

Title	Generation of a replication-competent simian-human immunodeficiency virus, the neutralization sensitivity of which can be enhanced in the presence of a small-molecule CD4 mimic(Dissertation_全文)
Author(s)	Otsuki, Hiroyuki
Citation	Kyoto University (京都大学)
Issue Date	2014-03-24
URL	http://dx.doi.org/10.14989/doctor.k18186
Right	許諾条件により本文は2014-09-12に公開; This is an author manuscript that has been accepted for publication in Journal of General Virology, copyright Society for General Microbiology, but has not been copy-edited, formatted or proofed. Cite this article as appearing in Journal of General Virology. This version of the manuscript may not be duplicated or reproduced, other than for personal use or within the rule of 'Fair Use of Copyrighted Materials ' (section 17, Title 17, US Code), without permission from the copyright owner, Society for General Microbiology. The Society for General Microbiology disclaims any responsibility or liability for errors or omissions in this version of the manuscript or in any version derived from it by any other parties. The final copy-edited, published article, which is the version of record, can be found at http://vir.sgmjournals.org, and is freely available without a subscription.
Туре	Thesis or Dissertation
Textversion	ETD

主論文Web公開版

This is an author manuscript that has been accepted for publication in Journal of General Virology, copyright Society for General Microbiology, but has not been copy-edited, formatted or proofed. Cite this article as appearing in Journal of General Virology. This version of the manuscript may not be duplicated or reproduced, other than for personal use or within the rule of 'Fair Use of Copyrighted Materials' (section 17, Title 17, US Code), without permission from the copyright owner, Society for General Microbiology. The Society for General Microbiology disclaims any responsibility or liability for errors or omissions in this version of the manuscript or in any version derived from it by any other parties. The final copy-edited, published article, which is the version of record, can be found at http://vir.sgmjournals.org, and is freely available without a subscription.

1		Title page
2		
3	•	Generation of a replication-competent simian-human immunodeficiency virus,
4		the neutralisation sensitivity of which can be enhanced in the presence of a
5		small molecule CD4 mimic
6		
7	•	The Contents Category for the paper, Short communications
8		
9	•	Short running title: SHIV with conditional neutralisation sensitivity
10		
11	•	The names of the authors, Hiroyuki Otsuki ¹ , Tomoyuki Miura ¹ , Chie
12		Hashimoto ² , Tetsuo Narumi ² , Hirokazu Tamamura ² , Kazuhisa Yoshimura ³ ,
13		Shuzo Matsushita ⁴ , and Tatsuhiko Igarashi ^{1#}
14		
15	•	The name and address of the laboratories where the work was done,
16		¹ Laboratory of Primate Model, Experimental Research Center for Infectious
17		Diseases, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan,
18		² Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering,
19		Tokyo Medical and Dental University, Tokyo 101-0062, Japan, ³ AIDS Research
20		Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan,
21		⁴ Division of Clinical Retrovirology and Infectious Diseases, Center for AIDS
22		Research, Kumamoto University, Kumamoto 860-0811, Japan
23		
24	•	An email address and telephone and fax numbers for the corresponding author,
25		<u>tigarash@virus.kyoto-u.ac.jp</u> , E-mail
26		81 75 751 3982, Phone
27		81 75 761 9335, Fax
28		
29	•	The word count of the summary and the main text,
30		Summary, 143 words
31		Main text, 2451 words
32		Figure legends, 225 words
33		

Summary

34	Simian-human immunodeficiency virus (SHIV) carrying the envelope from the clade B
35	clinical HIV-1 isolate HIV-1 MNA, designated SHIV MNA, was generated through
36	intracellular homologous recombination. SHIV MNA inherited biological properties
37	from the parental HIV-1, including CCR5 co-receptor preference, resistance to
38	neutralisation by the anti-V3 loop monoclonal antibody KD-247, and loss of resistance
39	in the presence of the CD4-mimic small molecule YYA-021. SHIV MNA showed
40	productive replication in rhesus macaque peripheral blood mononuclear cells.
41	Experimental infection of a rhesus macaque with SHIV MNA caused a transient but
42	high titre of plasma viral RNA and a moderate antibody response. Immunoglobulin in
43	the plasma at 24 weeks post-infection was capable of neutralising SHIV MNA in the
44	presence but not in the absence of YYA-021.
45	SHIV MNA could serve a model for development of novel therapeutic interventions

46 based on CD4-mimic-mediated conversion of Env susceptible to antibody neutralisation.

Text

48	Control of primate lentiviral infection by antibodies directed against viral envelope
49	protein is theoretically feasible. This was confirmed by the successful protection of
50	macaque monkeys from challenge inoculation with simian-human immunodeficiency
51	virus (SHIV) carrying an envelope protein (Env). Env was derived from a laboratory
52	strain of human immunodeficiency virus type 1 (HIV-1) through the passive
53	immunisation of neutralising monoclonal antibodies directed against HIV-1 (Mascola et
54	al., 2000; Nishimura et al., 2003). This neutralisation is consistent with the results
55	normally seen in cell culture systems.
56	Clinical isolates of HIV-1, which have not been subjected to extensive passage in
57	T-cell lines, on the other hand, are generally resistant to antibody-mediated
58	neutralisation (Moore et al., 1995). It has been shown that virus in infected individuals
59	is under selective pressure to develop a variety of means to evade attack by neutralising
60	antibodies, including sequence variation, glycosylation, tertiary structural shielding
61	formed by the Env trimer, and the rapid kinetics of conformational changes of Env,
62	which affect fusion between the viral envelope and the plasma membrane of target cells

63	(Kong & Sattentau, 2012). Although four major neutralising epitopes have been
64	identified in the HIV-1 Env; <i>i.e.</i> the V1/V2 loop, the glycan-V3 site and CD4-binding
65	site of gp120, and the membrane-proximal external region (MPER) of gp41, few reports
66	of antibodies directed against these epitopes capable of neutralising a broad range of
67	isolates have been published, for reasons that are as yet unclear (Kwong & Mascola,
68	2012). High titres of antibodies directed against the V3 loop are elicited in individuals
69	during the early phase of HIV-1 infection, but these are incapable of neutralising the
70	virus because the epitope in functional Env trimer is likely shielded from the antibody
71	(Davis et al., 2009b). Therefore, it is necessary to develop a means of rendering these
72	epitopes accessible to the antibodies, to make antibody-mediated suppression of HIV-1
73	a valid therapeutic option.
74	It has been reported that neutralisation mediated by antibodies directed against the
75	V3 loop (Lusso et al., 2005) or CD4-induced epitope (CD4i) (Thali et al., 1993) can be
76	enhanced in the presence of soluble CD4 (sCD4). It is known that the interaction of Env
77	with sCD4 drives a conformational change of the viral protein and makes the

78 cryptic/occult epitopes accessible to these antibodies (Wyatt et al., 1998). Small

79	molecules that emulate sCD4 for its interaction and subsequent induction of
80	conformational change of Env may be employed to intensify antibody-mediated
81	interventions against HIV-1 infection. Compounds with the above-mentioned
82	properties; <i>i.e.</i> NBD-556 and NBD-557, have been reported previously (Zhao et al.,
83	2005). NBD-556 has been shown in cell culture to interact with the CD4-binding pocket
84	to induce a conformational change in gp120 (Madani et al., 2008) and enhance exposure
85	of the Env of primary HIV-1 isolates to neutralising epitopes (Yoshimura et al., 2010).
86	The present study was performed to evaluate small molecule CD4-mimic-based
87	enhancement of antibody-mediated virus neutralisation, in the context of virus infection
88	in vivo. The simian-human immunodeficiency virus (SHIV)/macaque monkey model of
89	AIDS is particularly suitable for such studies, as SHIV carries the HIV-1 Env and the
90	neutralisation sensitivity of SHIV is comparable to that of the parental HIV-1 (Shibata
91	& Adachi, 1992).
92	As NBD-556, unlike sCD4, inhibits infection with select HIV-1 isolates (Yoshimura
93	et al., 2010), we generated a new SHIV strain carrying Env, the sensitivity of which to

antibody-mediated neutralisation is enhanced in the presence of a CD4 mimic. An

95	HIV-1 isolate, MNA, previously designated primary isolate HIV-1 Pt.3, was used as the
96	source of Env, as the viral protein has been reported to interact with NBD-556
97	(Yoshimura et al., 2010). While the virus belongs to a distinct subset of HIV-1 isolates,
98	as mentioned above, it has also been reported to utilise the CCR5 molecule to gain entry
99	into target cells, a property that is shared by the majority of HIV-1 strains (Yoshimura
100	et al., 2010). A monoclonal antibody directed against the tip of the V3 loop (GPGR),
101	KD-247 (Eda et al., 2006), was employed to assess this concept, as HIV-1 MNA was
102	resistant to KD-247-mediated neutralisation, despite carrying the exact epitope
103	sequence in the tip of V3 loop, and was converted to being sensitive to the antibody by
104	NBD-556 in a dose-dependent manner (Yoshimura et al., 2010).
105	First, we reproduced the results of Yoshimura et al. using a neutralisation assay
106	employing TZM-bl cells (Platt et al., 1998), obtained from the NIH AIDS Reagent
107	program (Fig. S1). The virus was resistant to KD-247, as described previously, and
108	required almost 50 μ g/mL of the antibody to achieve 50% neutralisation in our assay.
109	The observed resistance was abrogated in the presence of 2 μ M of NBD-556. However,
110	50% neutralisation was achieved in the presence of $\sim 0.1 \ \mu g/mL$ of KD-247,

corresponding to 1/500 of the amount of the antibody to achieve the same degree ofneutralisation in the absence of the CD4 mimic.

113	With reproduction of the properties of HIV-1 MNA Env, we generated an SHIV
114	strain carrying Env through intracellular homologous recombination, as described
115	previously (Fujita et al., 2013) with minor modifications (Fig. S2). DNA fragments
116	representing the 5' and 3' ends of the SHIV genome (fragments I and II, respectively)
117	were amplified by PCR from the proviral DNA plasmid SHIV KS661. A DNA
118	fragment containing env (fragment III) was amplified from complementary DNA
119	(cDNA) of the HIV-1 MNA genome, which was prepared from virus particles
120	(virion-associated RNA) in the culture supernatant of PM1/CCR5 cells (Yusa et al.,
121	2005) infected with the virus. The PCR primers used are listed in Table S1. Using a
122	FuGENE HD transfection reagent, lipofection was performed on the C8166-CCR5 cells
123	(Shimizu et al., 2006) to co-transfect them with 0.2 µg of DNA. A cytopathic effect
124	presumably caused by the emerged recombinant virus was observed on day 13
125	post-transfection. The emerged virus, designated SHIV MNA, carried the entire gp120
126	and three quarters of gp41 from HIV-1 MNA Env (Fig. 1a). The rest of Env was from

127	SHIV KS661, the Env of which was derived from HIV-1 89.6 (Shinohara et al., 1999).
128	The CD4 binding site, and the regions and elements that reportedly interact with
129	NBD-556 (Madani et al., 2008; Yoshimura et al., 2010), are preserved in SHIV MNA
130	Env (Fig. S3). The virus was replication-competent in PM1/CCR5 cells (data not
131	shown).

As HIV-1 MNA was suggested to be a CCR5-utilising virus, we were intrigued whether SHIV MNA inherited the trait from the parental virus. We subjected SHIV MNA and the parental HIV-1 MNA to co-receptor usage assay as described previously (Nishimura *et al.*, 2010), with minor modifications (Fig. S4). As expected, SHIV MNA was shown to utilise CCR5 as an entry co-receptor.

We next assessed the neutralisation profiles of SHIV MNA in comparison with the parental HIV-1 MNA, as described previously (Li *et al.*, 2005; Wei *et al.*, 2002). Both SHIV MNA and HIV-1 MNA showed essentially no neutralisation by KD-247 up to 25 μ g/mL and 50% neutralisation was achieved at 50 μ g/mL (Fig. 1b). As the CD4 mimic, we employed YYA-021, a compound generated and characterised through studies concerning the structure-activity relationships of small molecules (Narumi *et al.*, 2013;

143	Narumi et al., 2011; Narumi et al., 2010; Yamada et al., 2010). The compound was
144	shown to be slightly less potent but to exhibit substantially lower toxicity than
145	NBD-556, and was therefore a suitable choice for our purposes in future studies in
146	animal models. SHIV MNA was resistant to neutralisation by YYA-021 at all
147	concentrations examined, except 25 and 50 $\mu M,$ and showed a neutralisation profile
148	almost identical to that of HIV-1 MNA (Fig. 1c). To further characterise the biological
149	properties of SHIV MNA Env, a set of entry assays was conducted (Fig. S5). The env
150	genes cloned from SHIV MNA and HIV-1 MNA, were utilised to generate
151	pseudo-typed viruses. These pseudotypes were inoculated into TZM-bl cells in the
152	presence of increasing amounts of NBD-556, YYA-021 or soluble CD4. A control
153	group was derived from another virus preparation pseudotyped with A-MLV Env
154	(Landau et al., 1991). When the efficiency of entry was defined by intracellular
155	luciferase activities, virtually no difference was observed between Envs of SHIV MNA
156	and the parental HIV-1. Thus SHIV MNA Env replicated in C8166-CCR5 cells retained
157	sensitivity to small molecule CD4 mimics and soluble CD4 comparable to that of
158	HIV-1 MNA.

159	We next examined whether the synergistic neutralisation of HIV-1 MNA by
160	KD-247 antibody in the presence of NBD-556 (Yoshimura et al., 2010) would be
161	reproduced when CD4 mimic was substituted by YYA-021. The synergistic
162	neutralisation effect of KD-247 and YYA-021 was reproduced in our experiments (Fig.
163	1d). At 50 µg/mL, KD-247 barely achieved 50% neutralisation of HIV-1 MNA but
164	resulted in 50% neutralisation at $<0.05~\mu\text{g/mL}$ in the presence of 20 μM of YYA-021.
165	Finally, to examine whether these two agents neutralise SHIV MNA in the same
166	manner as the parental HIV-1, we conducted a neutralisation assay with KD-247 in the
167	presence of increasing amounts of YYA-021 (0, 5, 10, 20 and 40 μM) (Fig. 1e). The
168	neutralisation curve of KD-247 against SHIV MNA showed an upward shift as the
169	concentration of YYA-021 increased (Fig. 1e), similar to the observations with HIV-1
170	(Fig. 1d), indicating augmentation of neutralisation, and complete neutralisation of both
171	viruses was achieved at 20 μ M YYA-021 (Fig. 1d and e). Based on these results, we
172	concluded that the neutralisation profile of SHIV MNA was comparable to that of
173	HIV-1 MNA.

174 Reproduction of the neutralisation characteristics of HIV-1 MNA in the newly

175	generated SHIV prompted us to assess the ability of SHIV MNA to replicate in monkey
176	cells. SHIV MNA, along with SIV239 and SHIV KS661, were normalised with
177	infectious titres and inoculated into rhesus macaque peripheral blood mononuclear cell
178	(PBMC) preparations from four animals, as described previously (Fujita et al., 2013)
179	(Fig. 2a). SHIV KS661, a CXCR4-utilising virus, replicated to the highest titres of all
180	the viruses in all PBMC preparations. Compared to SHIV KS661, SIV239 replicated to
181	lower titres. Under these experimental conditions, SHIV MNA showed productive
182	replication in the cells with similar replication kinetics and peak titres to SIV239. Based
183	on these results, we concluded that SHIV MNA was replication-competent in primary
184	monkey lymphocytes.
185	Productive replication of SHIV MNA in monkey PBMC justified experimental
186	infection of the virus <i>in vivo</i> . We inoculated 1.75×10^5 TCID ₅₀ of SHIV MNA
187	intravenously into a rhesus macaque and monitored plasma viral RNA burden and
188	circulating CD4 ⁺ T-lymphocyte levels. Plasma viral RNA burden reached a peak of
189	5.6×10^6 copies/mL at 1 week post-infection (wpi), and declined rapidly thereafter

190 reaching low levels of detection at 7 wpi (around 2.8×10^2 copies/mL). Circulating CD4⁺

T-cell numbers showed a transient decrease around 1 wpi, rebounded around 3 wpi and stabilised around 70% of the pre-infection level from 4 wpi. During the period of observation, the animal developed no obvious clinical manifestations related to lentivirus infection.

As SHIV MNA replicated *in vivo* without depleting helper T-cells, it was expected that the animal mounted an anti-viral immune reaction. The production of antibody directed against Env was assessed by western immunoblotting, as described previously (Igarashi *et al.*, 1999). Purified Env protein (Advanced Biotechnologies Inc. Md. U.S.A.) was used as the antigen (Fig. 3a). Anti-Env antibody was detected at 3 wpi and the level of antibody—judged by the intensity of the band—increased gradually with time.

We next examined whether the animal generated neutralising antibodies against SHIV MNA. Because plasma samples from this specimen exhibited high background activity, immunoglobulin G (IgG) was purified from these samples collected on day 0 and in week 24 post-infection using protein G spin columns (GE healthcare Japan. Tokyo. Japan). While the IgG from day 0 exhibited no neutralising activity (Fig. 3b), as

208 concentration > 100 μ g/mL was required to suppress replication of 100 TCID₅₀ of the 209 input virus (Fig. 3c). 210We examined whether the observed marginal neutralisation by the antibody could be 211enhanced by the presence of YYA-021. Upon addition of YYA-021 in the assay system, 212 SHIV MNA became sensitive to IgG obtained at 24 wpi (Fig. 3c), while no 213 enhancement was identified from day 0 (Fig. 3b). 214In this study, we generated a replication-competent SHIV MNA strain carrying an 215Env resistant to the monoclonal neutralising antibody KD-247 but conditionally 216 sensitive in the presence of the CD4 mimic YYA-021. As the observed neutralisation 217characteristics were identical to those of HIV-1 MNA, which contributed the majority 218of the Env sequence to the chimera, the utility of the CD4 mimic as a means of 219enhancing antibody-mediated virus neutralisation should be assessed in the context of infection in vivo. This concept could be tested during the acute phase of SHIV MNA 220 221infection, during which the virus undergoes substantial replication. To examine the 222feasibility of CD4-mimic-mediated enhancement of virus neutralisation in the context

expected, the immunoglobulin collected at 24 wpi neutralised SHIV MNA, although a

207

223	of chronic infection, the conditions under which this type of intervention should be
224	applied to HIV-1-infected patients in a clinical setting, the virus must be modified to
225	sustain productive replication for a longer period. SHIV MNA in the present form does
226	not fulfil this requirement. It is possible that animal-to-animal passage could increase
227	the fitness of the virus in monkeys.
228	This study demonstrated that a CD4 mimic could modulate viral Env protein to be
229	more susceptible to neutralisation by less potent antibodies generated in the context of
230	infection. During the early phase of infection, patients mount high titres of
231	non-neutralising antibodies directed against the V3 loop (Davis et al., 2009a). Patients
232	with HIV-1 clade C generate anti-Env antibodies, including anti-CD4i antibodies, with
233	poor neutralising activity against recent infection (Gray et al., 2007). It is possible that
234	the CD4 mimic YYA-021 causes a conformational change in SHIV MNA Env, which
235	renders sequestered epitope(s) accessible to potentially neutralising IgG, such as the V3
236	loop and CD4i.
237	The current study extended the previous study by Yoshimura et al. and used HIV-1

238 MNA belonging to clade B to generate a new SHIV strain carrying Env. The

239	neutralisation sensitivity of this strain is characteristically augmented in the presence of
240	a small molecule CD4 mimic. Similar observations by Decker et al. show that
241	infections of a wide range of HIV-1 strains of multiple clades or circulating
242	recombinant forms elicits high titres of anti-CD4i antibodies, These anti-CD4i
243	antibodies neutralise viruses as divergent as HIV-2 in the presence of soluble CD4
244	(Decker et al., 2005). Taking these observations into account, small molecule CD4
245	mimics such as YYA-021 could potentially enhance the neutralisation activity of the
246	antibodies directed against autologous viruses belonging not only to clade B but also to
247	multiple HIV-1 strains of various clades, and possibly even HIV-2. Our results pave the
248	way for a novel therapeutic intervention based on administration of CD4 mimics to
249	patients with HIV to facilitate control of the virus by their own antibodies.
250	

Acknowledgements

251	Thanks should be given to: Drs. Julie Strizki and Paul Zavodny of the Schering-Plough
252	Research Institute, Kenilworth, NJ. U.S.A. for providing AD101; the NIH AIDS
253	Research & Reference Reagent Program for providing TZM-bl cells, SV-A-MLV-env,
254	4G10 and soluble CD4; the Chemo-Sero-Therapeutic Research Institute (Kaketsuken)
255	for providing MAb KD-247; former and current members of the Igarashi laboratory for
256	discussion and support. This work was supported by a Research on HIV/AIDS grant
257	(H22-AIDS Research-007 and H24-AIDS Research-008) from The Ministry of Health,
258	Labor and Welfare of Japan and by a Grant-in-Aid for Scientific Research (B)
259	(23300156) from the Japan Society for the Promotion of Science.

References

- Davis, K. L., Bibollet-Ruche, F., Li, H., Decker, J. M., Kutsch, O., Morris, L.,
 Salomon, A., Pinter, A., Hoxie, J. A., Hahn, B. H., Kwong, P. D. & Shaw, G. M.
- 263 (2009a). Human immunodeficiency virus type 2 (HIV-2)/HIV-1 envelope chimeras
- 264 detect high titers of broadly reactive HIV-1 V3-specific antibodies in human plasma.
- 265 *Journal of virology* **83**, 1240-1259.
- Davis, K. L., Gray, E. S., Moore, P. L., Decker, J. M., Salomon, A., Montefiori, D.
 C., Graham, B. S., Keefer, M. C., Pinter, A., Morris, L., Hahn, B. H. & Shaw, G.
 M. (2009b). High titer HIV-1 V3-specific antibodies with broad reactivity but low
 neutralizing potency in acute infection and following vaccination. *Virology* 387,
 414-426.
- Decker, J. M., Bibollet-Ruche, F., Wei, X., Wang, S., Levy, D. N., Wang, W.,
 Delaporte, E., Peeters, M., Derdeyn, C. A., Allen, S., Hunter, E., Saag, M. S.,
 Hoxie, J. A., Hahn, B. H., Kwong, P. D., Robinson, J. E. & Shaw, G. M. (2005).
 Antigenic conservation and immunogenicity of the HIV coreceptor binding site. *The Journal of experimental medicine* 201, 1407-1419.
- Donzella, G. A., Schols, D., Lin, S. W., Este, J. A., Nagashima, K. A., Maddon, P. J.,
 Allaway, G. P., Sakmar, T. P., Henson, G., De Clercq, E. & Moore, J. P. (1998).
 AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor.
- 279 *Nature medicine* **4**, 72-77.
- Eda, Y., Takizawa, M., Murakami, T., Maeda, H., Kimachi, K., Yonemura, H.,
 Koyanagi, S., Shiosaki, K., Higuchi, H., Makizumi, K., Nakashima, T., Osatomi,
 K., Tokiyoshi, S., Matsushita, S., Yamamoto, N. & Honda, M. (2006). Sequential
 immunization with V3 peptides from primary human immunodeficiency virus type 1
 produces cross-neutralizing antibodies against primary isolates with a matching
 narrow-neutralization sequence motif. *Journal of virology* 80, 5552-5562.
- Fujita, Y., Otsuki, H., Watanabe, Y., Yasui, M., Kobayashi, T., Miura, T. &
 Igarashi, T. (2013). Generation of a replication-competent chimeric simian-human
 immunodeficiency virus carrying env from subtype C clinical isolate through
 intracellular homologous recombination. *Virology* 436, 100-111.
- Gray, E. S., Moore, P. L., Choge, I. A., Decker, J. M., Bibollet-Ruche, F., Li, H.,
 Leseka, N., Treurnicht, F., Mlisana, K., Shaw, G. M., Karim, S. S., Williamson,

- 292 C., Morris, L. & Team, C. S. (2007). Neutralizing antibody responses in acute 293 human immunodeficiency virus type 1 subtype C infection. Journal of virology 81, 2946187-6196.
- 295Igarashi, T., Endo, Y., Englund, G., Sadjadpour, R., Matano, T., Buckler, C., 296 Buckler-White, A., Plishka, R., Theodore, T., Shibata, R. & Martin, M. (1999).
- 297 Emergence of a highly pathogenic simian/human immunodeficiency virus in a rhesus 298 macaque treated with anti-CD8 mAb during a primary infection with a 299nonpathogenic virus. Proceedings of the National Academy of Sciences of the United 300 States of America 96, 14049-14054.
- 301 Kong, L. & Sattentau, Q. J. (2012). Antigenicity and Immunogenicity in HIV-1 302 Antibody-Based Vaccine Design. J AIDS Clin Res S8, 3.
- 303 Kwong, P. D. & Mascola, J. R. (2012). Human antibodies that neutralize HIV-1: 304 identification, structures, and B cell ontogenies. Immunity 37, 412-425.
- 305 Landau, N. R., Page, K. A. & Littman, D. R. (1991). Pseudotyping with human T-cell 306 leukemia virus type I broadens the human immunodeficiency virus host range. 307 Journal of virology 65, 162-169.
- 308 Li, M., Gao, F., Mascola, J. R., Stamatatos, L., Polonis, V. R., Koutsoukos, M., 309 Voss, G., Goepfert, P., Gilbert, P., Greene, K. M., Bilska, M., Kothe, D. L., 310 Salazar-Gonzalez, J. F., Wei, X., Decker, J. M., Hahn, B. H. & Montefiori, D. C.
- 311
- (2005). Human immunodeficiency virus type 1 env clones from acute and early 312 subtype B infections for standardized assessments of vaccine-elicited neutralizing 313 antibodies. Journal of virology 79, 10108-10125.
- 314 Lusso, P., Earl, P. L., Sironi, F., Santoro, F., Ripamonti, C., Scarlatti, G., Longhi, 315 R., Berger, E. A. & Burastero, S. E. (2005). Cryptic nature of a conserved, 316 CD4-inducible V3 loop neutralization epitope in the native envelope glycoprotein 317 but oligomer of CCR5-restricted, not CXCR4-using, primary human 318 immunodeficiency virus type 1 strains. Journal of virology 79, 6957-6968.
- 319 Madani, N., Schon, A., Princiotto, A. M., Lalonde, J. M., Courter, J. R., Soeta, T.,
- 320 Ng, D., Wang, L., Brower, E. T., Xiang, S. H., Kwon, Y. D., Huang, C. C., Wyatt,
- 321R., Kwong, P. D., Freire, E., Smith, A. B., 3rd & Sodroski, J. (2008).
- 322 Small-molecule CD4 mimics interact with a highly conserved pocket on HIV-1
- 323 gp120. Structure 16, 1689-1701.
- Mascola, J. R., Stiegler, G., VanCott, T. C., Katinger, H., Carpenter, C. B., Hanson, 324

C. E., Beary, H., Hayes, D., Frankel, S. S., Birx, D. L. & Lewis, M. G. (2000).
Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV
chimeric virus by passive infusion of neutralizing antibodies. *Nature medicine* 6, 207-210.

- Moore, J. P., Cao, Y., Qing, L., Sattentau, Q. J., Pyati, J., Koduri, R., Robinson, J.,
 Barbas, C. F., 3rd, Burton, D. R. & Ho, D. D. (1995). Primary isolates of human
 immunodeficiency virus type 1 are relatively resistant to neutralization by
 monoclonal antibodies to gp120, and their neutralization is not predicted by studies
 with monomeric gp120. *Journal of virology* 69, 101-109.
- Narumi, T., Arai, H., Yoshimura, K., Harada, S., Hirota, Y., Ohashi, N.,
 Hashimoto, C., Nomura, W., Matsushita, S. & Tamamura, H. (2013). CD4
 mimics as HIV entry inhibitors: lead optimization studies of the aromatic
 substituents. *Bioorganic & medicinal chemistry* 21, 2518-2526.
- Narumi, T., Arai, H., Yoshimura, K., Harada, S., Nomura, W., Matsushita, S. &
 Tamamura, H. (2011). Small molecular CD4 mimics as HIV entry inhibitors. *Bioorganic & medicinal chemistry* 19, 6735-6742.
- Narumi, T., Ochiai, C., Yoshimura, K., Harada, S., Tanaka, T., Nomura, W., Arai,
 H., Ozaki, T., Ohashi, N., Matsushita, S. & Tamamura, H. (2010). CD4 mimics
 targeting the HIV entry mechanism and their hybrid molecules with a CXCR4
 antagonist. *Bioorganic & medicinal chemistry letters* 20, 5853-5858.
- Nishimura, Y., Igarashi, T., Haigwood, N. L., Sadjadpour, R., Donau, O. K.,
 Buckler, C., Plishka, R. J., Buckler-White, A. & Martin, M. A. (2003). Transfer
 of neutralizing IgG to macaques 6 h but not 24 h after SHIV infection confers
 sterilizing protection: implications for HIV-1 vaccine development. *Proceedings of the National Academy of Sciences of the United States of America* 100, 15131-15136.
- Nishimura, Y., Shingai, M., Willey, R., Sadjadpour, R., Lee, W. R., Brown, C. R.,
 Brenchley, J. M., Buckler-White, A., Petros, R., Eckhaus, M., Hoffman, V.,
 Igarashi, T. & Martin, M. A. (2010). Generation of the pathogenic R5-tropic
 simian/human immunodeficiency virus SHIVAD8 by serial passaging in rhesus
 macaques. Journal of virology 84, 4769-4781.

Platt, E. J., Wehrly, K., Kuhmann, S. E., Chesebro, B. & Kabat, D. (1998). Effects
of CCR5 and CD4 cell surface concentrations on infections by macrophagetropic
isolates of human immunodeficiency virus type 1. *Journal of virology* 72,

358 2855-2864.

- Shibata, R. & Adachi, A. (1992). SIV/HIV recombinants and their use in studying
 biological properties. *AIDS research and human retroviruses* 8, 403-409.
- 361 Shimizu, Y., Okoba, M., Yamazaki, N., Goto, Y., Miura, T., Hayami, M., Hoshino,
- 362 H. & Haga, T. (2006). Construction and in vitro characterization of a chimeric
- simian and human immunodeficiency virus with the RANTES gene. *Microbes and infection / Institut Pasteur* 8, 105-113.
- Shinohara, K., Sakai, K., Ando, S., Ami, Y., Yoshino, N., Takahashi, E., Someya,
 K., Suzaki, Y., Nakasone, T., Sasaki, Y., Kaizu, M., Lu, Y. & Honda, M. (1999).
 A highly pathogenic simian/human immunodeficiency virus with genetic changes in
- 368 cynomolgus monkey. *The Journal of general virology* **80** (**Pt 5**), 1231-1240.
- Thali, M., Moore, J. P., Furman, C., Charles, M., Ho, D. D., Robinson, J. &
 Sodroski, J. (1993). Characterization of conserved human immunodeficiency virus
 type 1 gp120 neutralization epitopes exposed upon gp120-CD4 binding. *Journal of virology* 67, 3978-3988.
- Trkola, A., Kuhmann, S. E., Strizki, J. M., Maxwell, E., Ketas, T., Morgan, T.,
 Pugach, P., Xu, S., Wojcik, L., Tagat, J., Palani, A., Shapiro, S., Clader, J. W.,
 McCombie, S., Reyes, G. R., Baroudy, B. M. & Moore, J. P. (2002). HIV-1
 escape from a small molecule, CCR5-specific entry inhibitor does not involve
- 377 CXCR4 use. Proceedings of the National Academy of Sciences of the United States
- 378 *of America* **99**, 395-400.
- von Brunn, A., Brand, M., Reichhuber, C., Morys-Wortmann, C., Deinhardt, F. &
 Schodel, F. (1993). Principal neutralizing domain of HIV-1 is highly immunogenic
 when expressed on the surface of hepatitis B core particles. *Vaccine* 11, 817-824.
- Wei, X., Decker, J. M., Liu, H., Zhang, Z., Arani, R. B., Kilby, J. M., Saag, M. S.,
 Wu, X., Shaw, G. M. & Kappes, J. C. (2002). Emergence of Resistant Human
 Immunodeficiency Virus Type 1 in Patients Receiving Fusion Inhibitor (T-20)
- 385 Monotherapy. *Antimicrobial Agents and Chemotherapy* **46**, 1896-1905.
- 386 Wyatt, R., Kwong, P. D., Desjardins, E., Sweet, R. W., Robinson, J., Hendrickson,
- W. A. & Sodroski, J. G. (1998). The antigenic structure of the HIV gp120 envelope
 glycoprotein. *Nature* 393, 705-711.
- Yamada, Y., Ochiai, C., Yoshimura, K., Tanaka, T., Ohashi, N., Narumi, T.,
 Nomura, W., Harada, S., Matsushita, S. & Tamamura, H. (2010). CD4 mimics

targeting the mechanism of HIV entry. *Bioorganic & medicinal chemistry letters* 20,
354-358.

393 Yoshimura, K., Harada, S., Shibata, J., Hatada, M., Yamada, Y., Ochiai, C.,
394 Tamamura, H. & Matsushita, S. (2010). Enhanced exposure of human
395 immunodeficiency virus type 1 primary isolate neutralization epitopes through
396 binding of CD4 mimetic compounds. *Journal of virology* 84, 7558-7568.

Yusa, K., Maeda, Y., Fujioka, A., Monde, K. & Harada, S. (2005). Isolation of
TAK-779-resistant HIV-1 from an R5 HIV-1 GP120 V3 loop library. *The Journal of biological chemistry* 280, 30083-30090.

400Zhao, Q., Ma, L., Jiang, S., Lu, H., Liu, S., He, Y., Strick, N., Neamati, N. &401Debnath,A.K.(2005).Identificationof

402 N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of

403 HIV-1 entry inhibitors that prevent gp120 binding to CD4. *Virology* **339**, 213-225.

404

405

410

Figure legends

- 407 Figure 1. Genomic organisation (a) and neutralisation sensitivity (b-e) of SHIV MNA. 408 409 (a) Grey boxes represent genes derived from SIV239, open boxes those from HIV-1
- 89.6 and filled dark grey boxes those from HIV-1 MNA. (b-e) Percentage
- 411 neutralisation was calculated as follows: % neutralisation = $100 \times \{1 - (RLU.N - N)\}$
- 412RLU.B)/(RLU.V - RLU.B)}. RLU, relative luciferase units; RLU.N, RLU in wells with
- cells, virus and KD-247 and/or YYA-021; RLU.V, RLU in wells with cells and virus; 413
- 414 RLU.B, RLU in wells with cells.
- 415
- 416 Figure 2. Replication of SHIV MNA in rhesus macaque PBMCs (a) and in vivo (b).
- 417 (a) Multiplicity of infection was adjusted to 0.01 (TCID₅₀/cell). (b) Experimental
- infection of a rhesus macaque with SHIV MNA. SHIV MNA (1.75×10^5 TCID₅₀) was 418
- 419 intravenously inoculated into a rhesus macaque, and the plasma viral RNA burden
- (filled circles) and circulating CD4⁺ T-lymphocytes (open triangles) were monitored. 420

421

422 Figure 3. Antibody induced against SHIV MNA.

423	(a) The anti-HIV-1 gp120 antibody response was assessed by immunoblotting with
424	plasma samples collected at the indicated times. An anti-HIV-1 V3 monoclonal
425	antibody 4G10 ascites (1:100) (von Brunn et al., 1993), obtained from the NIH AIDS
426	Reagent program, was used as a positive control (lane anti-V3). (b and c) Neutralisation
427	of SHIV MNA with IgG purified from plasma of the infected rhesus macaque (day 0
428	and 24 wpi) with/without YYA-021 (20 µM).

1 Table S1. PCR primers.

Primer	Sequence	Position (nt†)	
Fragment I			
SIVU3Not-F	5'-atgcggccgctggaagggatttattacagtgcaag-3'	$1 - 25^*$	
Preenv-R	5'-aaagagcagaagacgagtggcaa-3'	$6204 - 6226^{\sharp}$	
Fragment II			
SHenv5.5F	5'-tcataatgatagtaggaggc-3'	$8278 - 8297^{\sharp}$	
SIVU5Eco-R	5'-tgcagaattctgctagggattttcctgcttcggtt-3'	10255 - 10279*	
Fragment III			
HIV-1vpr-F	5'-agatggaacaagccccagaaga-3'	5557 – 5578 [‡]	
SHenv6R	5'-gctgaagaggcacaggctccgc-3'	$8525 - 8504^{\sharp}$	

2 [†], Nucleotide positions of PCR primers were numbered relative to the SIV239 (*,

3 GenBank Accession No. M33262) or HXB2 (#, GenBank Accession No. K03455)

4 genome sequences.

6	NBD-556.
7	100 TCID ₅₀ of HIV-1 MNA was pre-incubated with increasing amounts of KD-247
8	with/without 2 μM of NBD-556 at 37°C for 60 min, followed by inoculation into $5{\times}10^3$
9	TZM-bl cells. The cells were lysed at 48 h post-infection and luciferase activity was
10	measured. The percentage of neutralisation was measured as RLU reduction relative to
11	virus control wells.
12	
13	Figure S2. Genomic organisation of SHIV KS661 and HIV-1 MNA and PCR fragments
14	employed for preparation of DNA fragments for generation of SHIV MNA.
15	Colour-coded boxes represent genes derived from the following viruses: grey boxes,
16	SIV239; open boxes, HIV-1 89.6; grey boxes, HIV-1 MNA. SHIV KS661 carries tat,
17	rev, vpu, and env genes from subtype B HIV-1 89.6. Broad lines represent PCR
18	fragments that were amplified using the primers indicated by arrows $(A - F)$.
19	

Figure S1. Enhanced neutralisation of HIV-1 MNA by KD-247 in the presence of

 $\mathbf{5}$

- 20 Figure S3. Deduced amino acid sequence alignment of Env from HIV-1 MNA, SHIV
- 21 MNA, and SHIV KS661.
- 22 (*) =Amino acids that form part of the CD4 binding site.
- 23 (†) = Regions/elements that are reported to interact with NBD-556 (Madani *et al.*, 2008;
- 24 Yoshimura et al., 2010).
- 25 Parts of SHIV MNA Env, that were putatively derived from HIV-1 MNA or SHIV
- 26 KS661 are respectively color-coded as grey or black.
- 27
- 28 Figure S4. Co-receptor preference of SHIV MNA.
- 29 SHIV MNA, along with controls for CCR5-tropic (SIV239) and CXCR4-tropic (HIV-1
- 30 NL4-3) and the parental HIV-1 MNA, were inoculated into TZM-bl cells in the
- 31 presence of increasing amounts of AD101 (Trkola *et al.*, 2002), provided by Dr. J.
- 32 Strizki, Schering Plough Research Institute, Kenilworth, NJ, and/or AMD3100
- 33 (Sigma-Aldrich, St. Louis, MO) (Donzella et al., 1998).
- 34

- 35 Figure S5. Sensitivity of Env proteins from HIV-1 MNA and SHIV MNA to soluble
- 36 CD4 and small-molecule CD4 mimics.
- 37 Pseudotyped viruses carrying Env from SHIV MNA or HIV-1 MNA were normalised
- 38 by infectious titre at 100 TCID₅₀ and inoculated to TZM-bl cells in the presence of
- 39 increasing amounts of NBD-556, YYA-021 or soluble CD4. A pseudotyped virus
- 40 bearing A-MLV Env is acting as the negative control.

----: PCR product \rightarrow : PCR primer

HIV-1 MNA SHIV MNA SHIV KS661	1 → gp120 MKVTETRKSCQHL-WRWGIMLLGMLMICSAKEQLWVTVYY R.K.KYQHLWRWGT	G V P V W K D A K T T L F C A S D A K A Y D T E A H N V W A T H A C ' R E . T	89 V P T D P N P Q E V W L T N V T
HIV-1 MNA	90 ****	V1/V2	175
SHIV MNA	E D F N MW E N D M V E Q M N E D I I S L W D Q S L K P C V Q L T P L C V T L N	CTD AKTNGSVSNHS - SVIEKGEIKNCSFNAS	T I V R D K M K K E Y A L F Y K
SHIV KS661			
HIV-1 MNA	176 * *	H Y C T P A G F A I L K C N D K K F K G T G S C N N V S T V Q C T H i	† 265
SHIV MNA	L D V V P I N V N G S D N G S Y R L I S C N T S V I T G A C P K I S F E P I P I		G I R P V V S T Q L L L N G S I
SHIV KS661	V K N T S . T K		
HIV-1 MNA	266 * * * * * A E E E V V I R S K N F T N N A E T I I V Q L N K S I T I N C T R P N N N T R K D I E D D . V K E . V V	V3	354
SHIV MNA		G I H M G P G R A I Y T T - D I I G D I R Q A H	T I R Q I A T K L R E E Y N K T
SHIV KS661			
HIV-1 MNA SHIV MNA SHIV KS661	355 * [†] † T I V F E P V Q G G D P E I M L H S F N C G G E F F Y C N T T Q L F N S T W T 	V4 ****** WNSTWNSTVDQKGSNDTITLP CRIKQIINLWQKV NVAGGTNGTEGIQM	* [†] 444 G K A V Y A P P I A G P I K C S M T . Q . R
HIV-1 MNA	445 ****** V5 * **** [†] **	→ gp41	532
SHIV MNA	SNITGLLLVRDGGTNSTNET - FRPGGGNMKDNWRSELYK	YKVVKIEPLGVAPTRARRRVVQREKRAVGIGAVFI	L G F L G A A G S T M G A A S M
SHIV KS661			
HIV-1 MNA	533	L Q A R V L A V E R Y L R D Q Q L L G I W G C S G K L I C T T A V P V	622
SHIV MNA	T L T V Q A R Q L L S G I V Q Q Q N N L L R A I E A Q Q H M L Q L T V W G I K Q		W N T S W S N R T Q N E I W E N
SHIV KS661			
HIV-1 MNA SHIV MNA SHIV KS661	623 M T W I K W E R E I D N Y T G L I Y S L L E E S Q N Q Q E K N E Q E L L Q L D S Y M E D Y D K T K E K	transmembrane domain WANLWSWFDISRWLWYIK IFIMIVGGLVGLKIVF/ 	712 A V L S V V N R V R Q G Y S P L I . I .
HIV-1 MNA SHIV MNA SHIV KS661	713 SLQTRFPAPREPDRPRGIEEEGGEQDRDRSQRFVNGFLSL	I WD DLR SLCLF SYHRLR DLLL VAT R I VELLG R R G 	802 WEGLKYWWNLLQYWIQ A
HIV-1 MNA SHIV MNA SHIV KS661	803 E L K S S A I S L L N T T A I I V A E G T D R I I N V Q Y G W S Y F H E A V Q A V W R S A T E T L . G A W G D V W N V Q Y G W S Y F H E A V Q A V W R S A T E T L . G A W G D V W	853 E V A Q R A Y R A F L H I P V R I R Q G L E R A L L . T L R . G G . W I . A R L T . T L R . G G . W I . A R L T	

