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Abstract 

Stimulation of osteoblast proliferation and differentiation is important to the in vivo 

bone-bonding ability of biomaterials. Previous in vitro studies have used biochemical 

assays to analyze osteoblast-specific gene expression in cultured osteoblasts. In this 

study, we generated transgenic mice harboring a monomeric red fluorescent protein 1  

transgene under the control of a 2.3-kb fragment of the Col1a1 promoter, which is 

active specifically in osteoblasts and osteocytes. We established a fluorescent primary 

osteoblast culture system to allow noninvasive observation of osteoblast proliferation 

and differentiation on opaque materials in vitro. We used this system to evaluate alkali- 

and heat-treated titanium, which has a strong bone-bonding ability in vivo, and we 

observed a rapid increase in fluorescence intensity and characteristic multifocal nodule 

formation. A cell proliferation assay and RT-PCR to examine osteoblast-specific gene 

expression showed increased osteoblast proliferation and differentiation consistent with 

the fluorescence observations. This mouse model allowed us to use fluorescence 

intensity to visualize and quantify in vivo newly formed bone around implanted 

materials in femurs. The use of these fluorescent osteoblasts is a promising method for 

simple screening of the bone-bonding ability of new materials. 
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Introduction 

Various biomaterials are available for joint implants, bone substitutes, and fixation 

devices. Many alloys and surface treatments have been developed to improve their 

affinity with bone tissue. The bone-bonding ability of these biomaterials is usually 

evaluated using animal experiments in which the biomaterial of interest is implanted 

into bones of large animals, such as dogs and rabbits, and the bonding force is measured 

mechanically using a detaching test [1] and the material-bone interface is evaluated 

histologically. In practical terms, large animal experiments are the most valid method 

for predicting outcomes in humans. However, because of the high cost of the animals, 

long experimental periods, and time-consuming assay procedures, such models are not 

ideal for screening a large number of new biomaterials. 

To overcome these problems, in vitro methods have been introduced to measure 

proliferation and osteoblastic differentiation of cultured cells on biomaterials. However, 

there remain several drawbacks. First, to evaluate osteoblastic differentiation by 

analyzing osteoblast-specific marker genes and protein levels, cell cultures need to be 

stopped at each examination time point, and this hampers time-lapse observations of the 

same sample. Second, the cultured cells do not differentiate uniformly on the material of 

interest, and the positional information is inevitably lost by homogenization of the cells 
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to extract proteins and mRNA. Third, because most biomaterials are not translucent, 

cells growing on the material cannot be visualized using standard light microscopy. 

Fourth, most of the biochemical assay procedures are cumbersome and require many 

reagents and complex equipment, which introduce the potential risk of contamination 

and technical errors. 

In this study we established a new evaluation system to: 1) simplify the in vitro 

assay procedure to facilitate high-throughput screening and 2) enable serial evaluation 

of cell differentiation on the same metal sample without losing positional information. 

Fluorescent proteins are used widely in noninvasive imaging of living cells. 

Fluorescence imaging systems are useful in the field of biomaterial evaluation because 

the opacity and the surface roughness of most biomaterials prevent the use of light 

microscopy to obtain focused images. High-resolution images from selected depths can 

be obtained using fluorescence bioimaging with a confocal laser scanning microscope. 

Several applications of fluorescence bioimaging technology for biomaterial evaluation 

have been reported. Blum et al. used a rat fibroblastic cell line transfected by retroviral 

vectors harboring enhanced green fluorescent protein (eGFP) and luciferase expressed 

through the cytomegalovirus promoter to visualize cells seeded in a hydrogel material 

and on titanium fiber mesh [2]. Xia et al. visualized cell survival in scaffolds after in 
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vivo implantation of human mesenchymal stem cells transfected by retroviral vectors 

encoding eGFP [3]. These methods are useful for evaluating cell shapes and numbers on 

materials but they do not provide information about the differentiation status of the cells. 

To visualize the differentiation of cells grown on biomaterials, it is necessary to restrict 

the expression of fluorescence to specific stages of cell differentiation. 

The 2.3-kb fragment of the promoter of Col1a1 is an osteoblast-specific promoter, 

which was reported by Dacic et al. [4] to become active specifically in differentiated 

osteoblasts and osteocytes [5]. In this study, we generated transgenic mice harboring a 

monomeric fluorescent protein 1 (mRFP1) transgene under the control of the Col1a1 

2.3-kb promoter (Col1a1(2.3kb)–mRFP1 mice). Using calvarial osteoblasts harvested 

from this mouse line, we established a primary osteoblast culture system to visualize 

osteoblast differentiation on biomaterials. 

To validate this system using fluorescent osteoblasts, we evaluated alkali- and 

heat-treated titanium as a positive control because this surface treatment improves the 

bone-bonding ability of titanium metal. We have reported excellent bone-bonding 

ability with this treatment evaluated by mechanical tests using large animals [6] and 

favorable clinical outcomes of hip implants that have received this treatment [7]. 
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Enhanced osteoblastic differentiation of osteoblasts on titanium plates after alkali- and 

heat- treatment has been reported by Isaac et al. [8]. 

By analyzing the fluorescent images obtained longitudinally from the same 

samples, we quantified fluorescence as an indicator of gene expression and the 

development of mineralized nodules. This system revealed a rapid increase in 

fluorescence intensity and a characteristic multifocal developmental pattern of calcified 

nodules in cells grown on alkali- and heat-treated titanium plates. We performed in vivo 

evaluations of alkali- and heat-treated titanium used in transgenic mice, and we obtained 

similar results to those obtained from our in vitro evaluation. This is the first report to 

show: 1) the in vitro and in vivo use of a fluorescence bioimaging system established 

from transgenic mice harboring an mRFP1 transgene under the control of the osteoblast 

specific 2.3-kb fragment of the Col1a1 promoter for biomaterial evaluation and 2) the 

pattern of longitudinal nodule development on biomaterials using images obtained 

noninvasively from the same samples. 

 

Materials and methods 

Preparation of titanium materials 

 Commercially pure (99.5%) titanium (CpTi) plates (Nilaco Co., Tokyo, Japan) 
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were cut to the sizes of 18 × 18 × 1 mm for 6-well culture plates and 14 × 14 × 1 mm 

for 12-well culture plates, and the titanium plates were polished with number 400 

diamond plate. Alkali- and heat-treated titanium (AhTi) samples were produced as 

described previously [6]. Briefly, titanium plates were soaked in 5 M NaOH at 60 °C for 

24 h and subsequently heated at 600 °C for 1 h. The previously reported mean average 

surface roughness (Ra) and maximum roughness (Rmax) of the titanium plates were 

0.32 and 3.63 µm for CpTi, 0.35 and 4.13 µm for AhTi, respectively [9]. For in vivo 

experiments, pure titanium wires with a diameter of 0.6 mm (Nilaco Co.) were used. All 

samples were sterilized in ethylene oxide gas before use. Photographs of these materials 

are shown in Figure 1a and 1b. 

 

Scanning electron microscopy 

 The materials were observed using a field-emission scanning electron 

microscope (SEM) (S-4700; Hitachi Ltd., Tokyo, Japan) at an acceleration voltage of 5 

kV. The SEM images of the samples are shown in Figure 1c–h. To observe the cells on 

the materials, 2 days after seeding mouse calvarial osteoblasts on CpTi and AhTi plates, 

the cells were fixed in 2% glutaraldehyde for 1 h. The plates were rinsed gently with 0.1 

M phosphate buffer at pH 7.2, dehydrated in an ethanol series, frozen in tert-butyl 
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alcohol, freeze-dried, and sputter-coated with gold and palladium. 

 

Animals 

 C57BL/6 transgenic mice harboring the mRFP1 gene under the control of the 

2.3-kb Col1a1 promoter fragment (Col1a1(2.3 kb)–mRFP1 mice) were created (Figure 

2a). Genotyping was performed by PCR using the primers 

5′-TCCCCGACTACTTGAAGCTG-3′ and 5′-CTTGGCCATGTAGGTGGTCT-3′, 

which amplify 317 bp of mRFP1 (Figure 2b). The animal care and experimental 

procedures used were approved by the Animal Research Committee, Kyoto University, 

and were performed according to the Regulation on Animal Experimentation at Kyoto 

University. 

 

Cell culture 

 Primary mouse calvarial osteoblasts were harvested from the calvaria of 1- to 

5-day-old neonatal transgenic mice using a modification of a previously described 

protocol [10]. Calvarial bone fragments were subjected to five sequential 15 min 

digestions in medium containing 0.1% collagenase P (Roche Applied Science, 

Indianapolis, IN, USA) and 0.00125% trypsin (Sigma-Aldrich, St. Louis, MO, USA), 
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and cell fractions 3–5 were collected. Cells were seeded at a density of 3 × 105 and 1 × 

105 cells/well in 6- and 12-well tissue culture polystyrene plates, respectively, 

containing the titanium plates on the bottom. Cells were grown in osteogenic medium 

comprising DMEM (Sigma-Aldrich) supplemented with 10% fetal bovine serum 

(Tissue Culture Biologicals, Long Beach, CA, USA), 10 mM β-glycerophosphate 

(Sigma-Aldrich), 80 µg/ml ascorbic acid (Sigma-Aldrich), and 10–8 M dexamethasone 

(Sigma-Aldrich) at 37 °C in a humidified atmosphere of 5% CO2 and 95% air. The 

culture medium was replaced every other day. 

 

Confocal laser scanning imaging of cell cultures 

 Fluorescence imaging of cultured cells was performed every 4 days after 

seeding until day 28. Fluorescence images were obtained with a confocal laser 

microscope (Nikon Instruments Inc., Tokyo, Japan). mRFP1 was excited using a 543 

nm laser and detected through a 590/50 nm band-pass filter. For each sample, one low 

magnification (2×) field image and nine high magnification (10×) field images were 

captured in 512 × 531 pixels. The experiment was repeated three times, and the pinhole 

setting and contrast gain were maintained for all scans at the same magnifications. The 

images were analyzed using NIH ImageJ free software available at 
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http://rsb.info.nih.gov/nih-image/. The number of red pixels was counted in each sample. 

The threshold was maintained for all images. The intensity of mRFP1 expression (total 

fluorescent area) was defined as the total number of red pixels from nine 

high-magnification (10×) fields. Red fluorescent spots of >10 pixels in 

low-magnification images (2×) were considered to be calcification nodules, and the 

number and the size of nodules were analyzed using the “Analyze Particle” function of 

ImageJ. 

 

2,3-Bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) 

reduction assay 

 To measure cell number 2, 7 and 16 days after seeding, an XTT (2,3-Bis(2-

methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) reduction assay was 

performed as described previously [11]. Briefly, 500 µl of XTT working solution was 

added to each well, the cells were incubated at 37 °C for 6 h, and the absorbance was 

measured on a microplate reader (Thermo LabSystems, Cheshire, UK). Specific 

absorbance was calculated as follows: specific absorbance = A450 nm (test) – A450 nm 

(blank) – A630 nm (test). 
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RT-PCR 

 Total RNA was extracted using the RNAeasy Mini Kit (Qiagen, Hilden, 

Germany) according to the manufacturer’s instructions. The quality of RNA was 

confirmed by electrophoresis using an agarose ethidium bromide gel. From each sample, 

200 ng of RNA was reverse-transcribed with random primers using the Transcriptor 

First Strand cDNA Synthesis kit (Roche Applied Science). Real-time PCR was 

performed to assess the expression levels of the genes type I collagen (Col1a1), 

osteocalcin (Ocn), and alkaline phosphatase (Alp) using the carousel-based LightCycler 

system (Roche) with FastStart DNA Master SYBR Green (Roche). The primers were as 

follows: glyceraldehyde 3-phosphate dehydrogenase (Gapdh), 

5′-TGTCCGTCGTGGATCTGAC-3′ and 5′-CCTGCTTCACCACCTTCTTG-3′; Alp, 

5′-ACTCAGGGCAATGAGGTCAC-3′ and 5′-CACCCGAGTGGTAGTCACAA-3′; 

Col1a1, 5′-CTCCTGGCAAGAATGGAGAT-3′ and 

5′-AATCCACGAGCACCCTGA-3′; and Ocn, 5′-AGACTCCGGCGCTACCTT-3′ and 

5′-CTCGTCACAAGCAGGGTTAAG-3′. 

 

Surgical procedure 

 Ten-week-old male Col1a1(2.3 kb)–mRFP1 mice were anesthetized by 
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intraperitoneal injection of pentobarbital sodium (40 mg/kg). The lateral thigh and knee 

joint were incised, and the knee joint was opened by medially dislocating the patella. A 

hole was drilled into the intercondylar fossa with a 23-G needle, and a treated or 

untreated titanium wire was tapped from the hole into the medullary cavity until it broke 

through the cortex of the greater trochanter. Both ends of the wire were bent and 

trimmed, and the knee joint and skin were sutured after reducing the patella. 

 

Imaging of mRFP1 fluorescence of the intramedullary wires 

 Mice were sacrificed 28 days after the implantation. The distally protruding 

wire was cut and the rest of the wire was pulled out proximally. From the distally cut 

end, 2 mm was excluded, and the remaining 8 mm was set as the region of interest. 

Fluorescence images were obtained just after wire removal using a stereomicroscope 

(SZX12; Olympus, Tokyo, Japan) equipped with a fluorescent lamp system with the 

same conditions and exposure time. For each wire, the entire circumference was 

captured in two images taken from the top and the bottom. The number of red pixels on 

the wire was counted. 

 

Histological examination 
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 Twenty-eight days after implantation, the mice were sacrificed and the right 

femur was removed and fixed in 10% phosphate-buffered formalin (pH 7.25) for 7 days 

and dehydrated in an ethanol series. The specimens were then embedded in EpoFix 

Resin (Struers, Ballerup, Denmark) and cut with a band saw (BS-3000CP; EXACT 

cutting system, Norderstedt, Germany) perpendicular to the longitudinal axis of the 

femur. For each sample, three sections were chosen (subtrochanteric, middle shaft, and 

supracondylar regions). The sliced samples were ground to a thickness of 40–60 µm 

using a grinding–sliding machine (microgrinding MG-4000; EXACT). The sections 

were stained with Van Gieson’s picrofuchsin [12]. The ratio of bone contact relative to 

the total perimeter of the implant was defined as the affinity index and was quantified 

using ImageJ. 

 

Statistical analysis 

 The data are presented as the mean ± SD and were assessed using Student's t 

test to compare two groups. Differences with p < 0.05 were considered significant. 

 

Results 
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Specific expression of red fluorescence was observed in vivo in bone tissues and in vitro 

in differentiated osteoblasts 

 To verify the tissue specificity of mRFP1 expression, fluorescent images were 

obtained in neonatal mice. Images of forelimbs of a 7-day-old transgenic mouse using 

light and fluorescence microscopy are shown in Figure 2c. Red fluorescence in the limb 

skeleton was observed through the skin of the transgenic mouse. The calvarial bone 

showed a high level of expression of mRFP1 (Figure 2d). Each osteoblast was 

visualized in the calvaria using a confocal laser microscope (Figure 2e and 2f). 

Macrofluorescence photography and observations of frozen sections of an exposed 

femur of a 3-week-old transgenic mouse showed no fluorescence in the growth plate 

and articular cartilage (Figure 2g and 2h). The sustained expression of mRFP1 was 

confirmed in a 10-month-old transgenic mouse (Figure 2i). 

To confirm this transgene expression in culture, cultured osteoblasts were 

observed with fluorescence imaging. Figures 2j and 2k show images obtained using 

light and fluorescence microscopy to observe cultured osteoblasts in a polystyrene 

culture dish on day 16. Red fluorescence was observed mainly in areas dense with 

osteoblasts. Serial observation of osteoblasts on titanium plates using a confocal 

microscopy showed that fluorescence became detectable around culture day 7 and the 



15 

 

fluorescent area increased progressively over time (Figure 2l). 

 

Osteoblasts grown on AhTi plates expressed red fluorescence in a larger area throughout 

the observation period compared with those grown on CpTi plates 

 To visualize the time course and spatial distribution of osteoblast proliferation 

and differentiation on the biomaterials used in this culture system, serial images of the 

same sample sets were obtained over 4 weeks (Figure 3a). As shown in Figure 3b, the 

fluorescent area began to increase on culture day 16 on both materials. The fluorescent 

area on day 16 was three-times larger on AhTi plates (1.65 × 105 ± 3.87 × 104 pixels) 

compared with CpTi plates (4.39 × 104 ± 4.45 × 104 pixels), and this difference 

continued throughout the observation period. However, the average daily increase in the 

total fluorescent area between day 16 to day 24 was 5.70 × 104 pixels/day for CpTi 

plates and 5.68 × 104 pixels/day for AhTi plates, which did not differ between materials. 

 

Multifocal nodule formation was observed on AhTi plates 

 The nodule numbers counted as fluorescent spots in low-magnification images 

are shown in Figure 3c, and the average sizes of these nodules are shown in Figure 3d. 

On day 16, the nodule number was three times higher in the AhTi plates (66.7 ± 9.45) 
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than in the CpTi plates (17 ± 6.93) (p < 0.05). By contrast, the average nodule size was 

1.5 times larger in the AhTi plates (110 ± 1.21) than in the CpTi plates (73.3 ± 061) (p < 

0.05). To gain an overview of nodule development, the distribution of the sizes and 

numbers of nodules in a sample is shown in Figure 3e. There were more small nodules 

in the AhTi plate throughout of the observation period (Table 1). These results indicate 

that AhTi plates accelerated the onset of differentiation, but once the process had started, 

the progression was affected less by the treatment. 

 

SEM observations, XTT assay, and RT-PCR showed increased proliferation and 

differentiation of osteoblasts on AhTi plates 

 SEM observations, XTT assays, and RT-PCR analysis were performed to relate 

the results obtained by fluorescence observations to known indicators of osteoblast 

proliferation and differentiation. SEM observations on culture day 2 showed favorable 

attachment of osteoblasts to both materials (Figure 4a). The morphology of the 

osteoblasts differed between materials: osteoblasts were large and flat on CpTi plates 

but small and rounded on AhTi plates. These differences in shape reflect differences in 

the surface characteristics of the materials. The results of the XTT analysis of cell 

number are shown in Figure 4b. On day 2, the mean absorbance was 60% higher for 
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AhTi plates (0.201 ± 0.0352/cm2) than for CpTi plates (0.121 ± 0.0393/cm2) (p < 0.05). 

However, no significant difference was observed on day 7 and day 16, indicating that 

AhTi treatment promoted cell adhesion and proliferation, which were related to the 

accelerated onset of fluorescence expression on AhTi plates. 

Osteoblast-specific gene expression levels were determined using RT-PCR on 

days 2, 7, 14, and 16 (Figure 4c). Alp expression increased throughout the observation 

period for cells grown on both materials. The cells on AhTi plates had a nonsignificantly 

higher Alp expression level on day 7 (p = 0.06), day 14 (p = 0.06), and day 16 (p = 0.06) 

compared with cells grown on CpTi plates. Ocn expression increased on day 14 for both 

materials. These results are compatible with the finding that the fluorescence expression 

driven by the Col1a1 2.3-kb promoter started increasing around day 16. Although the 

expression levels were low, significantly higher Ocn expression levels were observed on 

AhTi plates on day 2 (p < 0.05) and day 7 (p < 0.05) compared with those observed on 

CpTi plates. Col1a1 expression for both materials increased throughout the observation 

period, but its expression did not differ significantly between CpTi and AhTi plates (day 

2, p = 0.51; day 7, p = 0.62; day 14, p = 0.27; day 16, p = 0.79). 

 

Bone formation around the materials was visualized and quantified in the in vivo system 
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 Next, to assess the application of this system for in vivo evaluation of materials, 

we quantified the newly formed bone around the intramedullary materials in the 

fluorescence images. The gross appearance of the operative procedure and an x-ray 

image of the implanted wire are shown in Figure 5a and 5b. Twenty-eight days after 

implantation, the wires were removed and fluorescence images were obtained (Figure 

5c). The fluorescent area was five times larger for the AhTi wires compared with the 

CpTi wires (Figure 5d). Newly formed bone was also quantified using the affinity 

indexes obtained from histological sections stained with Van Gieson’s picrofuchsin 

(Figure 5e). The affinity index was 60% higher for AhTi wires (46.1% ± 22.9%) 

compared with CpTi wires (27.9% ± 33.5%). These results are compatible with the 

fluorescence observations (Figure 5f). 

 

Discussion 

 Several noninvasive bioimaging techniques to visualize osteoblast 

differentiation have been reported. Bar et al. reported a bioluminescence imaging 

method to visualize differentiation of bone marrow-derived mesenchymal stem cells to 

osteoblasts in transgenic mice harboring the firefly luciferase gene under the control of 

the human osteocalcin promoter (hOC) [13]. They also reported the time course of the 
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expression of luciferase during in vivo skeletal development and bone repair. Expression 

of the hOC promoter is restricted to fully differentiated osteoblasts. However, in the 

field of material evaluation, a broader range of differentiation stages is preferable for 

imaging, and bioluminescent imaging is inadequate for obtaining high-resolution 

images. Kuhn et al. [5] reported a fluorescence imaging system to observe osteoblasts 

from transgenic mice harboring the GFP transgene under the control of the 2.3-kb 

fragment of the Col1a1 promoter cultured on carbonated hydroxyapatite-coated disks. 

In this study, we used mRFP1 instead of GFP because of its greater tissue penetration 

and spectral separation from autofluorescence and other fluorescent proteins [14], which 

enabled us to perform additional in vivo evaluation of the materials free of background 

fluorescence. mRFP1 is a true monomeric variant of the red fluorescent protein DsRed 

isolated from Discosoma sp. In contrast to DsRed, which is known to affect embryonic 

stem cell development due to its obligate tetramerization [15], the safety of mRFP1 has 

been well established. Transgenic mice with a ubiquitously high expression of mRFP1 

have been reported to show no difference from their non-transgenic littermates in 

embryonic development, adult organ maturation [16], and neural and muscular 

functions [17]. The irradiation damage caused by a laser to induce fluorescence may be 

of concern. However, scanning electron microscopic observation of cochleas stained 
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with fluorescent dyes after laser irradiation using confocal laser microscopy showed no 

cellular or ultrastructural damage at a normal laser intensity [18]. Therefore, fluorescent 

imaging using mRFP1 may be a suitable method for the non-invasive imaging of living 

cells. Another report involved imaging of alkaline phosphatase activity using a 

fluorinated ALP substrate detected with 19fluorine magnetic resonance spectroscopic 

imaging after hydrolysis [19]. Although this method is a useful noninvasive method to 

visualize osteoblasts, it requires special reagents and analytical equipment. 

Formation of a calcified extracellular matrix is an obvious indicator of osteoblast 

maturation. Quantification of calcified nodules is often used to evaluate the in vitro 

bone-bonding ability of biomaterials [20]. Several techniques for detecting nodules or 

mineral deposition on opaque materials have been reported. They include histological 

methods (von Kossa or Alizarin Red S staining), fluorescence labeling (tetracycline, 

calcein blue, etc.) [21, 22], detection of the crystalline structure of calcium phosphate 

using X-ray diffractometry, Fourier transform infrared spectrometry (FTIR) [23], and 

scanning electron microscopy. [24, 25] Histological analysis is easy and has been used 

for decades. However, except for FTIR, none of these techniques can distinguish 

cell-mediated calcification from spontaneous precipitation of calcium phosphate in 

degraded tissues. In this study, the fluorescent substance was produced by transgenic 
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mice, and the fluorescence detected from nodules definitely reflected cell-mediated 

calcification. Our method may be the first valid method for detecting cell-mediated 

calcification. 

We performed serial observation of the same sample and found that materials with 

bone-binding ability showed multifocal development of nodules from the time of the 

initial formation but that the rate of the increase in size of the nodules did not differ 

between the materials. Maeda et al. [22] reported their noninvasive observations of 

nodule formation and quantified the time-dependent increase in green fluorescent 

emission from calcein-labeled nodules formed by rat mesenchymal stem cells cultured 

in osteogenic medium supplemented with calcein. However, they did not evaluate the 

characteristics of individual nodules. Our study is the first to quantify both the change in 

nodule number and average size with time in cells grown on biomaterials. We found a 

difference in the pattern of nodule formation between materials according to their 

bone-bonding ability. AhTi plates had accelerated growth and multifocal nodule 

formation. In large animal experiments, the application of alkali and heat treatment 

accelerates the increase in failure load in detaching tests [6].The failure load of alkali- 

and heat-treated implants was significantly higher than that of control titanium implants 

at four weeks. Although further studies on other bone-bonding biomaterials are required, 
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the acceleration of an increase in failure load in vivo may be explained by accelerated 

multifocal bone–material bonding, which is represented as multifocal nodule formation 

in vitro. 

In this study, we also used fluorescence images to quantify new bone formation 

around the biomaterial in vivo. Compared with conventional histological evaluation, this 

technique is easy to perform and requires no sample preparation before observation. The 

bone-bonding ability of biomaterials has not been evaluated in transgenic animals with 

an introduced fluorescent marker gene. This may be because the genetics of large 

animals commonly used in biomaterial evaluation have not been well studied and 

gene-modified animals are not available. Although mice are too small to perform 

mechanical tests, our in vivo experimental model is useful for confirming the results of 

an in vitro culture system and may be a promising modality for the in vivo study of 

biomaterials. 

Lastly, from the point of animal welfare, this system may help reduce the number 

of animals needed for experimental work. Evaluating the same sample repeatedly would 

require fewer samples and cells, and hence fewer neonatal mice. Establishment of an 

osteoblastic cell line from this transgenic mouse could reduce the number of 

experimental animals needed for research even further. 
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In conclusion, we performed noninvasive serial observations of osteoblast 

proliferation, differentiation, and nodule formation on biomaterials. This system may be 

a promising method for screening and studying the bone-bonding ability of 

biomaterials. 
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Table1.  Numbers of nodules smaller than 10
3
 pixel 

  day4 day8 day12 day16 day20 day24 day28 

CpTi 0 0 1 7 23 49 72 

AhTi 0 0 5 37 43 54 75 
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Figure legends 

 

Fig. 1 Images of the materials.  

a. Photograph of CpTi and AhTi plates for in vitro cell culture.  

b. CpTi and AhTi wires for in vivo experiments.  

c. Scanning electron microscope (SEM) image of the surface of a CpTi plate.  

d. High-magnification image showing the smooth surface of a CpTi plate.  

e. SEM image of a CpTi wire.  

f. Low-magnification image of the surface of an AhTi plate is similar to that of a CpTi 

plate.  
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g. Submicron rough structures observed on an AhTi plate. 

h. SEM image of an AhTi wire. 

Fig. 2 Establishment of Col1a1(2.3 kb)–mRFP1 transgenic mice.  

a. The structure of the Col1a1–mRFP1 transgene is shown. The mRFP1 transgene is 

under the control of the 2.3-kb fragment of promoter of Col1a1.  

b. Genomic PCR analysis of the mRFP1 transgene.  

c. mRFP1 expression was observed in the limb skeleton of a 7-day-old transgenic 

mouse.  

d. High expression of mRFP1 was observed in a calvarium of a 7-day-old transgenic 

mouse.  

e. Confocal fluorescence images of a calvarium.  

f. Individual osteoblasts are visualized in a high-magnification image.  

g. Fluorescence images of an extracted femur of a 3-week-old mouse.  

h. Zoomed image of the white boxed area in the frozen section image shown in g.  

i. Macro- and frozen-section fluorescence images of a 10-month-old transgenic mouse.  

j. Microscopic image of cell culture on day 16.  

k. mRFP1 was observed in the dense cellular area.  
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l. Serial observations of cultured osteoblasts grown on a titanium plate. Development of 

nodules can be seen.  

Fig. 3 Time-lapse observations of the fluorescence of osteoblasts cultured on CpTi and 

AhTi plates and analysis of nodule formation.  

a. Serial low-magnification images of a CpTi plate and an AhTi plate obtained by 

confocal fluorescence microscopy. Scale bar, 500 µm.  

b. Changes in total fluorescent area on CpTi and AhTi plates. Images were obtained by 

time-lapse observations of the same sample (n = 3).  

c. Changes in nodule numbers counted in low-magnification images.  

d. Changes in average size of nodules. Data shown in b–d are mean ± SD. *; p < 0.05. 

e. Distribution of the size and number of nodules in an individual sample.  

Fig. 4 Evaluation of proliferation and differentiation of osteoblasts cultured on CpTi and 

AhTi plates using conventional methods.  

a. SEM images of osteoblasts cultured on a CpTi or AhTi plate on day 2. White 

arrowheads indicate the cell body.  

b. The results of XTT assay on culture days 2, 7, and 16 show greater proliferation of 

cells grown on AhTi plates compared with those grown on CpTi plates on day 2 (p < 

0.05).  
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c. Real-time RT-PCR analysis of Col1a1, Alp, and Ocn expression. Data are presented 

as mean ± SD (n = 4), * p < 0.05. Fold changes are adjusted relative to Gapdh 

expression. 

Fig. 5 In vivo evaluation of CpTi and AhTi wires. 

a. A sample wire was placed in the right femur of the mouse, the ends of the wire were  

bent, and the skin was sutured over them.  

b. X-ray image of an implanted wire.  

c. Fluorescent images of extracted wires were obtained 28 days after implantation. 

Zoomed images of white boxed areas of CpTi and AhTi plates are shown on the right 

of each image.  

d. Newly formed bone around the wires was detected as red spots and the areas were 

measured (n = 4). AhTi wires showed significantly larger fluorescent areas compared 

with CpTi wires (p < 0.05).  

e. Cross-sectional slices of CpTi and AhTi wires implanted for 28 days in mouse femurs. 

Zoomed images of yellow boxed areas are shown on the right. Bone tissue stained 

red with Van Gieson’s picrofuchsin is observed on the surface of the AhTi wire but 

not on the CpTi wire.  
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f. Affinity indexes of CpTi and AhTi wires (n = 4). The affinity index was significantly 

higher in the AhTi wires than in the CpTi wires (p < 0.05). Data are presented as mean ± 

SD (n = 4), *; p < 0.05. 
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