 
(Jobb, 2008) and MrBayes 3.1.2 
(Huelsenbeck and Ronquist, 2001). Best 
fit nucleotide substitution model based on 
Akaike’s information criteria (AIC) was 
determined for each gene region with 
KAKUSAN v. 4 software (Tanabe, 2007). 
In the BI analysis, the following settings 
were applied: number of Markov chain 
Monte Carlo (MCMC) generations = six 
million; sampling frequency = 100; burn-
in =10,000. The burn-in size was deter-
mined by checking convergences of -log 
likelihood (-lnL) using Tracer v. l.5 
(Rambaut and Drummond, 2007). The 
robustness of the resultant MP and ML 
trees were evaluated using non-paramet-
ric bootstrap analyses with 1000 and 100 
pseudo-replications, respectively, and 
statistical support of the resultant BI trees 
was determined based on Bayesian pos-

terior probability (BPP). We a priori regarded tree nodes with 
bootstrap value (BS) 70% or greater as sufficiently resolved 
(Huelsenbeck and Hillis, 1993), and those between 50 to 70% as 
tendencies. In the BI analysis, we considered nodes with a BPP of 
95% or greater as significant (Leaché and Reeder, 2002). Uncor-
rected pairwise sequence divergences for each gene were calcu-
lated using MEGA 5.01 v. software package (Tamura et al., 2011).

RESULTS

Sequences and statistics

Sequence statistics for the three gene fragments and 
the combined alignment, when all nucleotide positions were 
included, are provided in Table 3. For all 62 ingroup individ-
uals (except for one individual from the GaziAntep popula-
tion, for which we failed in the PCR amplification of Cytb), 
we determined sequences of 405 bp of the mitochondrial 
Cytb, 973 bp of the 12S rRNA, and 1519 bp of the 16S 
rRNA genes. Of 2897 nucleotides generated, 399 were vari-
able and 331 were parsimony informative. DAMBE program 
disclosed 20 haplotypes from 61 individuals for Cytb, while 
35 haplotypes for 12S rRNA, and 45 haplotypes for 16S 
rRNA were detected from 62 individuals. Within the ingroup 
(for 61 individuals), alignment of the combined genes 
revealed a total of 54 unique haplotypes. Haplotypes were 
identical between samples 8 and 15; between 13 and 9, 10, 
21, and 23; between 28-2 and 30-3; and between 26-1 and 
31-1) (Fig. 2).

In the ML analysis, the best fit model selected by 
KAKUSAN v. 4 software (Tanabe, 2007) for 12S rRNA was 
J2 (Jobb, 2008) with a gamma shape parameter estimated 
as 0.227 while it was GTR (Tavaré, 1986) for 16S rRNA and 
TN93 (Tamura and Nei, 1993) for 1st codon position of 
Cytb with gamma shape parameters estimated as 0.115 and 
9.815, respectively. K80 (Kimura, 1980) and F81 
(Felsenstein, 1981) models were selected as the best fit 
models for 2nd and 3rd codon positions of Cytb, res-
pectively. In the BI analysis, best fit model selected by 
KAKUSAN for 12S rRNA, 16S rRNA and 1st codon position 

Fig. 1. Map showing the localities of the water frog samples from seven main geographic 
regions of Turkey. MR: Marmara Region, AR: Aegean Region, MTR: Mediterranean Region, 
CAR: Central Anatolia Region, BSR: Black Sea Region, EAR: Eastern Anatolia Region, SAR: 
Southeastern Anatolia Region. For sample numbers, refer to Table 1.
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of Cytb was GTR (Tavaré, 1986) with a 
gamma shape parameter estimated as 
6.636, 4.250, and 1.450, respectively. As 
the best fit models for the 2nd and 3rd 
codon positions of Cytb, K80 (Kimura, 
1980) and F81 (Felsenstein, 1981) 
models, respectively, were selected. The 
likelihood value of the ML tree was -lnL = 
6336.499.

Phylogenetic relationships

Phylogenetic analyses for the three 
genes employing three different optimality 
criteria yielded very slightly different topol-
ogies, and only the BI tree is shown in Fig. 
2. As shown in the figure, two major 
clades (Clades A and B) were recovered 
with strong supports.

The first of these (Clade A) includes 
northwesternmost (Thrace) samples. 
Monophyly of the Thrace samples with 
respect to the other groups was always 
strongly supported (MP and ML BS = 99 
and 100%, respectively; BPP = 100%).

The other clade (Clade B) was also 
recovered with strong support (MP BS = 
97%, ML BS = 96%, BPP = 100%). Clade 
B consisted of two monophyletic sub-
clades: southernmost subclade (Subclade 
B1: MP BS = 99%, ML BS = 100%, BPP = 
100%) and the other subclade with all the 
rest of samples (Subclade B2: MP BS = 
99%, ML BS = 100%, BPP = 100%).

Subclade B2 consisted of two main 
lineages: Lineage B2-1, samples from the 
Central Anatolia and West Mediterranean 
regions (MP BS = 99%, ML BS = 100%, 
BPP = 100%), and Lineage B2-2, includ-
ing all the remaining samples (MP and ML 
BS both 87%, BPP = 100%). Samples of 
the Lineage B2-2 were further divided into 
two sublineages: B2-2b (samples from the 
Eastern Anatolia region; MP BS = 99%, 
ML BS = 100%, BPP= 100%) and B2-2a 
(all the remaining samples; MP BS = 80%, 
ML BS = 99%, BPP = 100%). Relation-
ships among the samples of B2-2a were 
unresolved. Uncorrected p-distances 
among main groups are given in Table 4.

Ventral color variation among lineages

As shown in Fig. 3, samples of the 
Lineage B2-1 had the characteristically 
orangish ventral marking which is unique 
among all lineages.

DISCUSSION

In the most recent reviewing work of 
water frogs in and around Turkey, Akın et 
al. (2010b) did not show bases for their 
identification of samples they studied, or 

Table 1. Samples used for mtDNA analysis in this study together with the information on 
voucher and GenBank accession numbers. KTUFS = Faculty of Science, Karadeniz Tech-
nical University.

Sample
No. Locality

GenBank Accession No.
Voucher

Cytb 12S rRNA 16S rRNA
 1 Edirne, Büyükdöllük AB640977 AB640897 AB640932 KTUFS 1
 2 Tekirdağ, Malkara AB640978 AB640897 AB640933 KTUFS 2
 3

·
Istanbul, Şile AB640986 AB640922 AB640975 KTUFS 3

 4 Kocaeli, Şirinköy AB640986 AB640922 AB640974 KTUFS 4
 5 Sakarya, Söğütlü AB640986 AB640924 AB640973 KTUFS 5
 6 Bursa, Nilüfer Brook AB640986 AB640925 AB640976 KTUFS 6
 7 Çanakkale, Kepez AB640996 AB640926 AB640949 KTUFS 7
 8 Bolu, Gerede AB640986 AB640923 AB640969 KTUFS 8
 9 Zonguldak, Çaycuma AB640986 AB640922 AB640969 KTUFS 9
10 Çorum, Kuşsaray AB640986 AB640922 AB640969 KTUFS 10
11 Kastamonu, Tosya AB640986 AB640922 AB640971 KTUFS 11
12 Sinop, Erfelek AB640986 AB640922 AB640970 KTUFS 12
13 Samsun, Bafra AB640986 AB640922 AB640969 KTUFS 13
14 Giresun, Piraziz AB640986 AB640930 AB640969 KTUFS 14
15 Trabzon, Beşikdüzü AB640986 AB640923 AB640969 KTUFS 15
16 Rize, Fındıklı AB640986 AB640929 AB640969 KTUFS 16
17 Artvin, Şavşat AB640995 AB640911 AB640948 KTUFS 17
18 Gümüşhane, Şiran AB640986 AB640926 AB640969 KTUFS 18
19 Bayburt, Suludere AB640986 AB640923 AB640968 KTUFS 19
20 Sivas, Serpincik AB640986 AB640931 AB640969 KTUFS 20
21 Ankara, Ayaş AB640986 AB640922 AB640969 KTUFS 21
22 Kırıkkale, Bahşılı AB640986 AB640920 AB640972 KTUFS 22
23 Nevşehir, Gülşehir AB640986 AB640922 AB640969 KTUFS 23
24-1 Konya, Akşehir Lake AB640982 AB640901 AB640937 KTUFS 24
24-2 Konya, Akşehir Lake AB640982 AB640901 AB640952 KTUFS 25
24-3 Konya, Akşehir Lake AB640983 AB640901 AB640938 KTUFS 26
25-1 Manisa, Karaali AB640985 AB640903 AB640940 KTUFS 27
25-2 Manisa, Karaali AB640984 AB640927 AB640954 KTUFS 28
25-3 Manisa, Karaali AB640986 AB640928 AB640954 KTUFS 29
25-4 Manisa, Karaali AB640986 AB640920 AB640961 KTUFS 30
25-5 Manisa, Karaali AB640987 AB640904 AB640941 KTUFS 31
26-1

·
Izmir, Urla AB640984 AB640915 AB640954 KTUFS 32

26-2
·
Izmir, Urla AB640984 AB640915 AB640962 KTUFS 33

26-3
·
Izmir, Urla AB640988 AB640915 AB640962 KTUFS 34

26-4
·
Izmir, Urla AB640984 AB640915 AB640963 KTUFS 35

26-5
·
Izmir, Urla AB640984 AB640921 AB640964 KTUFS 36

27 Aydın, Söke AB640984 AB640918 AB640958 KTUFS 37
28-1 Aydın, Germencik AB640984 AB640917 AB640957 KTUFS 38
28-2 Aydın, Germencik AB640984 AB640915 AB640939 KTUFS 39
28-3 Aydın, Germencik AB640984 AB640915 AB640959 KTUFS 40
28-4 Aydın, Germencik AB640984 AB640919 AB640960 KTUFS 41
29-1 Muğla, Fethiyepaşalı AB640989 AB640905 AB640942 KTUFS 42
29-2 Muğla, Fethiyepaşalı AB640990 AB640906 AB640943 KTUFS 43
30-1 Denizli, Kaklık AB640984 AB640902 AB640939 KTUFS 44
30-2 Denizli, Kaklık AB640984 AB640916 AB640955 KTUFS 45
30-3 Denizli, Kaklık AB640984 AB640915 AB640939 KTUFS 46
31-1 Denizli, Acıpayam AB640984 AB640915 AB640954 KTUFS 47
31-2 Denizli, Acıpayam AB640984 AB640915 AB640956 KTUFS 48
32 Antalya, Manavgat AB640980 AB640899 AB640935 KTUFS 49
33-1 Konya, Dineksaray AB640981 AB640900 AB640936 KTUFS 50
33-2 Konya, Dineksaray AB640981 AB640914 AB640953 KTUFS 51
34 Mersin, Mezitli AB640979 AB640898 AB640934 KTUFS 52
35 Hatay, Asi Stream AB640979 AB640912 AB640950 KTUFS 53
36 Gaziantep, Çaykuyu – AB640913 AB640951 KTUFS 54
37 Şanlıurfa, Bozova AB640991 AB640907 AB640944 KTUFS 55
38 Malatya, Doğanşehir AB640993 AB640908 AB640966 KTUFS 56
39 Elazığ, Kovancılar AB640993 AB640908 AB640965 KTUFS 57
40 Bitlis, Adilceviz AB640993 AB640909 AB640946 KTUFS 58
41 Van, Edremit AB640994 AB640910 AB640947 KTUFS 59
42 Erzincan, Tercan AB640986 AB640922 AB640967 KTUFS 60
43 Erzurum, Pasinler AB640986 AB640926 AB640967 KTUFS 61
44 Kars, Sarıkamış AB640992 AB640908 AB640945 KTUFS 62
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make any definite conclusions about taxonomic status of 
their haplotype groups. Akın et al. (2010b) used only rapidly 
evolving genes (Mueller, 2006), and with regard to the Turk-
ish samples, they analyzed 340 bp of ND3 genes in 359 

individuals and detected 61 haplotypes, and in 
a longer sequence of 1038 bp of ND2 gene, 
they found 27 haplotypes in 35 individuals. We 
used both rapidly and slowly evolving genes 
and found a slightly smaller amount of diver-
gences (20 haplotypes in Cytb to 45 haplotypes 
in 16S rRNA) among the Turkish water frogs, 
probably due to smaller sample size on an 
average. However, phylogenetic relationships 
resolved by three different genes we adopted 
were nearly similar, and resultant combined 
analysis gave lineages very similar to the hap-
lotype groups reported by Akın et al. (2010b). 
Thus, our analysis can be regarded as pertinent 
to discuss taxonomic relationships among the 
Turkish water frogs.

Our phylogenetic analyses clearly demon-
strated the existence of two major monophyletic 
clades in water frogs from Turkey. One of these 
(Clade A) includes the northwesternmost 
(Thrace) samples. From their mt ND2 and ND3 
gene sequences data, Akın et al. (2010b) also 
found frogs from Thrace to constitute a lineage 
distinct from Anatolian frogs. They identified the 
frogs from Thrace as P. ridibundus because 
they were very similar to European populations 
of P. ridibundus in sequences. Our analyses 
using GenBank data also revealed that Clade A 
forms a monophyletic group with P. ridibundus
from Greece (DQ474212). Thus, our Clade A 
should be identified as that species.

Genetic distances observed among differ-
ent lineages in our samples were not very large, 
but p-distances in 16S rRNA between Clade A 
(P. ridibundus) and Clade B (≤ 3.1%), are 
viewed as indicating the level of species differ-
ence among the frogs (Fouquet et al., 2007). 
Thus, the Turkish water frogs in the Clade B are 
judged to be not conspecific with P. ridibundus.

Subclade B1 occupied the most basal posi-
tion of Clade B while it was judged to be spe-
cifically different from Clade A with uncorrected 
p-distance in 16S rRNA of 3.1%. Although dis-
tances among genetic groups in Clade B were 
not large (≤ 2.3%), distances between Sub-

clade B1 and Subclade B2 (1.9–2.3%) were evidently larger 
than those between two lineages of Subclade B2 (0.6–
1.2%), indicating genetic distinctness of Subclade B1. As 
discussed below, Subclade B2 itself is considered to contain 

Table 2. Primers used to amplify mitochondrial DNA in this study.

Target Name Sequence 5’-3’ Reference

12S ThrLm AAARCATKGGTCTTGTAARCC
Modified from Shaffer and 
Mcknight (1996)

12S 12SH1 GACACCGTCAAGTCCTTTGGGTTT This study

12S L1091 AAACTGGGATTAGATACCCCACTAT 12SA-L in Palumbi et al. (1991)

12S Hnew TACCATGTTACGACTTTCCTCTTCT H1548 in Matsui et al. (2005)

12S Lnew TACACACCGCCCGTCACCCTCTT Shimada et al. (2011)

12S tval-H AAGTAGCTCGCTTAGTTTCGG Shimada et al. (2011)

16S tval-L CGTACCTTTTGCATCATGGTC Shimada et al. (2011)

16S H2317 TTCTTGTTACTAGTTCTAGCAT Shimada et al. (2011)

16S L2204 AAAGTGGGCCTAAAAGCAGCCA L2188 in Matsui et al. (2006)

16S Wil6 CCCTCGTGATGCCGTTGATAC 6 in Wilkinson et al. (2002)

16S L2606 CTGACCGTGCAAAGGTAGCGTAATCACT 16L1 in Hedges (1994)

16S H3056 CTCCGGTCTGAACTCAGATCACGTAGG 16H1 in Hedges (1994)

Cytb L14850 TCTCATCCTGATGAAACTTTGGCTC Tanaka et al. (1994)

Cytb H15502 GGATTAGCTGGTGTGAAATTGTCTGGG Tanaka et al. (1994)

Fig. 2. Bayesian tree of a 2897-bp sequence of Cytb, 12S rRNA, and 16S rRNA 
for Turkish water frogs. Numbers above branches represent bootstrap support for 
MP (1000 replicates)/ML (100) inherence, and numbers below branches indicate 
Bayesian posterior probabilities. For sample numbers, refer to Fig. 1 and Table 1.

Table 3. Alignment statistics for fragments of the 
Cytb, 12SrRNA, and 16S rRNA (all nucleotide 
positions included); number of base pairs (bp), 
number of variable sites (vs), number of parsimony 
informative sites (pi).

bp vs pi

Cytb  405 106  80
12S rRNA  973 109  93
16S rRNA 1519 184 158
Combined 2897 399 331
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two different taxa (Lineage B2-1 [P. caralitanus] and 
Lineage B2-2), and Subclade B1 should better be placed at 
a higher taxonomic position than these lineages. Unique 
genetic characteristics of Subclade B1 among Turkish water 
frogs indicate it to constitute a distinct species for which no 

available name is found. Frogs in Subclade B1 occur in the 
southernmost areas of Turkey, and superficially barely dis-
tinguishable from frogs of the lineages in Subclade B2, 
except for Lineage B2-1 (P. caralitanus). Further studies 
including samples from adjacent regions of southernmost 
Turkey are required to evaluate its taxonomic validity.

In Subclade B2, Lineages B2-1 and B2-2 may be con-
sidered heterospecific, as they occur nearly sympatrically in 
the Central Anatolia region. Lineage B2-1 is restricted to the 
Central Anatolia and Western Mediterranean regions, where 
Rana ridibunda caralitana (= Pelophylax caralitanus) was 
described. Our samples in this clade exhibit orange color 
and characteristic marking on the ventral surface that fit the 
original description of P. caralitanus. Thus, Lineage B2-1 
should be identified as that taxon. Heterospecific relation-
ships of lineages in Clade B and P. ridibundus (Clade A) are 
as discussed above, and recognition of P. caralitanus as a 
species conforms to the conclusion of Jdeidi et al. (2001). 
However, the fact is not so simple as discussed by Akın et 
al. (2010a: see below).

Based on bioacoustic data, Schneider and Sinsch 
(1999) considered water frogs from Beyşehir Lake (type 
locality of R. r. caralitanus) and Agean and Western 
Mediterranean regions as R. bedriagae. Their recognition of 
P. bedriagae and P. ridibundus in Turkey conforms to our 
conclusion, but synonymization of P. caralitanus with P. 
bedriagae requires some considerations. Schneider and 
Sinsch (1999) actually found significantly lower dominant 
frequency of mating calls in P. caralitanus than in other spe-
cies, but they ascribed this difference to the bigger size of 
P. caralitanus. If indeed the growth pattern such as the size 
at sexual maturity differs among water frogs, resultant 

frequency difference in mating calls 
can be regarded as meaningful in 
determining species relationships. 
Thus, the findings of Schneider and 
Sinsch (1999) may need to be reeval-
uated. At the same time, because 
their sampling of calls within Turkey 
was not necessarily adequate, 
denser sampling is required to reach 
more convincing taxonomic conclu-
sion for the water frogs in the country.

Sinsch and Schneider (1999) 
also compared morphological fea-
tures of P. caralitanus with topotypic 
specimens of P. ridibundus and P. 
bedriagae from Kazakhstan and 
Syria, respectively. They concluded 
that P. caralitanus is conspecific with 
P. bedriagae simply because they 
considered ventral coloration is gen-
erally variable among frogs. In con-
trast, Jdeidi et al. (2001), by similarly 
performing morphological compari-
son of water frogs, but in a wider 
range of Turkey, recognized distinct 
specific status of P. caralitanus and 
reported the syntopic occurence of P. 
caralitanus with P. bedriagae.

More recently, Akın et al. (2010a) 
Fig. 3. Ventral color variation among five genetic groups recognized. (A) Clade A, (B) Sub-
clade B1, (C) Lineage B2-1, (D) Lineage B2-2a, (E-1 and E-2) Lineage B2-2b. Not to scale.

Table 4. Comparison of uncorrected p-distances (in %, means 
followed by ranges in parenthesis) for fragments of the Cytb, 12S 
rRNA, and 16S rRNA among five genetic groups recognized: Clade 
A (northwesternmost); Subclade B1 (southernmost); Lineage B2-1 
(central Anatolia and western Mediterranean): Lineage B2-2b 
(eastern Anatolia): Lineage B2-2a (all remaining samples).

1 2 3 4

Cytb

1 Clade A –

2 Subclade B1 5.3 (5.2–5.4) –

3 Lineage B2-1 5.2 (4.9–5.4) 4.0 (4.0–4.2) –

4 Lineage B2-2a 5.2 (4.9–5.7) 3.4 (3.2–3.7) 2.0 (1.7–2.5) –

5 Lineage B2-2b 5.2 (4.9–5.4) 3.9 (3.7–4.2) 2.0 (1.5–2.5) 1.0 (0.5–1.5)

12S rRNA

1 Clade A –

2 Subclade B1 1.9 (1.8–1.9) –

3 Lineage B2-1 2.2 (2.2–2.2) 1.2 (1.0–1.3) –

4 Lineage B2-2a 2.1 (1.9–2.4) 1.2 (1.0–1.5) 0.6 (0.4–0.9) –

5 lineage B2-2b 2.7 (2.6–2.8) 1.7 (1.6–1.9) 1.1 81.1–1.3) 0.7 (0.5–0.9)

16S rRNA

1 Clade A –

2 Subclade B1 3.1 (3.1–3.1) –

3 Lineage B2-1 2.5 (2.4–2.6) 2.1 (2.0–2.1) –

4 Lineage B2-2a 2.8 (2.7–2.9) 2.1 (2.0–2.3) 1.0 (0.8–1.2) –

5 Lineage B2-2b 2.8 (2.6–2.8) 2.1 (1.9–2.1) 0.8 (0.6–0.9) 0.8 (0.6–1.0)
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examined the relationships between mtDNA haplotype and 
ventral colour in water frogs from localities surrounding the 
type locality of R. r. caralitana (P. caralitanus). They found 
a monophyly of the caralitana haplotypes in their phyloge-
netic tree from short sequences of mitochondrial ND3 gene 
(340-bp). However, some frogs in this clade did not exhibit 
orange-colored venters, the unique character of P. 

caralitanus. At the same time, some frogs with non-
caralitana haplotypes possessed an orange-colored venter. 
Akın et al. (2010a) considered this discordance in mtDNA 
haplotype and ventral coloration as a result of unidirectional 
genetic introgression in periphery regions of Beyşehir Lake, 
and rejected identification of P. caralitanus solely on the 
basis of ventral colour or mtDNA haplotype. They, however, 
did not give any conclusive idea about the taxonomic rela-
tionships among these frogs, but suggested the necessity of 
further studies including those on morphometric ratios, 
mating call parameters, and nuclear markers.

Akın et al. (2010a) used “Rana (ridibunda) caralitana, 
1988 Arıkan” in the title of their paper, but this has no taxo-
nomic meaning. From the sampling localities and positions 
on the phylogenetic tree, caralitana and non-caralitana 
lineages in Akın et al. (2010a) clearly correspond to our 
Lineages B2-1 and B2-2, respectively. If indeed reciprocal 
genetic introgression through hybridization between the 
caralitana (B2-1) and the non-caralitana (B2-2) lineages 
occurs as suggested by Akın et al. (2010a), these two lin-
eages could be considered as conspecific, but different sub-
species, because they consist of interbreeding, basically 
geographically isolated populations (Mayr and Ashlock, 
1991). Because one of two sublineages in Lineage B2-2 
(B2-2b) forms a monophyletic clade with P. bedriagae from 
Syria (type locality of the species) in an analysis with the 
GenBank data of the species (DQ474181), the Lineages B2-
1 and B2-2 should be collectively identified as P. bedriagae. 
Thus, we recommend the use of P. bedriagae caralitanus 
instead of P. caralitanus for our Lineage B2-1.

Finally, Lineage B2-2 contained two distinct lineages, 
B2-2a and B2-2b, but they are allopatric and genetically not 
much divergent (p-distance in 16S rRNA < 1%). We there-
fore consider them consubspecific at the moment, and call 
them P. b. bedriagae.

In conclusion, we suggest that three distinct species, P. 
ridibundus, unnamed species, and P. bedriagae (P. b. 
bedriagae and P. b. caralitanus), should be recognized as 
water frogs of Turkey.
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The endemic Japanese frog Rana tagoi is unique among Holarctic brown frogs in that it breeds in 

small subterranean streams. Using mitochondrial 16S ribosomal RNA and NADH dehydrogenase 

subunit 1 genes, we investigated genealogical relationships among geographic samples of this 

species together with its relative R. sakuraii, which is also a unique stream breeder. These two spe-

cies together form a monophyletic group, within which both are reciprocally paraphyletic. Rana 

tagoi is divided into two major clades (Clade A and B) that are composed of 14 genetic groups. 

Rana sakuraii is included in Clade A and split into two genetic groups, one of which forms a clade 

(Subclade A-2) with sympatric R. tagoi. This species-level paraphyly appears to be caused by 

incomplete taxonomy, in addition to introgressive hybridization and/or incomplete lineage sorting. 

Rana tagoi strongly differs from other Japanese anurans in its geographic pattern of genetic dif-

ferentiation, most probably in relation to its unique reproductive habits. Taxonomically, R. tagoi

surely includes many cryptic species.

Key words: Rana tagoi, Japan, mtDNA, paraphyly, cryptic species, subterranean breeding, genetic diver-

gence

INTRODUCTION

The genus Rana historically represented a very large 

group of frogs that occurred almost worldwide (Boulenger, 

1920; Frost, 1985; Dubois, 1992), but is now restricted to 

smaller number of Holarctic brown frogs (Frost et al., 2006) 

that are generally similar in adult morphology and ecology. 

Most congeners breed in still (lentic) waters, such as ponds 

and rice paddies (e.g., R. temporaria Linnaeus from Europe: 

Nöllert and Nöllert, 1992), and only a few (e.g., R. graeca

Boulenger from Europe and R. sauteri Boulenger from 

Taiwan) in flowing (lotic) waters of open streams (Nöllert 

and Nöllert, 1992; Tanaka-Ueno et al., 1998). Compared 

with such species, Japanese R. tagoi Okada (type locality: 

restricted by Shibata [1988] to Kamitakara-mura, currently 

included in Takayama-shi, Gifu Prefecture) is unique in that 

it breeds in small underground streams (Maeda and Matsui, 

1999). This subterranean breeding habit is highly special-

ized and is not known in any other congeneric species.

Rana tagoi is endemic to the main (Honshu, Shikoku, 

and Kyushu) and some adjacent, smaller (Yakushima, Oki, 

and Goto) islands of Japan. Eggs laid in subterranean 

streams are few in number and large in size, and once 

hatched tadpoles can metamorphose without feeding 

(Maeda and Matsui, 1999). Such traits appear to be an 

adaptation to this unique breeding environment. Another 

brown frog, R. sakuraii Matsui and Matsui (type locality: 

Okutama-machi, Nishitama-gun, Tokyo Prefecture) occurs 

only on Honshu Island and breeds in wider open streams in 

mountain regions. Other than the difference in breeding 

environment, this species is generally similar to R. tagoi in 

morphology and ecology, and is thought to be a close rela-

tive of R. tagoi, having originated from a R. tagoi-like sub-

terranean breeding ancestor (Maeda and Matsui, 1999).

Steep mountains that provide many streams and rivers 

occupy the larger part of the main islands of Japan. Reflect-

ing this environmental trait, there are various amphibian 

species that are adapted to lotic environments (e.g., Bufo 

torrenticola Matsui; Buergeria buergeri [Temminck and 

Schlegel]). Recent extensive surveys have revealed high 

cryptic diversity in some lotic breeding salamanders of the 

genera Hynobius Tschudi and Onychodactylus Tschudi 

(Nishikawa et al., 2007; Yoshikawa et al., 2008). A similar 

situation is expected in the case of lotic breeding R. tagoi, 

as the species is unique among Japanese frogs in that it 

contains three distinct subspecies (R. t. tagoi from main 

islands of Japan, R. t. okiensis Daito from Oki Islands, and 

R. t. yakushimensis Nakatani and Okada from Yakushima 

Island). In addition, morphological, breeding ecological 

(Sugahara, 1990; Sugahara and Matsui, 1992, 1993, 1994, 

1995, 1996, 1997), and karyological (Ryuzaki et al., 2006) 

variations reported within R. t. tagoi suggest that it includes 

cryptic species. Genetically, R. tagoi is also diversified as 
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shown by the analyses of allozymes (Nishioka et al., 1987) 

and mitochondrial DNA (mtDNA; Tanaka et al., 1994). In 

contrast, variations within R. sakuraii have been poorly stud-

ied.

These previous studies suggest the presence of phylo-

genetic and/or taxonomic problems in R. tagoi, while such 

information is lacking for R. sakuraii. To date, few studies 

(e.g., Ryuzaki et al., 2006) have compared a large number 

of samples from the entire distributional range of the two 

species, leaving the comprehensive patterns of intra- or 

inter-specific variations unresolved. In this study, we con-

ducted a phylogenetic analysis using two mitochondrial 

genes, relatively conservative 16S ribosomal RNA (16S 

rRNA) and rapidly evolving NADH dehydrogenase subunit 1 

(ND1; Mueller, 2006), to reveal patterns of genetic differen-

tiation and genealogical relationships in terms of mtDNA 

among samples of R. tagoi and R. sakuraii.

MATERIALS AND METHODS

We collected 183 specimens of R. t. tagoi, including the topo-

typic population, from 145 localities covering its entire distributional 

range in Honshu, Shikoku, and Kyushu. The large and small types 

of R. t. tagoi from Kinki (Sugahara, 1990) were distinguished 

according to the diagnosis of Sugahara and Matsui (1994). We also 

collected two specimens of R. t. yakushimensis from Yakushima 

Island and three specimens of R. t. okiensis from the Oki islands. 

Furthermore, we collected 19 specimens of R. sakuraii, including 

the topotype, from 16 localities in Honshu. Detailed sampling local-

ities are shown in Fig. 1 and Table 1.

As outgroups, we used R. tsushimensis from Tsushima Islands, 

Japan, and Lithobates sylvaticus from Quebec, Canada. The latter 

species is morphologically and ecologically similar to members of 

the genus Rana, but has been placed recently in another ranid 

genus, Lithobates (Frost et al., 2006).

Total DNA was extracted from frozen or ethanol-preserved tis-

sues by standard phenol-chloroform extraction procedures (Hillis et 

al., 1996). Fragments containing the entire 16S rRNA and ND1 

sequences, approximately 2.9 kb long, were amplified by poly-

merase chain reaction (PCR). The PCR cycle included an initial 

heating at 94°C for 4 min; 33 cycles of 94°C (30 s), 50°C (30 s), 

and 72°C (2 min 30 s); and a final extension at 72°C for 7 min. The 

amplified PCR products were purified by polyethylene glycol (PEG) 

precipitation procedures. The cycle sequence reactions were car-

ried out with ABI PRISM Big Dye Terminator v3.1 Cycle sequencing 

Kit (Applied Biosystems) and sequencing was performed on an ABI 

3130 automated sequencer. We used the primers listed in Table 2 

to amplify and sequence the fragments, and all samples were 

sequenced in both directions. The obtained sequences were depos-

Fig. 1. Map of Japan showing sampling localities of Rana t. tagoi (circles), R. t. yakushimensis (double circle), R. t. okiensis (stars), and R. 

sakuraii (triangles). Squares indicate localities with sympatry of R. t. tagoi and R. sakuraii. For names of localities and genetic groups, see 

Table 1.
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Table 1. Samples used for mtDNA analysis in this study with the information of voucher and collection locality. KUHE: Graduate School of 

Human and Environmental Studies, Kyoto University; TMP: Temporary numbered; UN: Unnumbered.

Sample
no

Locality
genetic
group

Voucher
(KUHE)

GenBank Sample
no

Locality
genetic
group

Voucher
(KUHE)

GenBank

16S rRNA ND1 16S rRNA ND1

Rana tagoi tagoi  49a Sasayama-shi, Hyogo Pref. A-1b 10285 AB639468 AB639638

  1 Mutsu-shi, Aomori Pref. A-1a 44827 AB639413 AB639593  49b 10307 AB639469 AB639639

  2 Goshogawara-shi, Aomori Pref. A-1a 36949 AB639413 AB639594  50a Asago-shi, Hyogo Pref. A-1b 10319 AB639470 AB639642

  3 Towada-shi, Akita Pref A-1a 13932 AB639413 AB639603  50b B-2a 36586 AB639471 AB639640

  4 Noda-mura, Iwate Pref. A-1a 37028 AB639413 AB639595  51 Kobe-shi, Hyogo Pref. A-1b 22647 AB639472 AB639641

  5 Kamaishi-shi, Iwate Pref. A-1a 27750 AB639411 AB639596  52 Wakasa-cho, Tottori Pref. A-1b 34743 AB639473 AB639642

  6 Oshu-shi, Iwate Pref. A-1a 32889 AB639413 AB639597  53 Nihonmatsu-shi, Fukushima Pref. A-2 36330 AB639474 AB639643

  7 Ichinoseki-shi, Iwate Pref. A-1a 35268 AB639412 AB639603  54 Hirono-machi, Fukushima Pref. A-2 44829 AB639475 AB639644

  8 Fujisawa-cho, Iwate Pref. A-1a 36699 AB639413 AB639598  55 Kitaibaraki-shi, Ibaraki Pref. A-2 27544 AB639476 AB639645

  9 Senboku-shi, Akita Pref. A-1a 27351 AB639413 AB639603  56 Hitachi-shi, Ibaraki Pref. A-2 27550 AB639477 AB639646

 10 Ishinomaki-shi, Miyagi Pref. A-1a 41545 AB639414 AB639603  57 Hitachiomiya-shi, Ibaraki Pref. A-2 43711 AB639478 AB639647

 11 Sendai-shi, Miyagi Pref. A-1a 37121 AB639415 AB639599  58a Tsukuba-shi, Ibaraki Pref. A-2 42747 AB639479 AB639648

 12 Sakata-shi, Yamagata Pref. A-1a 37544 AB639416 AB639600  58b 42751 AB639480 AB639649

 13 Yamagata-shi, Yamagata Pref. A-1a 37543 AB639417 AB639601  59 Mashiko-machi, Tochigi Pref. A-2 25968 AB639481 AB639650

 14 Kaminoyama-shi, Yamagata Pref. A-1a 29360 AB639420 AB639602  60a Akiruno-shi, Tokyo Pref. A-2 42452 AB639483 AB639651

 15 Nishikawa-machi, Yamagata Pref. A-1a 37548 AB639418 AB639603  61 Ichihara-shi, Chiba Pref. A-2 28409 AB639482 AB639652

 16 Nihonmatsu-shi, Fukushima Pref. A-1a 29595 AB639419 AB639604  62 Otsuki-shi, Yamanashi Pref. A-2 28064 AB639483 AB639653

 17 Shirakawa-shi, Fukushima Pref. A-1a 21629 AB639420 AB639605  63a Izu-shi, Shizuoka Pref. A-2 36715 AB639484 AB639654

 18a Daigo-machi, Ibaraki Pref. A-1a 42344 AB639420 AB639605  63b 43468 AB639485 AB639655

 18b A-2 43886 AB639421 AB639646  64 Fuji-shi, Shizuoka Pref. A-2 43473 AB639486 AB639656

 19 Nikko-shi, Tochigi Pref. A-1a 36719 AB639426 AB639609  65 Nakanojo-machi, Gunma Pref. A-4 22930, 22936 AB639487 AB639657

 20a Kanuma-shi, Tochigi Pref. A-1a 40166 AB639422 AB639609  66 Nagano-shi, Nagano Pref. A-5 18005 AB639488 AB639658

 21 Minakami-machi, Gunma Pref. A-1a 27539 AB639429 AB639612  67 Hokuto-shi, Yamanashi Pref. A-5 43483 AB639489 AB639659

 22 Nakanojo-machi, Gunma Pref. A-1a 27930 AB639424 AB639606  68a Gujo-shi, Gifu Pref. A-5 14228 AB639490 AB639660

 23 Shibukawa-shi, Gunma Pref. A-1a 29485 AB639425 AB639607  68b 44832 AB639491 AB639661

 24 Agano-shi, Niigata Pref. A-1a 29600 AB639426 AB639608  69 Hayakawa-cho, Yamanashi Pref. A-6 14208 AB639492 AB639662

 25 Aga-machi, Niigata Pref. A-1a UN AB639426 AB639609  70 Fujikawaguchiko-machi, A-6 43480 AB639493 AB639663

 26 Yahiko-mura, Niigata Pref. A-1a 27765 AB639427 AB639610 Yamanashi Pref.

 27 Kashiwazaki-shi, Niigata Pref. A-1a 36892 AB639428 AB639611  71a Shizuoka-shi, Shizuoka Pref. A-6 42977 AB639494 AB639664

 28 Uonuma-shi, Niigata Pref. A-1a 36896 AB639429 AB639612  71b 24561 AB639495 AB639665

 29 Otari-mura, Nagano Pref. A-1a 43367 AB639430 AB639613  72 Shizuoka-shi, Shizuoka Pref. A-6 29933 AB639496 AB639666

 30 Ueda-shi, Nagano Pref. A-1a 18752 AB639431 AB639614  73 Kawanehon-cho, Shizuoka Pref. A-6 42270 AB639497 AB639667

 31 Kiso-machi, Nagano Pref. A-1a 43382 AB639432 AB639615  74 Fujieda-shi, Shizuoka Pref. A-6 17955 AB639498 AB639668

 32 Hodatsushimizu-cho, Ishikawa Pref. A-1a 41053 AB639433 AB639616  75 Kakegawa-shi, Shizuoka Pref. A-6 39980 AB639499 AB639669

 33 Takayama-shi, Gifu Pref. A-1a 27613, 43018 AB639434 AB639617  76 Neba-mura, Nagano Pref. A-6 27335 AB639500 AB639670

 34 Shirakawa-mura, Gifu Pref. A-1a 26104 AB639435 AB639618  77 Shitara-cho, Aichi Pref. A-6 27251 AB639501 AB639671

 35a Ibigawa-cho, Gifu Pref. A-1a 27388 AB639436 AB639619  78a Ise-shi, Mie Pref. A-6 42829 AB639502 AB639672

 36 Ikeda-cho, Fukui Pref. A-1a 40441 AB639438 AB639624  78b 42830 AB639503 AB639672

 37 Nagahama-shi, Shiga Pref. A-1a 41470, 41471 AB639439 AB639621  79 Minamiawaji-shi, Hyogo Pref. A-7 43885 AB639504 AB639673

 38 Maibara-shi, Shiga Pref. A-1a 37610, 37614 AB639440 AB639622  80 Manno-cho, Kagawa Pref. A-7 TMP_T2882 AB639505 AB639674

 39a Taga-cho, Shiga Pref. A-1a 41287 AB639440 AB639622  81 Kamiyama-cho, Tokushima Pref. A-7 TMP_T2876 AB639506 AB639675

 39b 41551 AB639441 AB639623  82 Saijo-shi, Ehime Pref. A-7 27679 AB639507 AB639676

 40 Nagahama-shi, Shiga Pref. A-1a 40385 AB639442 AB639624  83 Imabari-shi, Ehime Pref. A-7 27506 AB639508 AB639677

 41a Takashima-shi, Shiga Pref. A-1a TMP_T3395 AB639443 AB639625  84 Seiyo-shi, Ehime Pref. A-7 TMP_T2241 AB639509 AB639678

 41b 40437 AB639444 AB639625  85 Toyo-cho, Kochi Pref. A-7 29464 AB639510 AB639679

 41c TMP_T3402 AB639445 AB639625  86 Kochi-shi, Kochi Pref. A-7 36184 AB639511 AB639680

 41d A-1b TMP_T3392 AB639446 AB639626  87 Kitakyushu-shi, Fukuoka Pref. A-9a 28614 AB639512 AB639681

 42a Takashima-shi, Shiga Pref. A-1b 25993 AB639447 AB639627  88 Koga-shi, Fukuoka Pref. A-9a 26841 AB639513 AB639682

 42b B-2a 43609 AB639448 AB639711  89 Fukuoka-shi, Fukuoka Pref. A-9a 26238 AB639514 AB639683

 42c B-2a 25996 AB639453 AB639711  90 Yame-shi, Fukuoka Pref. A-9a 26643 AB639515 AB639684

 43a Otsu-shi, Shiga Pref. A-1b 41414, 43428 AB639449 AB639628  91 Asakura-shi, Fukuoka Pref. A-9a 27137 AB639516 AB639685

 43b B-2a 41090 AB639450 AB639629  92 Isahaya-shi, Nagasaki Pref. A-9a 9660 AB639517 AB639686

 43c 43148 AB639451 AB639713  93 Sasebo-shi, Nagasaki Pref. A-9a 27140 AB639518 AB639687

 44a Nantan-shi, Kyoto Pref. A-1b 41408 AB639452 AB639630  94 Beppu-shi, Oita Pref. A-9a 43637 AB639519 AB639688

 44b B-2a 41406 AB639453 AB639711  95 Bungo-ohno-shi, Oita Pref. A-9a 27146 AB639520 AB639694

 44c 41426 AB639547 AB639713  96 Kokonoe-machi, Oita Pref. A-9a 26148 AB639521 AB639689

 45a Kyoto-shi, Kyoto Pref. A-1b 43324 AB639457 AB639635  97 Gokase-cho, Miyazaki Pref. A-9a 44834 AB639522 AB639690

 45b B-2a 41730 AB639458 AB639633  98 Ebino-shi, Miyazaki Pref. A-9a 41284 AB639523 AB639694

 45c 38698 AB639459 AB639634  99 Yatsushiro-shi, Kumamoto Pref. A-9a 27562 AB639524 AB639691

 46a Kyoto-shi, Kyoto Pref. A-1b 42034, 44828 AB639460 AB639635 100 Amakusa-shi, Kumamoto Pref. A-9a 30342 AB639525 AB639692

 46b B-2a 44835 AB639462 AB639711 101 Soo-shi, Kagoshima Pref. A-9a 42191 AB639526 AB639693

 46c 42396 AB639463 AB639711 102 Izumi-shi, Kagoshima Pref. A-9a 27564 AB639527 AB639694

 46d 41439 AB639461 AB639713 103 Kanoya-shi, Kagoshima Pref. A-9a 27295, 43404 AB639530 AB639697

 46e 42319 AB639464 AB639712 104 Nobeoka-shi, Miyazaki Pref. A-9b 27121 AB639528 AB639695

 47a Toyooka-shi, Hyogo Pref. A-1b 25664 AB639465 AB639636 105 Nishimera-son, Miyazaki Pref. A-9b 26088 AB639529 AB639696

 47b B-2a 25662 AB639564 AB639729 106 Aya-cho, Miyazaki Pref. A-9b 42194 AB639531 AB639698

 48a Toyooka-shi, Hyogo Pref. A-1b 42711 AB639466 AB639637 107 Miyakonojo-shi, Miyazaki Pref. A-9b 30907 AB639532 AB639699

 48b B-2a 42714 AB639467 AB639729 Continued
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ited in GenBank (Table 1).

Sequences obtained were aligned using 

Clustal W (Thompson et al., 1994), and gaps 

and ambiguous areas were excluded from 

alignments using Gblocks 0.91b (Castresana, 

2000) with default settings. We then con-

structed phylogenetic trees from the combined 

alignments using maximum parsimony (MP), 

maximum likelihood (ML), and Bayesian infer-

ence (BI). The MP analysis was performed 

using PAUP*4.0b10 (Swofford, 2002). We 

used a heuristic search with the tree bisection 

and reconnection (TBR) branch-swapping 

algorithm and 100 random additions repli-

cates, and the number of saved trees was 

restricted to 5,000. Transitions and transver-

sions were equally weighted. The ML and BI 

analyses were respectively performed using TREEFINDER ver. 

Oct. 2008 (Jobb, 2008) with Phylogears 1.5.2010.03.24 (Tanabe, 

2008) and MrBayes 3.1.2 (Huelsenbeck and Ronquist, 2001). Dif-

ferent substitution models were applied for each gene partition in 

both of the analyses. The optimum substitution model for each gene 

was selected by using Kakusan4 (Tanabe, 2010), based on the 

Akaike information criterion (AIC). The best model was calculated 

for each codon position (1st, 2nd, and 3rd positions) of the ND1 

genes. In the BI analysis, two independent runs of four Markov 

chains were conducted for 7,000,000 generations (sampling fre-

quency: one tree per 100 generations). We used TRACER v. 1.4 

(Rambaut and Drummond, 2007) to determine the burn-in size and 

when the log likelihood of sampled trees reached stationary distri-

bution, and the first 7,001 trees were discarded (burn-in = 700,000).

The robustness of the MP and ML trees were tested using non-

parametric bootstrap analysis (Felsenstein 1985) with 1,000 repli-

cates. We regarded tree topologies with bootstrap value (BS) 70% 

or greater as sufficiently supported (Huelsenbeck and Hillis, 1993). 

For the BI, we regarded Bayesian posterior probability (BPP) 0.95 

or greater as significant support (Huelsenbeck and Ronquist, 2001; 

Table 1. Continued

Sample
no

Locality
genetic
group

Voucher
(KUHE)

GenBank Sample
no

Locality
genetic
group

Voucher
(KUHE)

GenBank

16S rRNA ND1 16S rRNA ND1

108 Kimotsuki-cho, Kagoshima Pref. A-9b 43397 AB639533 AB639700 141 Hatsukaichi-shi, Hiroshima Pref. B-2b UN AB639571 AB639736

109a Kanoya-shi, Kagoshima Pref. A-9b 43401 AB639534 AB639701 142 Higashihiroshima-shi, B-2b 30262 AB639572 AB639737

109b 43403 AB639535 AB639702 Hiroshima Pref.

110a Kinko-cho, Kagoshima Pref. A-9b 27678 AB639536 AB639703 143 Higashihiroshima-shi, B-2b 30220 AB639573 AB639738

110b 41250 AB639537 AB639704 Hiroshima Pref.

111 Goto-shi, Nagasaki Pref. A-9c 31539 AB639538 AB639705 144 Hagi-shi, Yamaguchi Pref. B-2b 42848 AB639574 AB639739

112a Taga-cho, Shiga Pref. B-2a 43508 AB639539 AB639706 145 Shimonoseki-shi, Yamaguchi Pref. B-2b 34516 AB639575 AB639740

112b 43509 AB639540 AB639707 R. t. yakushimensis

113 Konan-shi, Shiga Pref. B-2a 18763 AB639541 AB639708 146a Yakushima-cho, Kagoshima Pref. A-8 10182 AB639578 AB639741

114a Koka-shi, Shiga Pref. B-2a 28466 AB639542 AB639709 146b 43326 AB639577 AB639741

115 Kyotango-shi, Kyoto Pref. B-2a 24566 AB639544 AB639729 R. t. okiensis

116 Maizuru-shi, Kyoto Pref. B-2a TMP_T3345 AB639545 AB639711 147a Okinoshima-cho, Shimane Pref. B-1 10818 AB639576 AB639742

117a Kyoto-shi, Kyoto Pref. B-2a 27168 AB639546 AB639712 147b 22341 AB639579 AB639742

117b 41431 AB639547 AB639714 148 Nishinoshima-cho, Shimane Pref. B-1 43647 AB639580 AB639742

118 Kameoka-shi, Kyoto Pref. B-2a 41553 AB639548 AB639713 R. sakuraii

119 Joyo-shi, Kyoto Pref. B-2a 41554 AB639549 AB639714  20b Kanuma-shi, Tochigi Pref. A-2 43635 AB639423 AB639744

120 Komono-cho, Mie Pref. B-2a 26744 AB639550 AB639715  35b Ibigawa-cho, Gifu Pref. A-3 36297 AB639437 AB639620

121 Matsuzaka-shi, Mie Pref. B-2a 41484 AB639551 AB639716  44d Nantan-shi, Kyoto Pref. A-3 UN AB639454 AB639631

122 Owase-shi, Mie Pref. B-2a 26990 AB639552 AB639717  44e 41412 AB639455 AB639632

123a Odai-cho, Mie Pref. B-2a 40190 AB639553 AB639718  44f 41413 AB639456 AB639632

124 Izumi-shi, Osaka Pref. B-2a TMP_T3425 AB639556 AB639721  60b Akiruno-shi, Tokyo Pref. A-2 42450 AB639583 AB639744

125 Soni-mura, Nara Pref. B-2a 24435 AB639557 AB639722 114b Koka-shi, Shiga Pref. A-3 TMP_T2666 AB639543 AB639710

126 Sakurai-shi, Nara Pref. B-2a 18893 AB639558 AB639723 123b Odai-cho, Mie Pref. A-3 27647 AB639554 AB639719

127 Kudoyama-cho, Wakayama Pref. B-2a 24546 AB639559 AB639724 123c 40309 AB639555 AB639720

128 Hongu-cho, Wakayama Pref. B-2a 26784 AB639560 AB639725 149 Naganohara-machi, Gunma Pref. A-2 27937 AB639581 AB639744

129 Shingu-shi, Wakayama Pref. B-2a 24540 AB639560 AB639726 150 Chichibu-shi, Saitama Pref. A-2 43736 AB639582 AB639743

130 Gobo-shi, Wakayama Pref. B-2a 41229 AB639561 AB639727 151 Okutama-machi, Tokyo Pref. A-2 UN AB639583 AB639744

131 Kami-cho, Hyogo Pref. B-2a 43603 AB639562 AB639728 152 Kiyokawa-mura, Kanagawa Pref. A-2 14276 AB639584 AB639745

132 Taka-cho, Hyogo Pref. B-2a 10330 AB639564 AB639729 153 Matsumoto-shi, Nagano Pref. A-2 22887 AB639585 AB639746

133 Sayo-cho, Hyogo Pref. B-2a 41021 AB639563 AB639729 154 Fujikawa-cho, Yamanashi Pref. A-2 43481 AB639586 AB639747

134 Kamigori-cho, Hyogo Pref. B-2a 41022 AB639563 AB639729 155 Itoigawa-shi, Niigata Pref. A-3 31300 AB639587 AB639748

135 Mimasaka-shi, Okayama Pref. B-2a 27659 AB639564 AB639730 156 Hamamatsu-shi, Shizuoka Pref. A-3 UN AB639588 AB639749

136 Misasa-cho, Tottori Pref. B-2b 24574 AB639565 AB639731 157 Nakatsugawa-shi, Gifu Pref. A-3 18201 AB639589 AB639749

137 Daisen-cho, Tottori Pref. B-2b 36824 AB639566 AB639732 158 Iwakuni-shi, Yamaguchi Pref. A-3 43893 AB639590 AB639750

138 Unnan-shi, Shimane Pref. B-2b 18877 AB639567 AB639734 R. tsushimensis

139a Shobara-shi, Hiroshima Pref. B-2b 36037 AB639568 AB639733 Tsushima-shi, Nagasaki Pref. 11606 AB639592 AB639752

139b 36040 AB639569 AB639734 Lithobates sylvaticus

140 Shobara-shi, Hiroshima Pref. B-2b 24553 AB639570 AB639735 Quebec, Canada UN AB639591 AB639751

Table 2. Primers used to amplify mtDNA in this study.

Target Name Sequence Reference

16S L1507 TACACACCGCCCGTCACCCTCTT Shimada et al. (2011)

H1923 AAGTAGCTCGCTTAGTTTCGG Shimada et al. (2011)

L1879 CGTACCTTTTGCATCATGGTC Shimada et al. (2011)

H2315 TTCTTGTTACTAGTTCTAGCAT Shimada et al. (2011)

L2188 AAAGTGGGCCTAAAAGCAGCCA Matsui et al. (2006)

Wilkinson_6 CCCTCGTGATGCCGTTGATAC Wilkinson et al. (2002)

16L1 CTGACCGTGCAAAGGTAGCGTAATCACT Hedges (1994)

16H1 CTCCGGTCTGAACTCAGATCACGTAGG Hedges (1994)

ND1 L3032 CGACCTCGATGTTGGATCAGG Shimada et al. (2011)

ND1_Htago GRGCRTATTTGGAGTTTGARGCTCA this study

ND1_Ltago GACCTAAACCTCAGYATYCTATTTAT this study

tMet_H AGGAAGTACAAAGGGTTTTGATC Shimada et al. (2011)
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Leaché and Reeder 2002). Uncorrected p-distances for each gene 

were also calculated using PAUP* ver. 4.0b10.

RESULTS

Sequences and statistics

We obtained complete 16S rRNA (1,625 bp long) and 

ND1 (973 bp) sequences from 207 individuals and two out-

group taxa. After excluding gaps and ambiguous areas, a 

combined 2,521 nucleotide sites, of which 624 were variable 

Table 3. Alignment statistics for total 16S rRNA and ND1. The 

number of base pairs (bp), variable sites (vs), number of parsimony 

informative sites (pi), and transition-transversion ratio (ti/tv) are 

given for ingroups only.

bp vs pi ti/tv

16SrRNA 1554 310 206 6.65

ND1  967 314 250 9.38

Combined 2521 624 456 8.04

Fig. 2. Bayesian tree of total 16S rRNA and ND1 mitochondrial genes for three subspecies of R. tagoi, R. sakuraii, and outgroup taxa. Nodal 

values indicate bootstrap supports for MP and ML, and Bayesian posterior probability (MP-BS/ML-BS/BPP). Asterisks indicate nodes with MP-

BS and ML-BS = 70% and BPP = 0.95. For locality numbers, see Table 1 and Fig. 1.
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and 456 parsimoniously informative 

(Table 3), were used for phylogenetic 

analysis. We detected 190 haplotypes 

within the ingroup, of which 168 were in 

R. t. tagoi, two in R. t. yakushimensis, 

three in R. t. okiensis, and 17 in R. 

sakuraii.

The MP analysis produced 5,000 

equally most parsimonious trees (L = 

2007, CI = 0.519, RI = 0.901). For the 

ML analysis, the best substitution 

model of 16S rRNA estimated by 

Kakusan 4 was J2 model with a 

Gamma (G) shape parameter. In 

ND1, Hasegawa-Kishino-Yano-1985 

(HKY85) model + G, HKY85 + G, and 

J2 + G were selected for the 1st, 2nd, 

and 3rd codon positions, respectively. 

For the BI analysis, the general time 

reverse (GTR) model + G was 

selected for 16S rRNA. In ND1, 

HKY85 + G, HKY85 + G, and GTR + G were selected for 

the 1st, 2nd, and 3rd codon positions, respectively. The like-

lihood values (–lnL) of the ML and BI trees were 14439.77 

and 15102.97, respectively.

Phylogenetic relationships

The ML and BI analyses yielded essentially identical 

topologies. The MP tree was also similar to these, although 

support values tended to be lower. The BI tree is shown in 

Fig. 2. Rana tagoi and R. sakuraii formed a fully supported 

monophyletic group, but both were paraphyletic with respect 

to each other. The ingroup was divided into two major 

clades, Clade A (MP-BS = 79%, ML-BS = 83%, BPP = 0.99) 

and Clade B (98%, 87%, 1.00, respectively), with uncor-

rected p-distances of 2.1% to 3.9% in 16S rRNA and 4.9% 

to 8.5% in ND1 between them. Each clade contained sev-

eral subclades, some of which were further divided into two 

or three groups. Sequence divergences as measured by the 

mean uncorrected p-distances among these subclades and 

groups are shown in Table 4.

Clade A, which contained a subset of R. t. tagoi, R. t. 

yakushimensis, and R. sakuraii samples, was divided into 

nine subclades (Subclade A-1 to A-9). Subclade A-1 (94%, 

98%, 1.00) contained R. t. tagoi samples from Tohoku, 

northern Chubu, and northern Kinki regions. This subclade 

was divided into two groups, Group A-1a (97%, 99%, 1.00) 

and A-1b (96%, 99%, 1.00), with sequence divergences of 

0.9% to 1.9% in 16S rRNA and 3.3% to 4.9% in ND1 

between them.

Group A-1a contained R. t. tagoi from Tohoku, northern 

Chubu, and northeastern Kinki (localities 1 to 41), including 

topotypic samples (locality 33) and a part of the R. t. tagoi

large type (Sugahara, 1990) (locality 41). Except for sam-

ples from localities 11 to 13, which were divergent from the 

others, genetic variation within Group A-1a was small, 

despite its wide range of distribution. Group A-1b consisted 

of all samples of the R. t. tagoi small type from northern 

Kinki (localities 41 to 52). Within this group, genetic variation 

among haplotypes was signifcant, and four divergent sub-

groups were recognized.

Subclade A-2 (96%, 99%, 1.00) contained R. t. tagoi

from Kanto region (localities 18 and 53 to 64) and was 

divided into two divergent groups. Interestingly, R. sakuraii

from eastern Honshu (localities 20, 60, and 149 to 154), 

including topotypic samples (locality 151), was completely 

embedded in one of these groups. Within Subclade A-2, R. 

sakuraii was not much divergent from R. t. tagoi (0.8% to 

1.3% in 16S; 1.3% to 3.0% in ND1).

Subclade A-3 (99%, 99%, 1.00) contained R. sakuraii 

from western Honshu (localities 35, 44, 114, 123, and 155 

to 158), and was divided into three groups. Subclades A-2 

and A-3 tended to form a clade, but their monophyly was not 

supported (< 50%, 66%, 0.86).

Subclade A-4 contained only one sample of R. t. tagoi 

from Nakanojo-machi (former Kuni-mura), Gunma (locality 

65), while Subclade A-5 (78%, 75%, 1.00) contained diver-

gent haplotypes of R. t. tagoi from central Chubu (localities 

66 to 68). Subclade A-6 (all 100%, or 1.00) contained R. t. 

tagoi from southern Chubu (localities 69 to 77) and Shima 

Peninsula (locality 78), where variation among haplotypes 

was small. This subclade included R. t. tagoi with 2n = 28 

chromosomes (vs. 2n = 26 chromosomes in R. tagoi sam-

ples from other localities so far studied) from Neba-mura, 

Nagano (Ryuzaki et al., 2006; locality 76). Subclades A-4 to 

A-6 tended to form a clade, but their monophyly was not 

unambiguously supported (< 50%, 68%, 1.00). Subclades 

A-1 to A-6 also tended to form a clade, but the MP support 

of this node was low (< 50%, 77%, 1.00).

Subclade A-7 (99%, 99%, 1.00) contained R. t. tagoi

from Shikoku (localities 80 to 86) and Awaji Island (locality 

79), with small genetic variations within the group. Subclade 

A-8 (all 100%, or 1.00) contained R. t. yakushimensis from 

Yakushima Island (locality 146), and was close to Subclade 

A-7, although their monophyly was not supported (< 50%, 

63%, 0.54).

Subclade A-9 (90%, 99%, 1.00) contained R. t. tagoi 

from Kyushu and tended to form a clade with A-7 and A-8 

but their monophyly was not supported (< 50%, 66%, 0.98). 

Subclade A-9 was divided into three groups, Groups A-9a 

(99%, 100%, 1.00), A-9b (93%, 94%, 1.00), and A-9c (only 

Table 4. Mean uncorrected p-distances (%) among genetic groups of three subspecies of R. 

tagoi and R. sakuraii for 16S rRNA (above diagonal) and ND1 (bellow diagonal). Darkly shaded 

areas indicate distances among groups with sympatric distribution and lightly shaded areas 

indicate distances among groups with parapatric distribution.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 1. A-1a – 1.3 1.6 1.9 1.6 1.4 1.5 1.9 1.9 1.7 1.8 2.0 1.7 3.0 3.3 3.0

 2. A-1b 4.1 – 1.8 2.1 1.7 1.6 1.6 1.9 2.1 1.6 2.0 2.3 1.8 2.8 3.2 2.9

 3. A-2 (R. t. tagoi) 3.9 4.3 – 1.1 1.7 1.3 1.6 1.9 1.9 1.7 1.9 2.2 1.8 2.9 3.1 2.8

 4. A-2 (R. sakuraii) 4.2 4.2 2.1 – 1.9 1.4 1.8 2.0 2.1 1.9 2.1 2.4 2.1 3.0 3.1 2.8

 5. A-3 4.7 5.0 3.7 3.6 – 1.4 1.5 1.9 2.1 1.8 1.9 2.2 1.8 2.7 3.0 2.6

 6. A-4 3.9 4.3 3.0 3.3 4.1 – 1.3 1.7 1.8 1.5 1.7 2.0 1.6 2.7 2.8 2.6

 7. A-5 4.4 4.9 3.5 3.8 4.4 3.0 – 1.5 2.1 1.7 2.0 2.3 1.9 2.9 3.1 2.8

 8. A-6 5.0 4.7 4.3 4.3 5.4 3.4 4.1 – 2.3 2.0 2.3 2.5 2.1 2.9 3.3 2.8

 9. A-7 4.7 5.2 3.8 4.4 5.1 4.1 4.7 5.3 – 1.8 2.0 2.4 1.9 3.0 3.1 2.7

10. A-8 4.0 4.4 3.1 3.4 3.9 2.8 3.6 4.0 3.1 – 1.8 2.1 1.6 2.7 2.8 2.7

11. A-9a 5.2 5.3 4.2 4.4 5.4 4.4 4.8 5.4 4.4 3.4 – 1.7 1.3 3.2 3.2 2.9

12. A-9b 4.7 5.1 3.8 4.1 4.8 3.7 4.2 4.9 4.1 2.8 3.0 – 1.4 3.3 3.5 3.1

13. A-9c 5.0 5.2 4.1 3.9 5.0 4.0 4.7 5.3 4.1 3.3 3.2 2.9 – 2.9 3.1 2.8

14. B-1 6.1 6.4 5.6 6.0 6.5 5.3 5.9 6.1 5.9 5.4 6.3 6.2 6.4 – 2.0 1.8

15. B-2a 6.9 6.7 5.9 6.3 6.5 5.9 6.3 6.7 6.3 5.8 6.7 6.6 6.6 4.1 – 1.3

16. B-2b 7.0 6.9 5.7 6.1 7.0 5.9 6.5 6.6 6.3 6.0 6.4 6.4 6.4 4.4 2.9 –



K. Eto et al.668

one sample) with divergences 

between them being 1.3% to 1.7% in 

16S, and 2.9% to 3.2% in ND1. 

Group A-9a contained samples from 

northwestern Kyushu (localities 87 to 

103), and genetic variation within the 

group was small. Group A-9b con-

sisted of samples from southern 

Pacific side of the island (localities 

104 to 110) and was divided into two 

subgroups. Group A-9c contained 

one sample from Narujima Island 

(locality 111).

Clade B contained R. t. okiensis

and a part of R. t. tagoi samples and 

was divided into two subclades. One 

of them, Subclade B-1 (all 100% or 

1.00) contained R. t. okiensis from 

Oki islands (localities 147 and 148), 

while another, Subclade B-2 (99%, 

95%, 1.00), consisted of R. t. tagoi from western Honshu. 

Two groups, with divergences of 0.8% to 1.6% in 16S rRNA 

and 2.1% to 4.0% in ND1, were recognized within this sub-

clade; Group B-2a (99%, 95%, 1.00) and Group B-2b (88%, 

69%, 1.00). Group B-2a contained samples from Kinki 

(localities 42 to 48, 50, and 112 to 135) and was divided into 

three subgroups. A large portion of the R. t. tagoi large type 

(Sugahara, 1990) samples (localities 42 to 48 and 50) was 

included in this group. Group B-2b contained samples from 

Chugoku (localities 136 to 145) and was divided into two 

subgroups.

Geographic distribution of genetic groups

Genetic groups recognized in two major clades of R. 

tagoi (sensu lato) and R. sakuraii (totally 15 subclades/

groups) showed a complex pattern of geographic distribu-

tion, with sympatric or parapatric occurrence in some (Figs. 

1, 3 and Table 4). Only R. t. yakushimensis (A-8), R. t. 

okiensis (B-1), R. t. tagoi from Awaji Island and Shikoku (A-

7), and Rana t. tagoi from Kyushu (A-9a, b, and c) were allo-

patric from the other genetic groups, although A-9a and A-

9b were parapatric within Kyushu.

Rana t. tagoi Group A-1a was widely distributed 

throughout northeastern Honshu to the northern part of cen-

tral Honshu. It was transposed by R. t. tagoi Groups A-1b 

and B-2a in northeastern Kinki, the westernmost area of its 

distributional range. Group A-1a and A-1b were parapatric, 

with the exception of one sympatric site (locality 41). Group 

A-1b was distributed in northern part of Kinki, and was sym-

patric with B-2a in almost all ranges of its distribution (local-

ities 42 to 48 and 50).

Group A-1a was transposed by R. t. tagoi in Subclade 

A-2 in northern Kanto. They were mostly parapatric, but 

were sympatric in one site (locality 18). Rana t. tagoi in Sub-

clade A-2 was replaced by Subclade A-6 (southern Chubu) 

in western Kanto. Subclades A-4 and A-5 occurred in north-

western Kanto to central Chubu, between Group A-1a in the 

Sea of Japan side and Subclade A-6 in the Pacific side. 

Subclade A-4 was sympatric with A-1a, and A-5 also 

seemed to overlap with A-1a. Subclade A-6 widely occurred 

covering southern Chubu, and was replaced by Group B-2a 

in the Shima Peninsula (locality 78).

Group B-2a of R. t. tagoi from Kinki, which was sympat-

ric with the R. t. tagoi small type (A-1b) as shown above, 

was transposed in the west by B-2b, which widely occurred 

in Chugoku, western Honshu.

Rana sakuraii was divided into two genetic groups, east-

ern (A-2) and western (A-3) subclades. In western Kanto, R. 

sakuraii was sympatric with R. t. tagoi and together formed 

Subclade A-2. Also, in the northern part of its distribution, R. 

sakuraii in Subclade A-2 was sympatric with R. t. tagoi A-1a 

(locality 20) and parapatric with A-4 (localities 160 and 67), 

and furthermore, seemed to overlap with A-5 in central 

Chubu. Subclade A-2 was transposed by R. sakuraii Sub-

clade A-3 in the most western range of its distribution. Sub-

clade A-3 largely overlapped with R. t. tagoi genetic groups 

in western Honshu (e.g., A-5, A-6, and B-2b), and sympatric 

with A-1a (locality 35), A-1b (locality 44), and B-2a (localities 

44 and 114).

DISCUSSION

Phylogenetic relationships and genetic differentiation

Using allozymes and proteins, Nishioka et al. (1987) 

constructed a phenogram in which R. t. yakushimensis (A-8 

in this study) was shown to be divergent from R. t. tagoi

from western Japan. Within the latter, populations from Kinki 

(B-2a), Chugoku (B-2b), and Shikoku (A-7) formed one 

group, and those from Kyushu (A-9a) and R. t. okiensis (B-

1) formed another. These results are completely discordant 

with results obtained by us or by Tanaka et al. (1996) from 

the mitochondrial cyt b gene. Our results showed common 

features with those reported by Tanaka et al. (1994, 1996: 

i.e., paraphyly of R. tagoi; large differentiation between large 

[B-2a] and small [A-1b] types of R. t. tagoi from Kyoto). 

Although there are superficial differences between Tanaka 

et al. (1994, 1996) and the present study, in the relation-

ships of R. t. tagoi, R. t. yakushimensis, and R. t. okiensis, 

such discrepancies surely resulted from insufficient sam-

pling in the Tanaka et al. (1994, 1996) study (e.g., Tanaka 

et al. [1996] used seven samples from five localities of R. t. 

tagoi, one sample of R. t. yakushimensis, three samples of 

R. t. okiensis, and six samples from three localities of R. 

Fig. 3. Distributional range of each genetic group of Rana tagoi (solid line) and R. sakuraii 

(dotted line). For names of genetic groups, see Table 1 and Fig. 2.
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sakuraii), and results obtained from mtDNA analyses are 

considered essentially similar.

Discordance between trees based on nuclear (i.e., 

allozymes) and mitochondrial markers is generally explained 

by the paralogy of genes, introgressive hybridization, and 

incomplete lineage sorting with ancestral polymorphism 

(Ballard and Whitlock, 2004). However, these factors are dif-

ficult to differentiate without additional studies, in which 

nuclear marker analyses are made on the samples used in 

the present mtDNA analysis. In contrast to mitochondrial 

genes, allozymes are of limited value in estimating phyloge-

nies, as historical relationships among alleles remain 

unclear (Avise, 2000). Thus, phylogenetic trees based on 

mitochondrial genes should be more valid than the allozymic 

ones, although the possibility of mitochondrial gene intro-

gression, which leads to a strongly biased gene tree, is not 

precluded.

The geographic pattern of genetic differentiations 

obtained for R. tagoi is quite unique among Japanese 

anurans in that samples from western Honshu (Clade B) first 

diverge from the others (Clade A). In wide-ranging Japanese 

anurans (e.g., Bufo japonicus: Matsui, 1984; Igawa et al., 

2006; R. japonica: Sumida and Ogata, 1998; R. rugosa: 

Sekiya et al., 2010; Buergeria buergeri: Nishizawa et al., 

2011), populations from western Honshu and those from 

Shikoku and Kyushu tend to form a clade, unlike in R. tagoi,

in which populations from eastern to central Honshu, 

Shikoku, and Kyushu form a clade (Clade A). This unique 

distribution suggests that geographical and environmental 

factors that separated Clades A and B of R. tagoi differ from 

those that affected the distribution of other Japanese 

anurans. Our results do not contradict Matsui and Matsui’s 

(1990) hypothesis that the probable common ancestor of R. 

tagoi and R. sakuraii would have a habit of subterranean 

breeding, which is quite unique among Japanese anurans. 

The availability of subterranean environments, which was 

not so critical in other anurans, may have been a major fac-

tor that caused population fragmentation and subsequent 

genetic divergence in the ancestor of R. tagoi and R. 

sakuraii.

The current wider distribution of Clade A compared to 

Clade B indicates the Clade A ancestor was dominant 

throughout Honshu, including Kinki and Chugoku, in the 

past, whereas Clade B now predominates. Later, ancestral 

Clade B appears to have arisen somewhere in western 

Honshu and expanded its range towards east while affecting 

Clade A by exclusion through competition, and/or causing 

gene introgression to lose its original haplotypes. Rana 

sakuraii and the small type of R. t. tagoi are sympatric with, 

and specifically distinct from Clade B in Kinki and Chugoku. 

It is possible that these two groups have already sufficiently 

differentiated ecologically to avoid competition or introgres-

sive hybridization with Clade B for coexistence in these 

regions.

Taxonomic relationships

Of the many genetic groups recognized, Group A-1a 

should be considered true R. t. tagoi as it included the topo-

typic population from Kamitakara of the current Takayama-shi 

(locality 33), Gifu (Okada, 1928; Shibata, 1988). The small 

type of R. t. tagoi, one of the two types of R. t. tagoi from 

Kinki (Sugahara, 1990), represented Group A-1b and was 

sympatric with the large type (parts of A-1a and B-2a). The 

small type differs from the large type in morphological, 

acoustic, and breeding ecological traits (Sugahara, 1990; 

Sugahara and Matsui, 1992, 1993, 1994, 1995, 1996, 1997). 

Thus, R. t. tagoi small type (A-1b) should be regarded as a 

distinct species. In contrast, R. t. tagoi morphologically iden-

tified as the large type was placed in two genetic groups (A-

1a and B-2a), both with samples from the regions other than 

Kinki, and its taxonomic status is still unclear.

Subclade A-4 from one locality in Chubu has a unique 

breeding ecology and morphology different from sympatric 

Group A-1a (Misawa, private communication; Eto et al, 

2012) and would be a distinct species. Rana t. tagoi from 

Neba-mura, Nagano, in Subclade A6 could also be another 

distinct species as it has 2n = 28 chromosomes in contrast 

to 2n = 26 in other R. tagoi and R. sakuraii populations 

(Ryuzaki et al., 2006). In our resultant tree, however, sam-

ples from Neba-mura (locality 76) were very close to and 

formed Subclade A6 with R. t. tagoi from southern Chubu 

and Shima Peninsula. It is thus necessary to investigate the 

chromosome number of the other populations in A-6 to 

determine taxonomic status of the Neba-mura population.

Details of morphological and ecological variations 

among other genetic groups of R. t. tagoi are generally 

poorly studied. Most of them are generally too similar to dis-

tinguish morphologically, but there are some exceptions. For 

example, representatives of Group A-1a and R. t. tagoi in 

Subclade A-2, at their range of sympatry in northern Kanto, 

are morphologically differentiated although slightly (Eto et 

al., unpublished data). Thus R. t. tagoi seems to include 

more cryptic taxa than previously suggested.

Rana t. yakushimensis formed Subclade A-8 by itself, 

and was split from the other R. tagoi subspecies and R. 

sakuraii. This result suggests its specific, rather than sub-

specific status, although it is morphologically very similar to 

R. t. tagoi (Maeda and Matsui, 1999). Supporting this idea, 

Nishioka et al. (1987) reported that R. t. yakushimensis was 

slightly isolated from R. t. tagoi from Chugoku (B-2b) by a 

low degree of hybrid inviability.

Another subspecies, R. t. okiensis also formed a distinct 

subclade (B-1) and split from other genetic groups. This 

subspecies is morphologically distinct from the other sub-

species of R. tagoi and R. sakuraii (Maeda and Matsui, 

1999), and there is little doubt to treat it as a distinct taxon. 

Conlon et al. (2010) suggested R. t. okiensis and R. t. tagoi

to be heterospecific from antimicrobial peptide structure, and 

Nishioka et al. (1987) and Daito et al. (1998b) reported post-

mating isolation of the two subspecies. These previous stud-

ies and present result strongly suggest that R. t. okiensis

should be treated as a species distinct from R. t. tagoi.

The phylogenetic relationships obtained by our group, in 

which R. tagoi and R. sakuraii are revealed to be paraphy-

letic, are in disagreement with current taxonomy. This result 

may be partly due to imperfect taxonomy (i.e., insufficient 

detection of cryptic species), in addition to the evolutionary 

processes as mentioned above. Rana sakuraii was divided 

into two genetic groups (Subclade A-2 and A-3). Of these, 

Subclade A-2 includes topotypic samples and should be 

regarded as true R. sakuraii, in spite of the possibility of past 

gene introgression from R. t. tagoi as discussed above. 
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Although both subclades of R. sakuraii are sympatric with 

some genetic groups of R. t. tagoi in Honshu (Table 4), the 

two species are known to be reproductively isolated by dif-

ferences in the season, site, and behavior of breeding 

(Maeda and Matsui, 1999). Moreover, R. sakuraii in A-2 is 

completely isolated from R. t. tagoi from Kinki (large type 

from Kyoto: B-2a) and R. t. okiensis (B-1) by postmating iso-

lating mechanisms (Daito et al., 1998a; Daito, 1999). 

Because no obvious morphological and ecological differ-

ences have been detected between the two genetic groups 

of R. sakuraii, it seems safe at present to retain it as a single 

species.

It is now popular to regard uncorrected p-distances in 

16S rRNA of 3–5% to be thresholds between intra- and 

inter-specific divergence levels in anurans (Vences et al., 

2005; Fouquet et al., 2007). However, Hillis and Wilcox 

(2005) reported interspecific sequence divergences of 16S 

rRNA among American ranid frogs to be 1.2–18.7% (uncor-

rected p-distances calculated from GenBank data). Thus, 

sequence divergence alone is not an absolute indicator to 

draw taxonomic conclusions, though it can be considered 

useful in detecting candidate species. As to ND1, Vredenburg 

et al. (2007) separated R. sierrae and R. muscosa, with 

4.6% sequence divergence in ND1 and ND2, as distinct 

species.

In the light of these reports, divergences among genetic 

groups of R. tagoi and R. sakuraii (1.3–3.5% in 16S rRNA 

and 2.9–7.0% in ND1) are generally not very large. Of the 

cryptic lineages discussed above, A-1b (small type) could be 

regarded as heterospecific with B-2a (large type: diver-

gences of 3.2% in 16S rRNA and 6.7% in ND1), although its 

divergence from true R. t. tagoi (A-1a) is not large enough 

to indicate specific separation (1.3% and 4.1%). Of other 

unique groups observed, Subclade A6, including a popula-

tion with extra number of chromosomes, differed from the 

other groups by divergences of 1.5–3.3% (16S rRNA) and 

3.4–6.7% (ND1). Likewise, divergences were 1.8–3.3% and 

4.1–6.4% between R. t. okiensis and the other groups, and 

1.5–2.8% and 2.8–6.9% between R. t. yakushimensis and 

the other groups. These values partly exceed proposed 

thresholds or reported values for specific separation 

(Fouquet et al., 2007; Vredenburg et al., 2007). Other com-

binations produced even smaller divergences (1.4% and 

3.9% between Subclade A-4 and Group A-1a; 1.7% and 

4.0% between Group A-1a and R. t. tagoi in Subclade A-2; 

and 1.1% and 2.1% between R. sakuraii and R. t. tagoi in 

A-2), in spite of their sympatric occurrences, and posed 

questions about the universality of threshold values in DNA 

barcoding.

In frogs, sister species sometimes exhibit very small 

sequence divergences in spite of their distinct morphological 

and/or ecological differences (e.g., Matsui et al., 2006), and 

similar situations appear to apply to unique genetic groups 

recognized in R. tagoi and R. sakuraii. Small sequence 

divergences, like morphological and ecological similarities, 

suggest relatively recent separation among genetic groups 

of these frogs.

This study provided a large amount of new information 

about the complex genetic diversity and consequential tax-

onomic problems with respect to R. tagoi and R. sakuraii. 

However, mtDNA along is not a conclusive indicator of 

reproductive isolation, due to its maternal mode of inheri-

tance. Further studies, including nuclear marker analyses, 

are necessary to clarify reproductive isolations among 

genetic groups and draw definitive taxonomic conclusions.
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Abstract: On the basis of three female specimens collected recently, some

aspects of a little known Bornean bufonid, Ansonia latidisca, are reported.  On

the mitochondrial phylogenetic tree, the species is basal to the group consisting

of some Bornean species, and most Peninsular Malaysian and Thailand species,

which is sister to the other group consisting of the remaining Bornean species,

several Philippine species, and one Peninsular species.  This relationship

indicates that the the genus Ansonia has originated within Borneo.  Superficial

similarity of the species with Sabahphrynus maculatus is thought be the result

of convergence in adaptation to an arboreal life.

Key words: Ansonia; Borneo; Phylogeny; Rare species; Sabahphrynus

INTRODUCTION

Oriental stream toads of the genus Ansonia

Stoliczka, 1870 are famous for their unique

larvae that adhere to rocks in fast-flowing,

high gradient streams by a large oral sucker

(Inger, 1966; Matsui et al., 2005).  The genus

encompasses about 26 described species

(Frost, 2011; Wilkinson et al., 2012), with

several additional taxa still requiring formal

descriptions (Matsui et al., 2010).  Among

already named congeners, A. latidisca Inger,

1966 from the western part of Borneo is one of

the least known species.

The species was described based on the male

holotype (RMNH [Rijksmuseum van Natuurlijke

Historie=The National Museum of Natural

History “Naturalis” in Leiden] 10677) from

top of Mount Damus, Sambas, Kalimantan,

Indonesian Borneo, by J. G. Hallier (Inger,

1966; Gassó Miracle et al., 2007) and a female

paratype (BMNH [British Museum of Natural

History]=NHM [Natural History Museum],

London 99.12.8.12) from Mount Penrissen,

First Division (now Kuching Division), Sarawak,

Malaysian Borneo (Inger, 1966).

The holotype seems to have been collected

in 1893 (Fig. 1, see discussion), and from its

catalogue number, the paratype should have

been collected before 1899, both more than

100 years ago.  Another specimen (NHM,

London 1973.528 [Indraneil Das, personal

communication on 10 September 2012]) is said

to have been collected in 1924 (Conservation
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International, 2011), but further detailed data

are not available to us at present.  Because the

habitats at least in Sarawak have been seri-

ously modified, there has been serious concern

about the extinction of the species there.  For

example, A. latidisca has been listed as

Endangered B1ab(iii)+ 2ab(iii) by IUCN (Stu-

art et al., 2008).  However, in the course of the

“Global Search for Lost Amphibians” by

IUCN, the species was finally rediscovered in

2011 on Mount Penrissen, Sarawak (Conser-

vation International, 2011).  We also made a

survey there twice recently and were able to

find the species ourselves.

From examination of the holotype in the

Rijksmuseum (Matsui, unpublished observa-

tions) and from description in the literature,

we had the impression that the species superfi-

cially resembles Sabahphrynus maculatus

(Mocquard, 1890) from Sabah, Malaysian

Borneo (Matsui et al., 2007), and have been

interested in elucidating the phylogenetic

position of A. latidisca among Ansonia and

allied genera.  We therefore studied the speci-

mens obtained by analyzing mitochondrial

gene sequences, based on the relationships of

most members of the genus Ansonia that have

already been clarified (Matsui et al., 2010).

MATERIALS AND METHODS

Fieldwork was conducted in September 2010

and February to March 2012 on Gunung

(=Mt.) Penrissen, Padawan, western Sarawak.

Specimens are deposited in the Sarawak

Research Collections (SRC) and the Graduate

School of Human and Environmental Studies,

Kyoto University (KUHE).

The following 25 body measurements were

taken to the nearest 0.1 mm with dial calipers,

following Matsui (1984) and Matsui (1994):

(1) snout-vent length (SVL); (2) head length

(HL); (3) snout length (SL); (4) nostril-eyelid

length (N-EL); (5) eye length (EL); (6) eye

diameter (ED), diameter of the exposed por-

tion of the eyeball; (7) tympanum-eye length

(T-EL); (8) tympanum diameter (TD); (9)

head width (HW); (10) internarial distance

(IND); (11) interorbital distance (IOD); (12)

upper eyelid width (UEW); (13) forelimb

length (FLL); (14) lower arm and hand length

(LAL); (15) hand length (HAL); (16) inner

palmar tubercle length (IPTL); (17) outer

palmar tubercle length (OPTL); (18) hindlimb

length (HLL); (19) thigh length (THIGH);

(20) tibia length (TL); (21) foot length (FL);

(22) inner metatarsal tubercle length (IMTL);

(23) outer metatarsal tubercle length (OMTL);

(24) third finger disk diameter (3FDW); and

(25) fourth toe disk diameter (4TDW).  For

morphological comparisons, we also examined

specimens of Sabahphrynus maculatus depos-

ited in the KUHE.

We examined DNA sequences of 12S and

16S rRNA genes and the intervening tRNA

gene for valine from 25 specimens of 23

named species (including three individuals of

A. latidisca) of the genus Ansonia.  We also

examined the sequences of representatives of

FIG. 1. The male holotype of Ansonia latidisca

(RMNH 10677) deposited in The National Museum

of Natural History “Naturalis” in Leiden.
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five other Southeast Asian bufonid genera

(Sabahphrynus Matsui, Yambun, and Sudin,

2007; Pedostibes Günther, 1876; Pelophryne

Barbour, 1938; Leptophryne Fitzinger, 1843;

and Bufo Laurenti, 1768 [sensu lato]), and two

distinctly distant (Frost et al., 2006) outgroup

species (a bufonid, Atelopus flavescens

Duméril and Bibron, 1841 and a dendrobatid

Dendrobates auratus [Girard, 1855]: Table 1).

Methods for phylogenetic analyses follow

TABLE 1. Samples used for mtDNA analysis in this study together with information on species identifica-

tion, locality, GenBank accession numbers, and references.  KUHE=Graduate School of Human and Environ-

mental Studies, Kyoto University.

Species Locality

Data Bank 

Acc. No. Reference

Ansonia kraensis Thailand, Ranong AB435251 Matsui et al. (2010)

Ansonia inthanon Thailand, Doi Inthanon AB435253 Matsui et al. (2010)

Ansonia siamensis Thailand, Khaochong AB435256 Matsui et al. (2010)

Ansonia endauensis West Malaysia, Johor, Endau-Rompin AB435257 Matsui et al. (2010)

Ansonia tiomanica West Malaysia, Pahang, Tioman AB435259 Matsui et al. (2010)

Ansonia latirostra West Malaysia, Pahang AB435260 Matsui et al. (2010)

Ansonia penangensis West Malaysia, Penang AB435262 Matsui et al. (2010)

Ansonia malayana West Malaysia, Larut AB331712 Matsui et al. (2010)

Ansonia jeetskumarani West Malaysia, Pahang AB435265 Matsui et al. (2010)

Ansonia platysoma East Malaysia, Sabah, Bundu Tuhan AB435270 Matsui et al. (2010)

Ansonia hanitschi East Malaysia, Sabah, Kinabalu AB435277 Matsui et al. (2010)

Ansonia spinulifer East Malaysia, Sarawak, Kuching AB435289 Matsui et al. (2010)

Ansonia minuta East Malaysia, Sarawak, Kuching AB435281 Matsui et al. (2010)

Ansonia latidisca East Malaysia, Sarawak, Penrissen AB746459 KUHE 55421

Ansonia latidisca East Malaysia, Sarawak, Penrissen AB746460 KUHE 55422

Ansonia latidisca East Malaysia, Sarawak, Penrissen AB746461 KUHE 55423

Ansonia longidigita East Malaysia, Sabah, Crocker AB331711 Matsui et al. (2010)

Ansonia torrentis East Malaysia, Sarawak, Gn. Mulu AB435296 Matsui et al. (2010)

Ansonia leptopus East Malaysia, Sarawak, Kuching AB746457 KUHE 53839

Ansonia latiffi West Malaysia, Pahang AB435299 Matsui et al. (2010)

Ansonia albomaculata East Malaysia, Sarawak, Lanjak Entimau AB435304 Matsui et al. (2010)

Ansonia guibei East Malaysia, Sabah, Kinabalu AB435306 Matsui et al. (2010)

Ansonia fuliginea East Malaysia, Sabah, Kinabalu AB435308 Matsui et al. (2010)

Ansonia muelleri Philippines, Mindanao, Davao City AB435310 Matsui et al. (2010)

Ansonia mcgregori Philippines, Mindanao AB435316 Matsui et al. (2010)

Sabahphrynus maculatus 

(=Ansonia anotis)

East Malaysia, Sabah, Kinabalu AB331708 Matsui et al. (2010)

Sabahphrynus maculatus East Malaysia, Sabah, Crocker AB331718 Matsui et al. (2010)

Pelophylyne signata East Malaysia, Sarawak, Kuching AB746456 KUHE 53200

Bufo (Ingerophryne) parvus West Malaysia, Penang AB746455 KUHE 39047

Leptophryne borbonica East Malaysia, Sarawak, Penrissen AB746458 KUHE 53887

Bufo (Duttaphrynus) 

melanostictus

East Malaysia, Sarawak, Marudi AB331714 Matsui et al. (2007)

Pedostibes hosii East Malaysia, Sabah, Tawau AB331717 Matsui et al. (2010)

Bufo (Phrynoides) asper West Malaysia, Penang AB746454 KUHE 39025

Atelopus flavescns French Guiana DQ283259 Frost et al. (2006)

Dendrobates auratus — AY326030 Darst and Cannatella, 2004
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Matsui et al. (2010).  The PCR cycling, precip-

itation, and sequencing procedures were iden-

tical to those described by Matsui et al. (2010).

The resultant sequences were deposited in

GenBank (AB746459–746461: Table 1).  The

alignment matrix with 2462 nucleotide sites

(942 sites for 12S rRNA; 72 for tRNAval; 1448

for 16S rRNA) was subjected to estimation of

phylogenetic relationships using maximum

likelihood (ML) and Bayesian inference (BI).

In the BI analysis, two independent runs of

four Markov chains were conducted for ten

million generations, and the first three million

generations were discarded as burn-in.  Pairwise

comparisons of uncorrected sequence diver-

gences (p-distances) were also calculated for

16S rRNA.  Details for these procedures are

given in Matsui et al. (2010).

RESULTS

Natural History and morphology

We were only able to find three specimens

of A. latidisca on one rainy night in late

February.  They were found in a narrow area

in primary forest, on the slope surrounding a

huge rocky mound (Fig. 2).  A very slowly

FIG. 2. Natural habitat of Ansonia latidisca on

Gunung Penrissen.

FIG. 3. Ansonia latidisca in life.
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flowing headwater of a small stream, about

10 m away from the rock, was the nearest

water body.  Two individuals were on a leaf

and the trunk, respectively, of huge trees (Fig.

3), and the remaining one was on a huge rock,

all 1.5–2 m above ground.  We could not hear

any calls assignable to this species or find

larvae in the water.  Frog species observed

immediately near the habitat were Pelophryne

sp., Limnonectes palavanensis (Boulenger,

1894), Limnonectes kuhlii (Tschudi, 1838),

and Philautus refugii Inger and Stuebing,

1996.  A congeneric species A. minuta Inger,

1960 was found far down from there where the

stream was flowing rapidly.

The three specimens obtained were all

females.  Two larger individuals (59.8 and

55.5 mm in SVL, Table 2) possessed small

ovaries with creamy immature eggs, suggesting

their non-breeding condition.  The smallest

female (52.1 mm in SVL) had more transpar-

ent ovaries and thus was thought to be imma-

ture.  They are nearly uniform in body shape

and coloration (Fig. 4), agreeing well with the

diagnosis given in the original description of

A. latidisca by Inger (1966): “a large species,

females about 55 mm; tympanum visible exter-

nally; tips of fingers dilated into truncate disks

(Fig. 5), that of third as wide as tympanum; tip

of first finger not reaching disk of second; two

rows of interorbital, conical tubercles; and no

tarsal ridge”.  Inger’s (1966) original descrip-

tion very well illustrates characteristics of the

species and there is little to add:

Habitus slender; head, length (27.1–28.8%

SVL) subequal to width (27.1–28.6%SVL);

snout truncate, constricted before eyes, almost

vertical in profile, projecting beyond lower

jaw; eye small, subequal (10.0–11.0%SVL) to

snout (9.8–10.8%SVL); canthus rostralis

sharp, straight; lore vertical, weakly concave;

nostril above symphysis, closer to tip of snout

than to eye; interorbital distance (7.4–8.6%

SVL) subequal to width of upper eyelid (7.7–

7.9%SVL); the latter larger than width of

internarial distance (6.3–7.0%SVL); pineal

spot absent; tympanum distinct (4.6–5.6%

SVL), about half diameter of eye; upper jaw

edentate; tongue oval, without papillae.

Forelimb extremely long (78.3–86.8%SVL)

and slender; fingers slender, long, with distinct

web basally, web reaching subarticular tuber-

cles of first two fingers; first finger short, not

reaching base of disk of second; fourth finger

longer than second; tips of three outer fingers

dilated into truncate disks about twice width of

basal phalanges; disk of third finger slightly

narrower (4.0–5.0%SVL) than tympanum; a

large, round palmar tubercle laterally (4.3–

5.0%SVL) larger than outer (3.0–3.8%SVL);

subarticular tubercles feebly distinct.

FIG. 4. Dorsal (A) and ventral (B) views, of

Ansonia latidisca.  Scale bar=10 mm.
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Hindlimb moderately long (139.8–160.1%

SVL) less than times length of forelimb; tibia

moderate (44.1–50.7%SVL), heels overlap-

ping when limbs are held at right angles to

body; tibiotarsal articulation of adpressed

limb reaching to point between rear angle and

center of eye, or between eye and nostril; foot

(37.5–41.7%SVL) shorter than tibia; tips of

toes swollen but not forming truncate disks,

much narrower than tips of fingers (disk

diameter of fourth toe 2.5–2.8%SVL); third

toe shorter than fifth; webs between toes

moderately developed (Fig. 4), formula: I 0–2

II 1–3 III 2–3 IV 3–2 V; subarticular tubercles

obscure; inner metatarsal tubercle oval, length

(4.8–5.0%SVL) shorter than first toe; outer

metatarsal tubercle round, smaller (2.3–2.7%

SVL) than inner one; no tarsal ridge.

Skin texture is slightly variable, but fits well

with Inger’s (1966) description.  Inger (1966)

noted that the color in alcohol of the holotype

was light brown with numerous, irregular red-

dish brown spots dorsally and laterally; and

ventrally, brown with scattered, small yellowish

spots posteriorly.  He also stated that the

ventral color of the paratype was lighter (a

brownish yellow or cream-color) than that of

the holotype.  Specimens in life were light

greenish brown with irregular, large brown

markings and scattered reddish brown spots

dorsally and laterally.  Ventrally, they were light

brown on throat and cream with scattered,

small yellowish spots posteriorly (Fig. 4).

Phylogeny

Of 2462 nucleotides generated, 1033 were

variable, and 763 were parsimony-informative.

The best substitution model for ML and

FIG. 5. Ventral views of right hand (A) and foot

(B) of Ansonia latidisca.  Scale bar=10 mm.

TABLE 2. Measurements (in mm, followed by percentage ratios to SVL) of three females of Ansonia

latidisca.  For abbreviations, see text.  *now deposited at SRC.

KUHE 54422 54421 54423* KUHE 54422 54421 54423*

SVL 59.8 55.5 52.1

HL 16.2 (27.1) 16.0 (28.8) 14.6 (28.0) LAL 33.8 (56.5) 34.6 (62.3) 32.6 (62.6)

SL 5.4 (9.0) 6.0 (10.8) 5.2 (10.0) HAL 17.0 (28.4) 16.7 (30.1) 16.4 (31.5)

N-EL 3.5 (5.9) 3.4 (6.1) 3.4 (6.5) IPTL 2.6 (4.3) 2.8 (5.0) 2.5 (4.8)

EL 6.2 (10.4) 6.1 (11.0) 5.2 (10.0) OPTL 2.3 (3.8) 2.1 (3.0) 2.0 (3.8)

ED 5.2 (8.7) 5.1 (9.2) 4.4 (8.4) HLL 83.6 (139.8) 88.1 (158.7) 83.4 (160.1)

T-EL 0.5 (0.8) 0.8 (1.4) 0.5 (1.0) THIGH 25.7 (43.0) 26.8 (48.2) 25.1 (48.2)

TD 3.0 (5.0) 3.1 (5.6) 2.4 (4.6) TL 26.4 (44.1) 27.5 (49.5) 26.4 (50.7)

HW 16.2 (27.1) 15.9 (28.6) 14.4 (27.6) FL 22.4 (37.5) 23.1 (41.6) 21.7 (41.7)

IND 4.2 (7.0) 3.6 (6.5) 3.3 (6.3) IMTL 2.9 (4.8) 2.7 (4.9) 2.6 (5.0)

IOD 4.4 (7.4) 4.7 (8.5) 4.5 (8.6) OMTL 1.4 (2.3) 1.5 (2.7) 1.3 (2.5)

UEW 4.6 (7.7) 4.3 (7.7) 4.1 (7.9) 3FDW 3.0 (5.0) 2.5 (4.5) 2.1 (4.0)

FLL 46.8 (78.3) 46.3 (83.4) 45.2 (86.8) 4TDW 1.7 (2.8) 1.4 (2.5) 1.4 (2.7)
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Bayesian inference derived from Kakusan4

(Tanabe, 2011) was a general time-reversible

model with a gamma shape parameter (esti-

mated gamma values for each analysis were

0.241 and 0.243, respectively).  The likelihood

value of the ML and Bayesian trees were lnL

-22644.606 and -22682.499, respectively.

Phylogenetic analyses employing two differ-

ent optimality criteria yielded very slightly

different topologies, and only the ML tree is

presented in Fig. 6.  Monophyly of Southeast

Asian bufonid taxa (Bufo [sensu lato], Lep-

tophryne, Pelophryne, Pedostibes, Sabah-

phrynus, and Ansonia) with respect to Atelo-

pus and Dendrobates was supported (ML

BS=92%, BPP=1.00).  Although relationships

FIG. 6. ML tree from a 2462 bp sequence of mitochondrial 12S rRNA, tRNAval and 16S rRNA genes

for samples of Ansonia and related species.  Numbers above or below branches represent bootstrap supports

for ML inferences and Bayesian posterior probabilities (ML-BS/BPP).
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among bufonid genera are generally unre-

solved, Pelophryne and Ansonia formed a

clade (ML BS=79%, BPP=0.99), and the

monophyly of Ansonia was strongly supported

(ML BS=97%, BPP=1.00).  As in a previous

report (Matsui et al., 2010), Ansonia is clearly

divisible into two sister clades.  In one clade

(ML BS=84%, BPP=1.00), A. latidisca was a

sister species to Clade A of Matsui et al. (2010:

ML BS=72%, BPP=0.94), including Subclade

A1 (ML BS=98%, BPP=1.00) from Peninsu-

lar Malaysia and Thailand and Subclade A2

(ML BS=99%, BPP=1.00) from Borneo.

The other was a primarily Bornean Clade B of

Matsui et al. (2010: ML BS=100%, BPP=

1.00), including Bornean and Philippine spe-

cies, and one species from the Peninsular

Malaysia.  From the species of each clade and

subclade, A. latidisca exhibited substantially

large uncorrected p-distances in 16S rRNA of

at least 9.3% (between A. fuliginea [Moc-

quard, 1890] in Clade B), 9.4% (between A.

minuta in Sublade A2), and 9.9% (between A.

jeetsukumarani Wood, Grismer, Ahmad, and

Senawi, 2008 in Sublade A1), which indicate

its intermediate position among the three

Ansonia clades/subclades.

DISCUSSION

Ansonia latidisca is morphologically more

similar to S. maculatus than to most conge-

neric species in having a fairly large, slender

body, very long, slender forelimbs, large spatu-

late finger disks, and moss-like body color

(Inger, 1966; Inger et al., 2001 [as A. anotis];

Matsui et al., 2007: Fig. 7).  The two species

also resemble one another ecologically.  The

three specimens of A. latidisca were found on

a slope far apart from a small stream, on

leaves or the trunk of huge trees or on a huge

rock, 1.5–2 m above ground.  Similarly, some

individuals of S. maculatus are reported to

have been found 10 m apart from the edge of

a small stream, 1–2 m above ground on the

trunk of a huge tree, mostly in or near a small

hole in the trunk, although others were found

on a log beside a stream or on a rock at one

bank of a stream (Inger et al., 2001; Matsui et

al., 2007).

However, the two species decidedly differ by

the presence in A. latidisca and absence in S.

maculatus of a distinct tympanum (Fig. 8).

Analyses of mitochondrial DNA genes also

revealed that the two species are very remote

genetically.  Since both A. latidisca and

Sabahphrynus are seemingly adapted to arbo-

real life with similar habitat preferences, their

similarity in general morphology is most likely

the consequence of convergence.

As reported by Matsui et al. (2010), the

genus Ansonia is clearly divisible into Clade A

from Peninsular Malaysia, Thailand (Sub-

clade A1) and Borneo (Subclade A2), and

Clade B from Borneo and the Philippines.  Of

the two lineages from Borneo, species in Clade

A are generally smaller than those in Clade B,

and large size of A. latidisca suggested its

FIG. 7. Ansonia latidisca (A) and Sabahphry-

nus maculatus (B), showing their morphological

resemblance.
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position in Clade B.  However, the species was

actually basal to the two subclades in Clade A,

suggesting its primitive nature within this

clade.  This finding is significant in suggesting

that the genus Ansonia originated within

Borneo.

Johann Gottfried Hallier, the collector of

the holotype of A. latidisca, is a German

botanist and was an temporary Assistant at

the Buitenzorg Herbarium, Java between 1893

and 1896.  He traveled to Gunung Damoes,

Sambas, Kalimantan, only once between 22

and 24 October 1893 (Van Steenis Kruseman,

2011).  Thus the specimen is thought to have

been collected during this period.  Although

detailed data of collection for other specimens

are not available, the long absence of collec-

tion seems to be partly ascribable to its arbo-

real habits, probably like Sabahphrynus mac-

ulatus, which is also arboreal and remained

uncollected for nearly 100 years after its initial

discovery (Inger, 1966; Inger et al., 2001;

Matsui et al., 2007).

Recent intensive surveys revealed that A.

latidisca is not extinct as once suspected

(Stuart et al., 2008), and inhabits at least the

primary forest of westernmost Sarawak (Con-

servation International, 2011).  However, the

populations are confined to small areas and

probably require conservation (Stuart et al.,

2008).  There still remain many basic issues to

be surveyed including breeding habits and lar-

val habitat.  From our survey, late February

seems to be outside the breeding season, and

field surveys in different seasons would be the

first step for considering measures of conser-

vation.

ACKNOWLEDEMENTS

The field survey in Sarawak by MM and KN

was made under research permissions of Peja-

bat Jabatan Perhutanan (NPW. 907.4.4(V)-93

and NCCD.907.4.4(Jld.VI)-122).  The Sarawak

Forestry Corporation and the Sarawak Biodi-

versity Centre kindly provided facilities for con-

ducting research.  We are grateful to the follow-

ing for their encouragements and/or permission

to conduct research and export specimens:

Datu Haji Len Talif Salleh, Haji ali Bin Yusop,

Marker Nyogin, Mohd.  Shabudin Sabki, Uning,

Haji Abang Mohamad Mohtar Bin Abang

Pawozan, and Takao Ichioka.  We thank Tsu-

tomu Hikida for field companionship and

Indraneil Das for providing important informa-

tion.  Field trips were made possible by grants

from The Monbusho through the Japan Society

for the Promotion of Science (Field Research,

Nos. 20405013 and 23405014) to MM.

LITERATURE CITED

DARST, C. R. AND CANNATELLA, D. C. 2004.

Novel relationships among hyloid frogs inferred

from 12S and 16S mitochondrial DNA sequences.

Molecular Phylogenetics and Evolution 31:

462–475.

CONSERVATION INTERNATIONAL 2011.  Lost amphib-

ian stages amazing reappearing act in Borneo

after eluding scientists for 87 years. http://www.

FIG. 8. Lateral views of heads of Ansonia lati-

disca (A) and Sabahphrynus maculatus (B), show-

ing the presence in A. latidisca and absence in S.

maculatus of tympanum.



96 Current Herpetol. 31(2) 2012

conservation.org/newsroom/pressreleases/Pages/

Lost_mphibian_Stages_Amazing_Reappearing_

Act.aspx

FROST, D. R. 2011.  Amphibian species of the

world: an online reference. Version 5.5 (31

January, 2011). American Museum of Natural

History, New York. http://research.amnh.org/

vz/herpetology/amphibia/index.html

FROST, D. R., GRANT, T., FAIVOVICH, J. N., BAIN,

R. H., HAAS, A., HADDAD, C. F. B., dE SÁ, R. O.,

CHANNING, A., WILKINSON, M., DONNELLAN, S.

C., RAXWORTHY, C. J., CAMPBELL, J. A.,

BLOTTO, B. L., MOLER, P., DREWES, R. C.,

NUSSBAUM, R. A., LYNCH, J. D., GREEN, D. M.,

AND WHEELER, W. C., 2006.  The amphibian

tree of life. Bulletin of American Museum of

Natural History 297: 1–370.

GASSÓ MIRACLE, M. E., VAN DEN HOEK OSTENDE,

L. W., AND ARNTZEN, J. W. 2007.  Type speci-

mens of amphibians in the National Museum of

Natural History, Leiden, The Netherlands.

Zootaxa 1482: 25–68.

INGER, R. F. 1966.  The systematics and zoogeogra-

phy of the Amphibia of Borneo. Fieldiana:

Zoology 52: 1–402.

INGER, R. F., TAN, F. L., AND YAMBUN, P. 2001.  A

new species of toad of the genus Ansonia

(Anura: Bufonidae) from Borneo. Raffles Bulle-

tin of Zoology 49: 35–37.

MATSUI, M. 1984.  Morphometric variation analy-

ses and revision of the Japanese toads (genus

Bufo, Bufonidae). Contributions from the Bio-

logical Laboratory, Kyoto University 26: 209–

428.

MATSUI, M. 1994.  A taxonomic study of the Rana

narina complex, with description of three new

species (Amphibia: Ranidae). Zoological Journal

of the Linnean Society 111: 385–415.

MATSUI, M., KHONSUE, W., AND NABHITABHATA,

J. 2005.  A new Ansonia from Isthmus of Kra,

Thailand (Amphibia, Anura, Bufonidae). Zoo-

logical Science 22: 809–814.

MATSUI, M., TOMINAGA, A., LIU, W.-Z., KHONSUE,

W., GRISMER, L. L., DIESMOS, A. C., DAS, I.,

SUDIN, A., YAMBUN, P., YONG, H.-S., SUKUMA-

RAN, J., AND BROWN, R. M. 2010.  Phylogenetic

relationships of Ansonia from Southeast Asia

inferred from mitochondrial DNA sequences:

Systematic and biogeographic implications

(Anura: Bufonidae). Molecular Phylogenetics

and Evolution 54: 561–570.

MATSUI, M., YAMBUN, P., AND SUDIN, A. 2007.

Taxonomic relationships of Ansonia anotis

Inger, Tan, and Yambun, 2001 and Pedostibes

maculatus (Mocquard, 1890), with a description

of a new genus (Amphibia, Bufonidae). Zoologi-

cal Science 24: 1159–1166.

STUART, S. N., HOFFMAN, M., CHANSON, J. S.,

COX, N. A., BERRIDGE, R., RAMANI, P., AND

YOUNG, B. E. 2008.  Threatened Amphibians of

the World. Lynx Edicions, IUCN, and Conserva-

tion International, Barcelona, Gland, and

Arlington.

TANABE, A. S. 2011.  Kakusan4 and Aminosan: two

programs for comparing nonpartitioned, propor-

tional, and separate models for combined molec-

ular phylogenetic analyses of multilocus sequence

data. Molecular Ecology Resources 11: 914–

921.

VAN STEENIS KRUSEMAN, M. J. 2011.  Cyclopaedia

of Malesian Collectors. National Herbarium

Netherland, Leiden. http://www.nationaalher-

barium.nl/fmcollectors/h/HallierJG.htm

WILKINSON, J. A., SELLAS, A. B., AND VINDUM, J.

V. 2012.  A new species of Ansonia (Anura:

Bufonidae) from northern Tanintharyi Division,

Myanmar. Zootaxa 3163: 54–68.

Accepted: 17 September 2012



doi 10.5358/hsj.31.121Current Herpetology 31(2): 121–124, November 2012

 2012 by The Herpetological Society of Japan

Field Observation of Egg-

laying Behavior of a Puddle 
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Abstract: Occidozyga sumatrana is not uncom-

mon in some parts of Southeast Asia but its

reproduction in nature is poorly known.  We

observed egg-laying behavior of this species in

Bali, Indonesia.  The amplectic position was

inguinal and the oviposition site was out of the

water in O. sumatrana, both of which are unique

given its phylogenetic position and the mainly

aquatic habits of adults.

Key words: Behavior; Indonesia; Inguinal amplexus;
Occidozyga sumatrana; Terrestrial oviposition

INTRODUCTION

The genus Occidozyga Kuhl and van Has-

selt, 1822 occurs chiefly in Southeast Asia, and

consists of a small number of tiny frog species

living around still-waters such as puddles,

marshes, or swamps.  Occidozyga sumatrana

(Peter, 1877), which is often confused with O.

laevis (Günther, 1858), occurs in Sundaland

(Iskandar, 1998; Frost, 2011). Although this

species is very common in some areas, their

reproductive ecology in nature has been poorly

known.  Here, we report a case of egg-laying

behavior of O. sumatrana observed in a rice

field in Bali, Indonesia.

MATERIALS AND METHODS

Observations were made at a terraced rice

field area in Ubud (8°27'34''S, 115°16'21''E),

Bali, Indonesia, from the middle of the night

to early morning of 4 August 2012.  The area

is scattered with patches of short trees and

bushes.  The dry season usually lasts from

April to October in Bali, but it rained lightly

on the day prior to our observations, and it

was relatively cool and humid at night.  The

air and water temperatures near and in the

channel where observations were made were

21.9C and 23.1C, respectively, at the begin-

ning of observation.

We initially observed frogs with a small fluo-

rescent lamp, but because this appeared to

alter their behavior, we used a red LED lamp.

However, after reproductive behavior began,

we again used a fluorescent lamp for detailed

observation and video recording (Sony HDW-

750).  After the observations were completed,

we collected the frogs, deeply anesthetized

them in saturated chloretone, and fixed in

10% formalin.  For specimens later transferred

to 70% ethanol, we took measurements of

body size and made gross inspection of the

condition of oviducts and ovaries of the female

by dissection.

OBSERVATIONS

We found an amplectant pair of O. sumatrana

in a small channel surrounded by rice fields.

The channel with a muddy bottom was

approximately 8 m in length, 20–70 cm in

width, and 50 cm in depth.  The water in the

channel was shallow (<5 cm) and moving

slowly, eventually flowing into the rice field.

Both sides of the channel, which were nearly

vertical, were formed by muddy soil and

continued to the edge of the rice field.  Some

other frog species (Microhyla palmipes Bou-

lenger, 1897, Fejervarya cf. limnocharis, F.

cancrivora (Gravenhorst, 1829), and Hylarana

nicobariensis (Stoliczka, 1870) were calling

around the channel and rice field, but the calls

of O. sumatrana and M. palmipes were heard

* Corresponding author.  Tel/FAX: +81–75–753–

6846; 

E-mail address: fumi@zoo.zool.kyoto-u.ac.jp
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most frequently.

An amplectant pair of O. sumatrana (male

SVL=29.5 mm; female SVL=38.0 mm) was

found in the channel, where the width was

60 cm, at 0150 h.  The male was holding the

inguinal region of the female (Fig. 1).  The

pair stayed in the water close to the left wall,

with their heads facing downstream.  At this

time, the pair was frightened by the light of the

lamp and the male released the female.

At 0155 h, after we changed the lamp, the

male called twice behind the female, jumped in

front of her, and gave three calls.  These calls

sounded like normal advertisement calls (Matsui

and Eto, unpublished data).  Subsequently, the

female jumped directly in front of the snout of

the male, and they resumed amplexus (0200 h).

Just after grasping the female, the male slightly

shook his body for a short time.  The pair

started moving at 0242 h.  First they jumped for-

ward in a downstream direction several times,

and then turned upstream at 0316 h.  Then they

turned again (0339 h) and moved downstream.

At 0354 h, they climbed the left wall approxi-

mately 10 cm, and moved upstream on the wall.

During this movement, the female occasionally

pressed her head to the wall and dug the soil

with her forelimbs.  At this time we turned the

fluorescent lamp on again for detailed observa-

tion and video recording.  The pair moved down

the wall at 0413 h, moved upstream, then turned

their heads towards the left wall.

There was a small hollow (2.5 cm in maxi-

mum diameter) on the wall, 10 cm above the

water.  The female first put her head into the

hollow, then turned her body.  The posterior

half of their bodies were put inside, with the

rest of their bodies largely exposed.  At 0419 h

they started laying the first egg mass.  The

female inclined her head and elevated her

pelvic region by standing on fully stretched

hindlimbs, and then put the egg mass on the

ceiling of the hollow.  During oviposition, the

body of the male was shifted anteriorly (down-

wards) so that the cloacae of both frogs were

positioned closely together, although the

forelimbs of the male still held the female’s

waist (Fig. 2).  Oviposition was short, lasting

approximately three sec.  Egg diameter was

about 1.2 mm and the number of eggs laid was

eight.

The pair started moving again at 0423 h.

They moved up and down the wall several

times in an upstream direction.  At 0431 h,

they finally went into a small hole on the left

wall head first.  The hole was located at

approximately 90 cm upstream from the first

hollow, and was 10 cm above the bottom of

the wall and 20 cm distant from the water.

The maximum diameter of the hole was 4 cm

but its depth was undetermined because it was

winding inside.  The hole might have been

made by other animals (e.g., crabs or small

mammals).

FIG. 1. An inguinally amplectant pair of Occi-

dozyga sumatrana found in a rice field area of Bali.

FIG. 2. Egg-laying behavior of Occidozyga

sumatrana in a hole above the water.



ETO & MATSUI—EGG-LAYING BEHAVIOR OF A PIDDLE FROG 123

The pair turned around in the hole, facing

out of the hole, and started laying the second

egg mass at 0440 h.  The egg mass was laid on

a grass root emerging from the ceiling of the

hole entrance.  At 0444 h the third egg mass

was laid next to the second one, again on the

ceiling of the hole (Fig. 3).  There were 12 and

10 eggs in the second and third egg masses,

respectively.  At 0448 h, when the female

stretched her hindlimbs and assumed an egg-

laying posture, the male jumped to leave her.

The female maintained the posture for a few

sec, but then jumped into the water.

We found four more egg masses, each

containing 10 to 14 eggs, around the channel

and surrounding rice fields, and all of them

were laid directly on muddy slopes or in holes

close to water.  No egg masses were found

under the water despite our intensive search

there.

The female had no eggs in her oviducts after

the above breeding activity, but she did have a

large number of eggs of various size in her

ovaries.  We also observed another pair of O.

sumatrana (male SVL=26.5 mm; female SVL=

37.0 mm), which laid their eggs in a plastic bag

after collection.  A total number of 40 eggs in

at least three separate masses were obtained,

and no egg was found in the oviduct of the

female.

DISCUSSION

From these observations, O. sumatrana in

Bali is thought to lay a small number of eggs

(about 30–40 at one breeding activity) on the

wet ground close to the water in multiple small

egg masses (each containing 8–14 eggs).  How-

ever, it is possible that the two pairs we studied

had already laid some egg masses before they

were found and that the true clutch size of the

female is larger.  This is because we found

many eggs of various sizes still left in ovaries in

the females.  The species may actually lay

multiple clutches intermittently during a pro-

longed breeding season like some other anu-

ran species (e.g., Pelophylax porosa brevi-

poda [Ito, 1941] [Matsui and Kokuryo, 1984];

Fejervarya kawamurai Djong, Matsui, Kura-

moto, Nishioka and Sumida, 2011 [Sichi et al.,

1988]).

The present observation, in which O.

sumatrana adopts an inguinal amplexus, is

interesting because this is not common in

neobatrachians.  Inguinal amplexus is univer-

sally seen in primitive frogs (archaeobatra-

chians or mesobatrachians), whereas most

derived frogs adopt axillary amplexus with a

few exceptions (Duellman and Trueb, 1994).

Thus inguinal amplexus in O. sumatrana is

thought to be a secondary modification

among neobatrachians.  Because a congeneric

species O. martensii (Peters, 1867) also exhib-

its inguinal amplexus (Ziegler, 2002; Chan-

ard, 2003), this amplectic style is probably

common in this genus.  However, little infor-

mation about amplectic postures is available

for the family Dicroglossidae Anderson, 1871

and whether or not inguinal amplexus is

limited to the genus Occidozyga is unknown.

Another interesting issue is the terrestrial

oviposition of O. sumatrana the adult of

which is often found in or around the water

and known to prefer aquatic habitats like its

congeners (Iskandar, 1998).  The functions of

inguinal amplexus and terrestrial oviposition

in O. sumatrana are not clear, but some

suggestions about the amplectic position are

provided by our observation.  When the female

FIG. 3. Two egg masses (shown by arrows) that

were successively attached to upper part of a hole

by Occidozyga sumatrana.
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of O. sumatrana inclines her head and ele-

vates the pelvic region by standing on fully

stretched hindlimbs for oviposition, the male’s

body is forced to slide anteriorly resulting in

his cloaca being located at nearly the same or

little bit anterior position of the female’s clo-

aca despite keeping an inguinal amplectic

posture.  This situation seems to be attained by

the male’s smaller body size than the female.

If amplexus was axial, the cloaca of the male

would be positioned too far forward of the

female’s cloaca, resulting in less efficient fertil-

ization of eggs, which are apparently attached

to the ceilings of holes or hollows.  Thus,

inguinal amplexus of O. sumatrana may be

related to its sexual size dimorphism and

terrestrial oviposition.

One reason for terrestrial oviposition might

be to protect eggs from carnivorous conspe-

cific tadpoles (Iskandar, 1998), although lar-

vae of this species in Bali did not seem to favor

frog eggs as far as we could determine (Eto,

unpublished data).  For more detailed discus-

sion, it is necessary to assess the amplectic

positions and oviposition sites of other species

of Occidozyga and of dicroglossids in general.
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Abstract

We describe a microhylid frog from Bali, Indonesia as a new species, Microhyla orientalis sp. nov. It belongs to the M. 

achatina group and is close to M. mantheyi, M. malang, and M. borneensis. It is distinguished from its congeners by a 

combination of the following characters: small size (adult males about 16–17 mm in SVL); a faint vertebral stripe present; 

a black lateral stripe from behind eye to half length of trunk; snout rounded in profile; eyelid without supraciliary spines; 

first finger less than one-fifth of third; tips of three outer fingers weakly dilated, forming weak disks, dorsally with median

longitudinal groove; outer palmar tubercle single; tibiotarsal articulation reaching up to center of eye; tips of toes distinctly 

dilated into disks, dorsally with median longitudinal groove; inner and outer metatarsal tubercles present; four or more 

phalanges on inner and outer sides of fourth toe, and three phalanges on inner side of fifth toe free of web; and tail of larva

with a black marking at middle. The male advertisement call of the new species consists of a series of notes each lasts for 

0.01−0.08 s and composed of 3−5 pulses with a dominant frequency of 3.2–3.6 kHz. Uncorrected sequence divergences 

between M. orientalis and all homologous 16S rRNA sequences available were >6.6%. At present, the new species is 

known from rice fields between 435–815 m elevation in Wongaya Gede and Batukaru.

Key words: new species, mtDNA phylogeny, Microhyla orientalis, Java, taxonomy

Introduction

The island of Bali is located at the westernmost of the Lesser Sundas. The island is separated in the west from the 

Java Island, which belongs to the Greater Sundas, by the Strait of Bali with a minimum distance of only 3 km, and 

in the east from the Lombok Island by the Lombok Strait, with a distance of 35 km (Fig. 1); all of these islands 

together form a chain-like archipelago. The area of the island is 5,561 km2, and many volcanoes are present in the 

north, and many waterways run in the south (Whitten & Soeriaatmadja 1996).

Considering the small size and topography of the island, the amphibian fauna of Bali is expected to be limited. 

Indeed, the amphibian fauna of Bali is not diverse and Iskandar (1998) listed only 14 species of anuran from the 

island: Leptobrachium hasseltii Tschudi, Bufo (=Ingerophrynus) biporcatus Gravenhorst, Bufo (=Duttaphrynus)

melanostictus Schneider, Kaloula baleata (Müller), Microhyla palmipes Boulenger, Oreophryne monticola

(Boulenger), Rana (Aquarana) catesbeiana (Shaw) (introduced, =Lithobates catesbeianus), Rana (Hylarana)

chalconota (Schlegel), Rana (Hylarana) nicobariensis (Stoliczka), Fejervarya cancrivora (Gravenhorst), 

Fejervarya limnocharis (Gravenhorst), Occidozyga lima (Gravenhorst), Occidozyga sumatrana (Peters), and 

Polypedates leucomystax (Gravenhorst). More recently, McKay (2006) noted 15 anuran species on the island, with 

O. lima being excluded but O. laevis (Günther) and Microhyla achatina (Tschudi) added to Iskandar’s (1998) list. 

McKay’s (2006) O. laevis should represent O. sumatrana (Eto & Matsui 2012), while M. achatina is considered to 

represent the new species described in this paper.
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Notwithstanding its poor anuran diversity, the geographic position of Bali is noteworthy, and the island has 

received biogeographical attention because Bali and neighboring Lombok form the famous Wallace line, now 

regarded as the western boundary of the Wallacea. Of the species listed above, the occurrence of a microhylid, 

Oreophryne monticola, is biogeographically significant, because the genus is Australo-Papuan. Since Oreophryne

sometimes oviposit in hollow aerial tubers of epiphytes where embryos develop directly, Inger (1954) suggested 

waif dispersal to explain distribution of the genus in Sulawesi. However, the origin of the population in Bali has 

never been seriously discussed so far (e.g. Inger 1999; Kurabayashi et al. 2011). In contrast, for the microhylid 

genus Microhyla, Bali is the easternmost edge of its distribution, and the factors limiting the distribution of the 

genus have also never been discussed. Therefore, Bali remains key to understanding microhylid evolution. To date, 

only M. palmipes and M. achatina have been reported from the island (Iskandar 1998; McKay 2006), but recent 

herpetological surveys on the island resulted in the collection of an unknown species of Microhyla (Matsui et al.

2011), which seems to have been confused with M. achatina by McKay (2006). Based on its distinct genetic 

difference from all the other taxa examined, Matsui et al. (2011) proposed to treat the specimen as a probable 

distinct species, Microhyla sp. 2 from Bali, but retained description from a single specimen then available.

Additional survey of the species on the island in 2012 resulted in the collection of both metamorphosed and 

larval specimens, as well as recording of calls. Later close genetic and morphological examination using these new 

materials proved the species to be different from all other congeners, including M. palmipes or M. achatina, hence 

we described it as a new species.

FIGURE 1. Map of Bali, Indonesia, showing the known distributions of Microhyla orientalis sp. nov. The filled star and filled 

circle, respectively, indicate the type localities of Wongaya Gede and Batukaru. Microhyla palmipes was sympatric with M.

orientalis at both localities. The open circle indicates Ubud, where only M. palmipes was found.
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Material and methods

For adult specimens stored in 70% ethanol, we took the following 18 body measurements to the nearest 0.1 mm, 

following Matsui (1984, 1994, 2011): (1) snout-vent length (SVL); (2) head length (HL), from tip of snout to hind 

border of angle of jaw (not measured parallel to the median line); (3) eye length (EL); (4) eye diameter (ED), 

diameter of the exposed portion of the eyeball; (5) head width (HW); (6) internarial distance (IND); (7) interorbital 

distance (IOD); (8) upper eyelid width (UEW); (9) forelimb length (FLL); (10) lower arm and hand length (LAL), 

from elbow to tip of third finger; (11) inner palmar tubercle length (IPTL); (12) outer palmar tubercle length 

(OPTL); (13) hindlimb length (HLL); (14) tibia length (TL); (15) foot length (FL); (16) inner metatarsal tubercle 

length (IMTL); (17) first toe length (1TOEL), from distal end of inner metatarsal tubercle to tip of first toe; and 

(18) outer metatarsal tubercle length (OMTL). Additionally, we also used a binocular dissecting microscope to 

measure: (19) snout length (SL); (20) nostril-eyelid length (N–EL); (21) snout-nostril length (S–NL); (22) first 

finger width (1FW), measured at the distal phalanx; (23–25) finger disk diameters (2–4FDW); (26–30) toe disk 

diameters (1–5TDW); and (31–36) finger lengths (1–3FLO, 2–4FLI), for outer side (O) of the first, inner side (I) of 

the fourth, and both sides of the remaining fingers, measured between tip and the junction of the neighboring 

finger. We followed the system of description of toe-webbing states used by Savage & Heyer (1967).

For larvae preserved in 5% formalin, the following 14 measurements were taken to the nearest 0.1 mm using a 

binocular dissecting microscope equipped with a micrometer: (1) total length; (2) head-body length; (3) maximum 

head-body width; (4) maximum head-body depth; (5) eye-snout distance; (6) eyeball diameter; (7) interorbital 

distance; (8) snout-spiracle opening distance; (9) oral disk width; (10) tail length; (11) maximum tail depth; (12) 

maximum tail width; (13) maximum tail muscle depth; and (14) upper fin depth at middle of tail. For staging, we 

followed Shimizu & Ota's (2003) table for a congeneric species.

For the acoustic data, we recorded frog calls in the field using a digital recorder (Olympus LS-11) at 44.1 kHz/

16 bit as uncompressed wave files and analyzed them with SoundEdit Pro (MacroMind-Paracomp, Inc.) and Raven 

Lite 1.0 for Mac OS X (http://www.birds.cornell.edu/raven) on a Macintosh computer. Temporal data were 

obtained from the oscillograms and frequency information was obtained from the audiospectrograms using Fast 

Fourier Transformation (1024 point Hanning window).

TABLE 1. Samples newly used in this study, including GenBank accession numbers. BOR: BORNEENSIS collection, 

University Malaysia Sabah; KUHE: Kyoto University, Human and Environmental Studies. UL = unnumbered larva.

We obtained DNA sequence data from tissue samples preserved in 99% ethanol. We reconstructed 

phylogenetic trees from approximately 1800 base pairs (bp) of the partial sequences of mitochondrial 12S and 16S 

rRNA genes and the intervening tRNA gene for valine to clarify the genetic structure of our own samples of 10 

specimens of Microhyla from Bali and one outgroup species (Table 1). For comparisons, DNA sequences (12S 

rRNA, 16S rRNA) already reported Matsui et al. (2011) were obtained from GenBank for 16 taxa (17 sequences) 

GenBank

Species Voucher No. Location 12S 16S 

Chaperina fusca BOR 8479 Malaysia, Sabah, Crocker AB781451 AB781462

Microhyla palmipes KUHE UL Indonesia, Bali, Ubud AB781452 AB781463

Microhyla palmipes KUHE 55057 Indonesia, Bali, Wongaya Gede AB781453 AB781464

Microhyla sp. from Bali KUHE 55048 Indonesia, Bali, Wongaya Gede AB781454 AB781465

Microhyla sp. from Bali KUHE 55049 Indonesia, Bali, Wongaya Gede AB781455 AB781466

Microhyla sp. from Bali KUHE 55050 Indonesia, Bali, Wongaya Gede AB781456 AB781467

Microhyla sp. from Bali KUHE 55072 Indonesia, Bali, Wongaya Gede AB781457 AB781468

Microhyla sp. from Bali KUHE 55073 Indonesia, Bali, Wongaya Gede AB781458 AB781469

Microhyla sp. from Bali KUHE 55074 Indonesia, Bali, Wongaya Gede AB781459 AB781470

Microhyla sp. from Bali KUHE 55076 Indonesia, Bali, Wongaya Gede AB781460 AB781471

Microhyla sp. from Bali KUHE UL Indonesia, Bali, Wongaya Gede AB781461 AB781472
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of Microhyla and three outgroup species: M. achatina (AB634598, AB634656); M. annectens (AB634600, 

AB634658); M. berdmorei (AB598314, AB598338); M. borneensis (AB634605, AB634663); M. butleri

(AB634606, AB634664); M. fissipes (AB634608, AB634666); M. heymonsi (AB598312, AB598336); M.

mantheyi (AB598310, AB598334); M. marmorata (AB634610; AB634668); M. okinavensis (AB201173, 

AB201184); M. ornata (AB201176, AB201187); M. palmipes (AB634612–13, AB634670–71); M. perparva

(AB634615, AB634673); M. petrigena (AB634617, AB634675); M. malang (AB598295, AB598319); Microhyla

sp. 2 (AB634621, AB634679); Calluella minuta (AB598316, AB598340); Glyphoglossus molossus (AB201182, 

AB201193); and Micryletta inornata (AB598317, AB598341). Methods for DNA extraction and, amplification 

and sequencing of the mtDNA fragments are the same as those reported by Matsui et al. (2011). The resultant 

sequences were deposited in GenBank (AB781451–781472: Table 1). The alignment matrix with 1791 mtDNA 

nucleotide sites (899 sites for 12S rRNA; 892 for 16S rRNA) was subjected to estimate phylogenetic relationships 

using maximum likelihood (ML) and Bayesian inference. Pairwise comparisons of uncorrected sequence 

divergences (p-distance) were also calculated for 16S rRNA. Details for all these procedures are given in Matsui et 

al. (2011).

Results

As a result of molecular phylogenetic analyses, we obtained 1791 bp of concatenated fragments of mtDNA genes 

for 31 samples, including out-groups (Fig. 2). Of 1791 nucleotide sites, 675 were variable, and 492 were 

parsimoniously informative. The best substitution model was GTR+G with gamma shape parameter (G) of 0.196 

for ML and 0.208 for BI. The likelihood values (-lnLs) of the ML and BI trees were 11916.673 and 11969.347, 

respectively. 

FIGURE 2. Maximum likelihood (ML) tree of a 1791 bp sequence of mitochondrial 12S and 16S rRNA for samples of 

Microhyla (for sample details see Table 1 and Matsui et al. 2011). Numbers above or below branches represent bootstrap 

supports for ML inference and Bayesian posterior probability (ML-BS/BPP).
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The specimen of Microhyla sp. from Bali examined here proved to form a well-supported clade with M.

borneensis Parker, M. malang Matsui, and M. mantheyi Das, Yaakob, and Sukumaran, although their relationships 

were not fully resolved (Fig. 2). The clade containing these four species was sister to M. achatina. From the three 

species in this sister clade, the specimens from Bali exhibited substantially large genetic distances (uncorrected p-

distance of 6.6–7.8%: Table 2), values larger than the distance between M. borneensis and M. malang specimens

syntopic on Borneo (5.1%). Furthermore, the specimen of Microhyla sp. from Bali is also clearly separated 

morphologically from all the other congeners, including its sister species, in congruence with genetic separation. 

Thus, we describe Microhyla sp. from Bali as follows:

Systematics

Microhyla orientalis sp. nov.

Synonymy: Microhyla achatina: McKay, 2006, p. 34.

Holotype. MZB.Amp 20404 (formerly KUHE 55073), an adult male from Wongaya Gede, Bali, Indonesia 

(08o25'03''S, 115o07'28''E, alt. 435 m a.s.l.: Fig. 1), collected on 7 August 2012 by K. Eto.

Paratypes. MZB.Amp16259, an adult female from Batukaru, Bali, Indonesia (08o22'24''S, 115o06'24''E, alt. 

815 m a.s.l.), collected on 12 July 2010 by A. Hamidy, M.D. Kusrini., and U. Arifin; KUHE 55049, 55074, 55075 

(three adult males), KUHE 55050, 55072 (two adult females), and KUHE 55076 (one subadult female) from the 

type locality, collected from 7 to 8 August 2012.

Referred specimens. KUHE 47215 (five tadpoles), collection data same as the holotype.

Etymology. The specific epithet is from a Latin word orientis denoting eastern, alluding to the fact that the 

species from Bali represents geographically the easternmost species of Microhyla.

Diagnosis. The new species is assigned to Microhylidae by the possession of median spiracle in larvae, and to 

Microhyla among members of the family from Southeast Asia by: lack of small spine-like projection of skin at heel 

and elbow; belly without a brown network; underside of fingers without greatly enlarged tubercles; snout less than 

twice diameter of eye; inner metatarsal tubercle low, not shovel-like; tympanum hidden by skin (Inger, 1966). A

small form of the genus, adult males about 16–17 mm in SVL; snout rounded in profile; first finger short, less than 

one-fifth of third; tips of three outer fingers weakly dilated, forming weak disks, dorsally with median longitudinal 

groove; outer palmar tubercle single; tibiotarsal articulation reaching up to center of eye; tips of toes distinctly 

dilated into disks, dorsally with median longitudinal groove; two or more phalanges on outer side of second toe, 

more than three phalanges on inner side of third toe, three or more phalanges on outer side of third toe, four or more 

phalanges on inner and outer sides of fourth toe, and three phalanges on inner side of fifth toe free of web; inner 

and outer metatarsal tubercles present; eyelid without supraciliary spines; faint vertebral stripe present; a black 

lateral stripe from behind eye to half length of trunk; tail of larva with a black marking at middle.

Description of holotype (measurements in mm). SVL 16.6; habitus moderate (Fig. 3–4); head triangular, 

wider (5.5) than long (5.1); snout rounded dorsally and in profile, projecting beyond lower jaw; eye shorter (2.2) 

than snout (3.2); canthus rostralis rounded; lore sloping, very weakly concave; nostril lateral, below canthus 

rostralis, closer to tip of snout (1.0) than to eye (1.2); interorbital distance (1.6) subequal to internarial distance 

(1.6), the latter larger than upper eyelid (1.2); pineal spot absent; tympanum hidden; upper jaw edentate; tongue 

oval, without papillae; slit-like openings to a median subgular vocal sac.

Forelimb short (9.9); fingers thin, free of web, but with slight skin fringes on both sides of second and third and 

inner side of fourth; second finger slightly longer (measured from inner side 1.9, outer 1.3) than fourth (inner 1.7), 

latter much longer than first (outer 0.6); tips of three outer fingers weakly dilated and forming weak disks slightly 

wider than basal phalanges, dorsally with median longitudinal groove; diameter of first finger (0.2) one-third that 

of third finger disk (0.6), latter one and half times width of phalange; a single outer palmar tubercle (0.6) larger 

than inner (0.4); distinct, rounded subarticular tubercles, formula 1, 1, 2, 2; nuptial pad absent (Fig. 5).

Hindlimb moderately long (28.5) about three times length of forelimb; tibia long (9.0), heels overlapping when 

limbs are held at right angles to body; tibiotarsal articulation of adpressed limb reaching to center of eye; foot (9.4) 

longer than tibia; tips of toes distinctly dilated into disks, much wider than those of fingers (disk diameter of third 
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toe 0.7), dorsally with median longitudinal groove; third toe longer than fifth; webs between toes poorly developed 

(Fig. 5) and absent between first and second toes, formula (the number of phallanges free of web): I n.a.–n.a. II 2–

3+ III 3 –4+ IV 4+–3 V; subarticular tubercles prominent, rounded, formula 1, 1, 2, 3, 2; inner metatarsal tubercle 

oval, large, length (0.8) half of first toe (1.6); outer metatarsal tubercle elevated, smaller (0.5) than inner.

Skin smooth above with a few low tubercles scattered; eyelid without supraciliary spines; no supratympanic 

fold discernible; side of body sparsely scattered with tubercles or low ridges; hindlimb dorsally scattered with few 

tubercles; ventral side of body and limbs smooth.

FIGURE 3. Dorsolateral view of male holotype of Microhyla orientalis sp. nov. (MZB.Amp 20404) from Wongaya Gede, 

Bali, Indonesia.

FIGURE 4. Dorsal (A) and ventral (B) views of male holotype of Microhyla orientalis sp. nov. (MZB.Amp 20404). Scale bar 

= 10 mm.
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FIGURE 5. Ventral view of left hand (A) and foot (B) of male holotype of Microhyla orientalis sp. nov. (MZB.Amp 20404). 

Scale bar = 5 mm.

FIGURE 6. Larval Microhyla orientalis sp. nov. from Wongaya Gede, Bali, stage 40 of Shimizu & Ota (2003), total length = 

23.2 mm. Dorsal (A), lateral (B), and ventral views (C). Scale bar = 5 mm.
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Color. Color in life pinkish brown dorsally, with a dark mark medially continued from interorbital bar 

posteriorly to cloacal opening; interorbital bar, reverse triangle in shape and covering posterior half of upper eyelid; 

dorsal dark mark forming subtriangle marks on shoulder and behind sacrum, and running laterally to form a wide-

limbed reverse V-shaped mark in between on middle of back; a narrow, discontinuous vertebral line from tip of 

snout to above anus; a black lateral stripe extending from above arm to half length of trunk; a paler dark marking 

connecting interorbital bar and lateral stripe, dorsally bordering the latter; a dark stripe from snout to eye; a cream 

stripe extending from eye to axilla; except for upper arm, limbs dorsally with narrow dark brown bars; throat and 

chest darkly pigmented and abdomen cream white; iris dorsally and ventrally golden with black reticulation, darkly 

pigmented at anterior and posterior corners (Figs. 3–5). In preservative, pattern has not obviously changed, 

although color has slightly faded.

Variation. Individuals of the type series are generally similar in appearance. Variation in size and body 

proportions is given in Table 3. Female paratypes have a larger body size (> 18.3 mm SVL) than the males (< 17.4 

mm SVL), but tend to have shorter hindlimbs relative to SVL; tibiotarsal articulation of adpressed limbs reaching 

the posterior border of the eye in females, and the center of the eye in males. Webbing formula was stable for the 

outer side of the first toe, where web is absent, but slight variations are recognized in other positions, e.g., in a 

paratype (KUHE 55072), webbing is absent from the first toe to the inner side of the third toe, while another 

(KUHE 55075) had slight webbing on the inner side of the second toe. Throats of females are less darkly 

pigmented than those of males.

TABLE 3. Measurements of adult Microhyla orientalis sp. nov. types. SVL (Mean±1SD, in mm) and medians of ratios 

(R) of other characters to SVL, followed by ranges in parenthesis. See text for character abbreviations.

Tadpoles. A total of five tadpoles from St. 39 (total length=19.9 mm, head-body length=7.1 mm) to 40 (23.2 

mm, 7.1 mm) from the type locality of M. orientalis and identified as that species by DNA analyses were closely 

examined. Head and body flattened above, spheroidal below; maximum head-body width at level of eye 63–66% 

(median=63%) of head-body length; maximum head-body depth 84–96% (median=92%) of maximum head-body 

width; snout broadly rounded, almost truncate in profile; eyes lateral, visible from below, eyeball diameter 14–16% 

(median=15%) of head-body length; interorbital space very wide, 322–371% (median=337%) of eyeball diameter; 

eye-snout distance 25–31% (median=29%) of head-body length. Oral disk dorso-terminal, small; lower lip 

moderately expanded with width 21–25% (median=22%) of maximum head-body width, with a prominent lateral 

Males (N = 5) Females (N = 2)

SVL 16.7 ± 0.7 (15.8−17.4) 18.8 (18.3−19.2)

RHL 31.4 (30.7−35.4) 30.7 (29.7−31.7)

RHW 33.1 (32.2−36.7) 33.6 (32.8−34.4)

RIND 9.2 (8.8−9.9) 8.1 (7.7−8.5)

RIOD 9.5 (8.8−11.0) 9.0 (8.9−9.1)

RUEW 7.8 (7.0−8.6) 6.7 (6.2−7.3)

REL 13.9 (13.1−14.9) 13.5 (13.0−14.0)

RED 11.4 (10.7−12.9) 9.9 (9.5−10.3)

RLAL 43.0 (39.7−46.0) 41.1 (40.1−42.1)

RFLL 58.9 (54.1−60.1) 53.3 (53.1−53.6)

RIPTL 3.1 (2.5−3.8) 2.5 (2.3−2.6)

ROPTL 3.9 (3.1−4.7) 3.6 (3.4−3.7)

RTL 54.0 (50.6−56.3) 51.5 (50.0−53.0)

RFL 56.6 (50.6−57.7) 52.6 (51.6−53.6)

RHLL 171.5 (159.2−173.0) 163.0 (160.0−166.1)

RIMTL 5.1 (3.4−5.8) 3.8 (3.7−3.8)

R1TOEL 9.3 (7.6−12.7) 8.7 (8.1−9.4)

ROMTL 3.6 (2.4−5.5) 2.5 (2.4−2.5)
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papilla on each side; labial teeth and jaw sheaths entirely absent, but lower labium scattered with small papillae on 

lateral margin. Spiracle opening median, without free flap, opening 70–85% (median=81%) of distance from tip of 

snout to end of body; vent median, in form of long tube directed nearly vertically downward, small opening at edge 

of ventral fin; thick loops of gut visible ventrally. Tail long and lanceolate, abruptly tapering in posterior half and 

drawn out into a short filament; tail length 182–251% (median=221%) of head-body length, maximum depth 25–

28% (median=26%) of length; dorsal fin originating at end of head-body, with a straight margin, sub-parallel with 

much deeper ventral fin in anterior half of tail; ventral fin deeper than dorsal throughout anterior to tail tip; caudal 

muscle moderately strong, maximum tail width 36–44% (median=39%) of maximum head-body width; muscle 

depth maximum at origin, 52–68% (median=57%) of maximum tail depth, but steadily narrowed posteriorly, with 

depth at middle of tail shallower than fin depths. Color in life (Fig. 6) light brown on dorsum and laterally, with a 

pair of paler interorbital markings and darker mid-dorsal band, and marking at end of flank; venter grey and belly 

semi-translucent; tail at middle with a black marking dotted with golden.

Range. The new species is so far known only from Wongaya Gede and Batukaru, Bali Island, Indonesia.

Natural history. Microhyla orientalis sp. nov. is sympatric with M. palmipes on Bali around Wongaya Gede 

(type locality) and Batukaru, while at Ubud, only M. palmipes was found. They are actually syntopic and can be 

found very close to each other in the localities of sympatry. At Batukaru, calls of M. orientalis were frequently 

heard in mid July, but at Wongaya Gede, calls were rarely heard in early August, while tadpoles approaching to 

metamorphosis were observed. In both cases, M. palmipes was actively calling. Thus the new species may have 

shorter breeding seasons than M. palmipes. Tadpoles were found in paddies with larval M. palmipes.

Call characteristics. Calls were recorded at Batukaru at an air temperature of 26.0°C at 21:00 h on 12 July 

2010 by A. Hamidy. Calls (33 notes from two males were analyzed) consisted of a series of notes each emitted at 

an interval (between the beginnings of two successive notes) of 0.54±0.13 (0.37−0.97) s (Fig. 7). Each note was 

composed of 4.1±0.7 (3−5) short pulses and lasted for 0.07 ± 0.01 (0.01−0.08) s. Frequency bands spread over the 

1.0–5.3 kHz range, and the dominant frequency was 3.4±0.1 (3.2−3.6) kHz. Frequency and intensity modulations 

were not marked.

FIGURE 7. Sonagram (A) and wave form (B) showing four successive notes of an advertisement call of Microhyla orientalis 

sp. nov. from Batukaru, Bali, recorded at an air temperature of 26.0°C.

Comparisons. Microhyla orientalis sp. nov. can be differentiated from genetically close members of the M.

achatina group of Matsui et al. (2011) and sympatric congeners in the following way. The new species differs from 

M. achatina by having dorsal dark markings covering the posterior half of the upper eyelid, a lateral dark band 

beginning at the base of the upper arm and vaguely bordered, and four or five dark bars on limbs (vs. dark marking 

posterior to upper eyelid, lateral band strong and clearly bordered, and two bars on limbs). From M. berdmorei
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(Blyth), the new species differs by poorly developed toe webbing (vs. very well developed webbing). The new 

species differs from M. borneensis by larger body size, male SVL 15.8–17.4 mm, and less developed toe webbing, 

with fifth toe with more than three phalanges free (vs. 11.0–13.2 mm and two phalanges free). The new species 

differs from M. fissipes Boulenger, M. mixtura Liu and Hu, M. okinavensis Stejneger, and M. pulchra (Hallowell) 

by having finger and toe disks with dorsal median longitudinal grooves (vs. disks and grooves entirely absent or 

present only on toes). From M. heymonsi Vogt, the new species differs by having two metacarpal tubercles and 

lacking loreal mask or marking on the vertebral line (vs. having three tubercles, a black band covering side of head, 

and one or two pairs of black marks on sides of vertebral line). The new species differs from M. malang by a 

smaller body size, male SVL 15.8–17.4 mm, and less developed toe webbing, with the fifth toe having more than 

three phalanges free (vs. 19.4–22.2 mm and one phalange free), and from M. mantheyi by a smaller body size, male 

SVL 15.8–17.4 mm, uniformly brown head, and less developed toe webbing, with the fifth toe with more than 

three phalanges free (vs. 18.8–29.2 mm, snout cream colored, and one phalange free). Finally, from M. palmipes,

the new species differs by lacking a supraciliary tubercle, having much less developed toe webbing, and the 

presence of dorsal median grooves on digital disks (vs. having a supraciliary tubercle and fairly developed toe 

webbing, and lacking the grooves).

Discussion

On the basis of phylogenetic analysis of representative microhylid from Southeast Asia using mtDNA genes of 12S 

rRNA and 16S rRNA, Matsui et al. (2011) recognized two subgenera within the genus Microhyla: Microhyla and 

an as yet unnamed subgenus. In the subgenus Microhyla, four species groups, the M. palmipes group, the M. ornata

group, the M. butleri group, and the M. achatina group were recognized. Microhyla orientalis sp. nov. was nested 

in the M. achatina group as Microhyla sp. 2. 

Our newly conducted phylogenetic analysis of mtDNA genes using additional samples from Bali yielded 

results almost identical with those of Matsui et al. (2011). Our analyses indicated that M. orientalis is 

phylogenetically closest to M. mantheyi, M. borneensis, and M. malang. Therefore, we suggest that these four 

species be called the M. borneensis subgroup. Frogs of the M. borneensis subgroup breed in quiet waters like 

ponds, pools, and paddies, except for M. borneensis, which is specialized to breed in the pitcher of Nepenthes

(Matsui 2011). Microhyla orientalis resembles M. mantheyi and M. malang in their breeding habit.

Species of the M. borneensis subgroup have been recorded from peninsular Thailand to Sumatra and Borneo 

(Das et al. 2007; Matsui 2011). Because many members of the M. achatina group sensu Matsui et al. (2011: M.

berdmorei, M. pulchra, M. fissipes, M. heymonsi, and M. mixtura) occur on the continent, the M. borneensis

subgroup most likely originated in the continent and dispersed southeastwards. The new species, M. orientalis is 

the most easterly distributed of the genus, but, strangely, no species of the subgroup has been reported from Java, 

which is located between Sumatra and Bali.

It is therefore of interest that Iskandar (1998) noted the occurrence of unique tadpoles in Java. According to 

Iskandar (1998), Microhyla tadpoles from Sancang, on the southern coast of west Java, are very similar to those of 

M. achatina. However, unlike typical M. achatina, the tadpole in question have a much narrower labial cup, and 

yellow and black tail fins, all of which match the characteristics of M. borneensis, according to Iskandar (1998). 

Because M. mantheyi and M. malang were not discriminated from M. borneensis at the time of Iskandar’s (1998) 

description, and the tadpole of true M. borneensis is a specialized pitcher plant dweller, the tadpoles in question 

from Western Java may resemble larval M. mantheyi (Das et al. 2007) or M. malang (Matsui 2011).

From Java, two species of Microhyla, M. achatina and M. palmipes, have been recorded (Iskandar 1998), but 

compared to Bali, Java is much greater in size and it is possible that there are more than two species of Microhyla

on the island. Because Java has a long history of land development and forest destruction, it is possible that some 

species have already become extinct on the island. However, it remains worth surveying areas on Java where no 

herpetological collections have been made in the hope they may be extant.
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Two morphotypes, with a large and small body size, of a brown frog Rana t. tagoi occur sympatri-

cally in the Kinki region, central Honshu of Japan. Previous mitochondrial (mt) DNA genealogical 

study recognized two main lineages (A and B) and several sublineages in R. tagoi, where the small 

type was placed in the group A-1b, and the large type in groups A-1a and B-2a. Using haplotype 

network and structure analysis of three nuclear genes, we examined the discrepancy between mor-

phology and mitochondrial genealogy. The results showed that the small type is reproductively iso-

lated from its co-occurring large type (A-1a or B-2a), and that unlimited gene flow occurred between 

parapatrically occurring two mtDNA lineages of large types (A-1a and B-2a). Discordant genetic 

relationships between mtDNA and nuclear DNA results may be caused by the past mitochondrial 

introgression, and possibly, the incomplete lineage sorting. These results also suggest a hetero-

specific relationship between the large (A-1a and B-2a) and small types (A-1b). The large type is 

identified as Rana t. tagoi as it is genetically very close to the topotypes of the nominal subspecies, 

while the small type remains unnamed.

Key words: Rana tagoi, genealogy, morphotype, mitochondrial DNA, nuclear DNA, introgression, specia-

tion

INTRODUCTION

A brown frog Rana tagoi Okada, 1928 is widely distrib-

uted throughout main islands of Japan, except for Hokkaido, 

and includes three subspecies. However, recent phyloge-

netic study based on mitochondrial (mt) DNA analysis

revealed that R. tagoi and its close relative R. sakuraii Matsui

and Matsui, 1990 are highly divergent genetically with com-

plex evolutionary histories, and include many cryptic taxa 

(Eto et al., 2012).

In the region of Kinki, central Honshu, two types (large 

and small types: Sugahara, 1990) of R. t. tagoi occur sym-

patrically and are different in morphology and breeding ecol-

ogy (Sugahara and Matsui, 1992, 1993, 1994, 1995, 1996, 

and 1997). Interestingly, the large type is split into two major 

mitochondrial clades (A and B), one of which (Group A-1a) 

is more closely related to the small type (Group A-1b) in 

Clade A, while the other (Group B-2a) was nested in Clade 

B (Eto et al., 2012).

Mitochondrial (mt) DNA is very widely used in phyloge-

netic studies, given its high variability and many traits suit-

able for experiments and analyses (Avise, 2000). However, 

the results of some recent studies have revealed that phy-

logenies derived from mtDNA do not always agree with 

those obtained from other sources like morphology (e.g., Liu 

et al., 2010; Hamidy et al., 2011), as is the case in two mor-

photypes of R. t. tagoi described above. Thus, it is desirable 

to confirm the validity of phylogenetic relationships from 

mtDNA using other genetic markers.

In order to assess detailed genetic and taxonomic rela-

tionships of the two morphotypes with three mitochondrial 

lineages of R. t. tagoi in the Kinki region, we conducted phy-

logenetic and population genetic analyses using nuclear (n) 

DNA sequences. By doing this, we tried to infer the states 

of reproductive isolations among each of the mitochondrial 

lineages in question.

MATERIALS AND METHODS

For samples from the Kinki region, we distinguished the large 

and small types based on body size and other diagnostic characters 

as described by Sugahara and Matsui (1994). In fact, some sam-

ples with mtDNA and morphological traits of the large type showed 

body sizes intermediate between the two types, but these were 

treated as the large type.

We first ascertained mtDNA phylogeny of Eto et al. (2012) 

using 186 samples of R. t. tagoi from 41 localities in the Kinki region 

and nine samples from the type locality in the Chubu region (Fig. 1 

and Table. 1). The data include 23 mtDNA sequences from GenBank

(accession numbers AB639617, AB639621–AB639630, AB639633–

AB639635, AB639706–AB639709, and AB639711–AB639715). We 

used R. sauteri and R. tsushimensis (AB685767 and AB639752) as 

outgroup taxa.

Based on the results of mtDNA analysis, we selected 126 sam-

ples from six locality groups of the Kinki region (see result) and nine 
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topotypic samples, and conducted genetic analyses using nDNA 

sequences. These localities were chosen to represent sites where 

(1) a single mitochondrial genetic group occurs, (2) two or three 

groups occur sympatrically, and/or (3) each mitochondrial group 

occurs parapatrically, exhibiting boundary areas. When samples 

belonging to different mitochondrial groups co-occurred in a locality, 

we treated them as different units in the analyses.

Following the experimental conditions and techniques 

described in Eto et al. (2012), we first analyzed approximately 600 

bp of ND1 (NADH dehydrogenase subunit 1) fragments of mtDNA. 

We constructed phylogenetic trees based on maximum likelihood 

(ML) and Bayesian inference (BI). The ML and BI analyses were 

respectively performed using TREEFINDER ver. Mar. 2011 (Jobb, 

2011) and MrBayes v3.2.0 (Ronquist and Huelsenbeck, 2003). 

Methods for construction of trees also follow Eto et al. (2012). We 

then amplified partial sequences of three nuclear genes (NCX1

[sodium-calcium exchanger 1], POMC [pro-opiomelanocortin], and 

RAG1 [recombination activating gene 1]) by PCR using primer sets 

listed in Table 2. The experimental conditions and techniques were 

essentially same as those in mtDNA analysis. We used PHASE ver. 

2.1 (Stephens et al., 2001) to separate and determine haplotypes 

of heterozygotic individuals. We considered haplotypes supported 

by BPP 0.95 or greater as significant; others were treated as miss-

ing data.

To estimate relationships between nDNA haplotypes, statistical 

parsimony networks for each gene were constructed by using TCS 

version 1.21 (Clement et al., 2000). We also performed population 

genetic analyses based on nDNA haplotypes. For each population, 

genetic variability was assessed by calculating the mean observed 

(Ho) and expected (He) heterozygosities, and all genes were 

checked with chi-square goodness-of-fit tests to determine whether 

or not they were deviated from Hardy-Weinberg (HW) equilibrium. 

Fig. 1. Map of the Kinki region, Japan, showing sampling localities 

of Rana t. tagoi. Open, closed, and shaded circles indicate localities 

with mitochondrial genetic groups B-2a, A-1b, and A-2a, respec-

tively, and the star shows the type locality in the Chubu region. 

Ranges encircled by dashed lines indicate localities used in nDNA 

analyses. Figures indicate localities shown in Table 1.

Table 1. Numbers and names of sampling localities, assigned 

mitochondrial genetic groups, and sample sizes of Rana t. tagoi

examined.

No. Locality MtDNA group n

Rana t. tagoi

1 Takayama City, Gifu Pref. A-1a 9

2 Ibigawa Town, Gifu Pref. A-1a 1

3 Nagahama City, Shiga Pref. A-1a 1

4 Maibara City, Shiga Pref. A-1a 2

5 Nagahama City, Shiga Pref. A-1a 2

6 Nagahama City, Shiga Pref. A-1a 2

7 Nagahama City, Shiga Pref. A-1a 11

8 Nagahama City, Shiga Pref. A-1a 1

9 Mihama Town, Fukui Pref. A-1a 1

10 Mihama Town, Fukui Pref. A-1a 1

11 Mihama Town, Fukui Pref. A-1a 1

12 Mihama Town, Fukui Pref. A-1a 1

A-1b 1

13 Takashima City, Shiga Pref. A-1a 5

A-1b 9

14 Takashima City, Shiga Pref. A-1b 1

15 Takashima City, Shiga Pref. A-1a 15

A-1b 2

B-2a 7

16 Takashima City, Shiga Pref. A-1b 2

B-2a 3

17 Takashima City, Shiga Pref. A-1b 1

B-2a 1

18 Takashima City, Shiga Pref. B-2a 7

19 Takashima City, Shiga Pref. A-1b 2

B-2a 2

20 Takashima City, Shiga Pref. B-2a 2

21 Otsu City, Shiga Pref. A-1b 4

B-2a 6

22 Otsu City, Shiga Pref. B-2a 2

23 Oi Town, Fukui Pref. A-1b 1

24 Nantan City, Kyoto Pref. A-1b 2

B-2a 6

25 Kyoto City, Kyoto Pref. A-1b 1

B-2a 1

26 Kyoto City, Kyoto Pref. A-1b 1

B-2a 3

27 Kyoto City, Kyoto Pref. A-1b 16

B-2a 14

28 Otsu City, Shiga Pref. B-2a 3

29 Kyoto City, Kyoto Pref. B-2a 2

30 Kyoto City, Kyoto Pref. B-2a 1

31 Kyoto City, Kyoto Pref. B-2a 12

32 Kyoto City, Kyoto Pref. B-2a 1

33 Otsu City, Shiga Pref. B-2a 1

34 Konan City, Shiga Pref. B-2a 1

35 Koka City, Shiga Pref. B-2a 9

36 Higashiomi City, Shiga Pref. B-2a 1

37 Komono Town, Mie Pref. B-2a 1

38 Taga Town, Shiga Pref. B-2a 5

39 Taga Town, Shiga Pref. A-1a 1

40 Taga Town, Shiga Pref. A-1a 5

41 Maibara City, Shiga Pref. A-1a 2

Rana tsushimensis

Tsushima City, Nagasaki Pref., Japan 1

Rana sauteri

Alishan, Chiayi Country, Taiwan 1
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All these analyses were conducted by using GENALEX 6.41 

(Peakall and Smouse, 2006). To estimate population genetic struc-

ture, we used STRUCTURE ver. 2.3.3 (Pritchard et al., 2000) with 

admixture model. The most likely number of clusters was estimated 

according to the delta K value (Evanno et al., 2005).

RESULTS

Phylogenetic relationships based on mtDNA sequences

We obtained 564 bp of the mitochondrial ND1 gene for 

all samples, and after combining identical sequences, total 

51 sequences were used in the subsequent analysis. Within 

ingroup sequences, 83 variable sites (vs) and 55 parsimony-

informative sites (pi) were included. Newly obtained 

sequences were deposited in GenBank (AB779781-

AB779812). The best substitution models estimated by 

Kakusan 4 (Tanabe, 2011) for ML and BI were J1 model 

(Jobb, 2011) with a gamma shape parameter (G) and 

Hasegawa-Kishino-Yano-1985 (HKY85) + G, respectively.

Phylogenetic analyses based on ML and BI yielded 

essentially identical topologies (-InL = 2029.55 and 2290.28, 

respectively), and only BI tree is shown in Fig. 2. Just same 

as already reported (Eto et al., 2012), the ingroup was 

divided into three clades corre-

sponding to Groups A-1a (ML-

BS = 97% and BPP = 1.00, 

respectively), A-1b (96% and 

1.00), and B-1a (91% and 1.00) 

of Eto et al. (2012). Groups A-

1a and A-1b formed a clade 

(99% and 1.00) with closer 

genetic similarity in between 

(mean p-distance = 3.7%) than 

to B-2a (p-distance between A-1a = 6.7% and 

between A-1b = 6.5%).

Geographically, Groups A-1a and B-2a of the 

large type occurred parapatrically, with the for-

mer distributed in northeastern part and the latter 

in southwestern part of the sampling area. In 

contrast, distribution of the small type Group A-

1b samples largely overlapped with them in the 

western side of Lake Biwa (Fig. 1).

Genetic variations in nuclear genes

Samples selected for nDNA analyses were 

126 from six locality groups, consisting of locali-

ties (Locs.) 7, 13–16, 27, 31, 35, and 38–40 (Fig. 

1), and nine topotypic ones from Loc. 1. Among 

them, a single mitochondrial genetic group was 

recognized in Locs. 1 (A-1a), 7 (A-1a), 31 (B-2a), 

and 35 (B-2a), and two groups occurred sympat-

rically in Loc. 27 (A-1b and B-2a). The boundary 

areas of multiple groups were located in 13–16 

(A-1a and B-2a, with sympatric samples of A-1b) 

and 38–40 (A-1a and B-2a). For subsequent 

analyses, we differentiated these mitochondrial 

lineages in a given locality group (Table 3).

After a haplotype reconstruction using 

PHASE ver. 2.1, we obtained a total of 13 hap-

lotypes (“a” to “m” in Fig. 3A) in NCX1 (535 bp; 

vs = 14, pi = 8), 23 haplotypes (“a” to “w” in Fig. 

3B) in POMC (552 bp; vs = 24, pi = 12), and 13 

haplotypes (“a” to “m” in Fig. 3C) in RAG1 (454 bp; vs = 

14, pi = 11). Each haplotype was deposited in GenBank 

(AB779768-AB779780, AB779813-AB779848). In some 

samples (two in NCX1, one in POMC, and 11 in RAG1), we 

could not reconstruct their haplotypes with significant sup-

port (< 0.95). Thus we omitted these samples in the haplo-

type network analyses, although we used them in the struc-

ture analysis by applying missing data value.

Haplotype networks and frequencies of each gene are 

shown in Fig. 3 and Table 3, respectively. Two haplotype 

groups were recognized in the network of NCX1 (Fig. 3A): 

one of them mainly consisted of the haplotypes specific to 

samples belonging to Group A-1a and B-2a (e.g., haplo-

types “a” and “b”), and another one mainly consisted of hap-

lotypes specific to Group A-1b (e.g., “l” and “m”). The hap-

lotype network of POMC (Fig. 3B) also included several 

haplotype groups, which exhibited following tendencies: 

haplotypes specific to or frequently observed in Group A-1b 

samples (e.g., haplotypes “v” and “w”) tended to form a 

group; haplotypes frequently observed in A-1a and B-2a 

samples from Locs. 7, 13–16, 27, and 31 (e.g., “a” and “c”) 

tended to form a group; topotypic samples from Loc. 1 pos-

Table 2. Primers used to amplify nuclear genes in this study.

Target Name Sequence Reference

NCX1 NCX1F ACAACAGTRAGRATATGGAA Shimada et al. (2011)

NCX1R1 GCCATATCTCTCCTCGCTTCTTC This study

POMC POMC1 GAATGTATYAAAGMMTGCAAGATGGWCCT Wiens et al. (2005)

POMC7 TGGCATTTTTGAAAAGAGTCAT Smith et al. (2005)

RAG1 Rag-1 Meristo1 CAGTTCCTGAGAAAGCAGTACG Shimada et al. (2008)

Rag-1 Meristo2 GGCTTTGCTGAAACTCCTTTC Shimada et al. (2008)

Fig. 2. Bayesian tree of mitochondrial ND1 gene for Rana t. tagoi and outgroup 

taxa. Nodal values indicate bootstrap supports for ML (above) and Bayesian pos-

terior probability (below). For locality information, see Table 1 and Fig. 1.
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sessed some unique haplotypes (“q” and “r”), although they 

largely shared haplotypes (“a” and “c”) with A-1a and B-2a 

samples from the other localities. The haplotype network of 

RAG1 (Fig. 3C) included three dis-

tinct haplotype groups that did not 

clearly match the groupings by 

either mitochondrial genealogy or 

geographic distribution, but weakly 

showed the following tendencies: 

haplotypes frequently observed in 

samples of Group B-2a from Locs. 

27 and 31, and A-1b (e.g., haplo-

types “b” and “m”) tended to form a 

group, which also included several 

haplotypes from other mitochon-

drial groups or localities; haplo-

types specific to samples of A-1a 

and B-2a from Locs. 35 and 38–40 

(“g” and “h”) formed a group.

Statistics on the genetic vari-

ability of mitochondrial groups from 

each locality are shown in Table 3. 

No significant deviation from HW 

expectations was observed in each

gene/locality. The structure analy-

sis was performed for up to k = 10, 

and resultant barplots for k = 2 to 

4 are shown in Fig. 4. The likeli-

hood values reached a plateau 

after k = 2, and the estimated delta K value was highest at 

k = 2 (data not shown). At k = 2, two clusters, one including 

mitochondrial Groups A-1a and B-2a and another corre-

Table 3. Haplotype frequencies and genetic variabilities at three nuclear genes (NCX1, POMC, and RAG1) among localities and 

mitochondrial genetic groups of Rana t. tagoi. For locality numbers, see Fig. 1 and Table 1.

Loc. 1 7 13–16 27 31 35 38–40

MtDNA A-1a A-1a A-1a A-1b B-2a A-1b B-2a B-2a B-2a A-1a B-2a

n 9 11 20 14 10 16 14 12 9 6 5

NCX1 a0.722 a0.455 a0.342 h0.036 a0.300 b0.031 a0.731 a1.000 a1.000 a0.583 a0.900

c0.111 b0.091 b0.526 j0.036 b0.650 h0.031 b0.269 g0.250 h0.100

f0.056 c0.227 c0.079 k0.250 c0.050 i0.031 h0.167

m0.111 f0.091 d0.026 l0.071 l0.281

h0.136 e0.026 m0.607 m0.625

Ho 0.556 0.727 0.632 0.429 0.300 0.467 0.538 – – 0.667 0.200

He 0.451 0.707 0.598 0.561 0.485 0.524 0.393 – – 0.569 0.180

POMC a0.056 a0.250 a0.700 a0.071 a0.591 c0.063 a0.821 a0.375 a0.300 a0.083 a0.100

c0.611 c0.250 b0.075 t0.071 b0.227 s0.094 c0.179 c0.208 j0.350 j0.333 j0.400

q0.278 f0.150 c0.100 u0.071 c0.091 y0.156 o0.083 m0.200 l0.333 k0.200

r0.065 g0.100 d0.075 v0.214 e0.045 v0.438 p0.333 o0.100 m0.167 l0.100

h0.100 e0.050 w0.571 v0.045 w0.250 v0.050 n0.083 m0.200

i0.050

j0.050

v0.050

Ho 0.667 0.900 0.500 0.571 0.700 0.867 0.214 0.750 0.667 0.833 0.600

He 0.543 0.825 0.486 0.612 0.570 0.700 0.293 0.698 0.716 0.736 0.740

RAG1 a0.214 a0.250 a0.575 a0.167 a0.650 a0.344 a0.179 a0.045 b0.118 a0.250 b0.125

b0.429 b0.250 b0.150 b0.208 b0.100 b0.063 b0.643 b0.409 c0.294 g0.500 c0.125

f0.286 d0.063 c0.050 j0.042 c0.050 j0.063 m0.179 c0.182 d0.176 h0.167 g0.375

m0.071 f0.250 d0.100 l0.125 f0.100 k0.031 i0.045 g0.176 m0.083 h0.375

j0.063 e0.025 m0.458 i0.050 l0.156 m0.318 h0.118

m0.125 j0.050 m0.050 m0.344 m0.118

m0.050

Ho 0.571 0.750 0.684 0.500 0.600 0.800 0.500 0.727 0.875 0.833 0.500

He 0.684 0.789 0.597 0.701 0.550 0.720 0.523 0.694 0.820 0.653 0.688

Fig. 3. Statistical parsimony networks of (A) NCX1, (B) POMC, and (C) RAG1 haplotypes of 

Rana. t. tagoi from northeastern Kinki region and type locality. Filled circles indicate missing hap-

lotypes. The size of each open circle is proportional to the haplotype frequency.
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sponding to Group A-1b were recognized. At k = 3, the clus-

ter of A-1a + B-2a at k = 2 was further divided into two clus-

ters, but the division did not support the separation of two 

mitochondrial groups. Based on the test of delta K and clus-

tering patterns of each bar plot, the most plausible number 

of clusters was considered to be two, by which the large 

type (mitochondrial Groups A-1a and B-2a) and the small 

type (mitochondrial Group A-1b) were split.

DISCUSSION

Discordance of estimated relationships among genetic 

markers

As in our previous report (Eto et al., 2012), the results 

of phylogenetic analyses based on mtDNA did not support 

morphological delimitation of R. t. tagoi from the Kinki 

region. Obtained genealogy showed that the R. t. tagoi large 

type was not monophyletic, and was split into two highly dif-

ferentiated lineages. In contrast, the results of nDNA analy-

ses did not support such a mitochondrial relationship, but 

were congruent with morphological delimitation.

Discordance of results between mt- and n-DNA analy-

ses could be explained by mitochondrial incomplete lineage 

sorting (ILS) or gene introgression derived from past hybrid-

ization among ancestral lineages (Avise, 2000; Ballard and 

Whitlock, 2004). Because lineage sorting normally pro-

gresses rapidly in mtDNA, ILS of mtDNA is rare compared 

to that of nDNA (Ballard and Whitlock, 2004). However, lin-

eages of R. tagoi are thought to have diverged recently from 

their relatively small genetic divergences (Eto et al., 2012), 

and therefore the possibility of mtDNA ILS, even at the spe-

cies level, is not completely rejected (e.g., as a product of 

budding speciation: Funk and Omland, 2003). In this sce-

nario, the ancestor of the R. t. tagoi small type (A-1b) origi-

nated as an internal lineage of the large type (A-1a and B-2a). 

The ancestral populations of A-1b subsequently underwent 

morphological and ecological differentiation toward the 

smaller body size, while ancestral A-1a and B-2a popula-

tions retained their larger body size.

On the other hand, past mitochondrial introgression 

among ancestors of each lineage can also explain the dis-

cordance of mtDNA and nDNA properties. Based on this 

hypothesis, hybridization between the ancestral populations 

of A-1b (or other Clade A 

lineages) and B-2a had 

occurred in past, resulting in 

mtDNA introgression from 

the former to the latter. After 

the introgression event, 

mtDNA in the ancestral pop-

ulations of B-2a, A-1b, and 

the introgressed populations 

of B-2a (ancestral A-1a) 

independently experienced 

mutations and resulted in 

the formation of present 

relationships.

Mitochondrial ILS and 

past gene introgression are 

often difficult to distinguish 

(Ballard and Whitlock, 2004; 

Funk and Omland, 2003). In 

our case, if ILS caused the discordance, the small type (A-

1b) should be genetically close to one of the large type lin-

eages (A-1a) not only in mtDNA, but also in nDNA. However, 

our results actually did not support close relationship of A-1a 

and A-1b in nDNA, thus not favoring ILS. Nonetheless, how-

ever, the ILS scenario may be supported by male-biased 

gene flow. In such a case, the original nuclear haplotypes 

and genetic structure of A-1a would have been similar to 

those of A-1b, but were completely overwritten via male-

biased gene flow with B-2a. However, nDNA is fundamen-

tally less likely to be introgressive than mtDNA, and no 

behavioral data for male-biased dispersal in this species are 

available at present. Compared with the ILS hypothesis, the 

past mtDNA introgression hypothesis is less problematic 

and is considered more plausible.

In addition to discordance of mt- and n-DNA, each 

nuclear gene also showed more or less discordant patterns 

on their haplotype networks. Among three nuclear genes, 

only NCX1 showed obvious relationships between the hap-

lotype network and the morphotype. This result suggests 

that the ILS of the remaining two genes (POMC and RAG1) 

may have caused discordance among nuclear genes. These 

results seem to indicate that phylogenetic analyses using 

direct sequences of nuclear genes may be not efficient in 

the study of R. tagoi, and that population genetic analyses 

based on frequency data of nuclear genotypes may be more 

effective (Avise, 2000).

Taxonomic status of two morphotypes of Rana t. tagoi

Sympatric occurrence of two types of Rana t. tagoi was 

first reported from Kyoto Prefecture in the Kinki region by 

Sugahara (1990). Later, Sugahara and Matsui (1992, 1993, 

1994, 1995, 1996, and 1997) performed morphological, 

acoustic, and ecological comparisons, and suggested that 

these two types were not conspecific, being reproductively 

isolated from each other. Subsequent genetic survey using 

mtDNA (Tanaka et al., 1994) clarified remarkably large 

genetic divergences between the large (corresponding to B-

2a in this paper) and the small (A-1b) types from Kyoto. Fur-

thermore, Eto et al. (2012) showed that the large type was 

further divided into two genetic lineages (A-1a and B-2a), 

although they were morphologically similar. Eto et al. (2012) 

Fig. 4. Assigned genetic clusters of 135 individuals of R. t. tagoi from six locality groups in the Kinki and 

the type locality by structure analysis (k = 2–4). For locality numbers, see Fig. 1 and Table 1.
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also confirmed that one of them (A-1a) was phylogenetically 

close to the small type (A-1b). Present result of mtDNA anal-

ysis supported these previous studies.

In contrast, our nDNA analyses suggested a closer rela-

tionship of A-1a to B-2a than to A-1b. Our structure analysis 

indicated unlimited gene flow between A-1a and B-2a, and 

the existence of genetic isolation of A-1b from sympatric A-

1a or B-2a was also suggested. These results are congruent 

with previous results of morphological and ecological studies 

(Sugahara and Matsui, 1992, 1993, 1994, 1995, 1996, 

1997), which indicated that the R. t. tagoi large type (A-1a 

and B-2a) and the small type (A-1b) from the Kinki region 

are specifically distinct.

In our nDNA analyses, the large type was genetically 

also close to topotypes of R. t. tagoi that have body size 

intermediate between the large and small groups. These 

facts suggest that the large type is in fact conspecific with 

the topotypes, and should be treated as true R. t. tagoi, 

while the small type is a distinct but unnamed species. The 

reason for the presence of size variation within true R. t. 

tagoi (the large and the medium type) is unknown, but may 

be related to the sympatry of the large type with the small 

type (Sugahara and Matsui, 1996), unlike singly occurring 

medium type.
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