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Introduction 

Parkinson's disease (PD) is the most common neurodegenerative movement disorder that causes progressive 

motor symptoms mainly due to gradual loss of dopaminergic neurons in the substantia nigra pars compacta (de 

Lau et al., 2006). Treatments that provide neuroprotection and/or disease-modifying effects remain an unmet 

clinical need because currently available dopamine replacement therapies only partially improve the symptoms 

(Meisnner et al., 2011). 

Though PD is typically sporadic in origin, identification of genes responsible for familial PD have provided 

clues to understand the pathogenesis of the more common, sporadic form of PD (Moore et al., 2008). Parkin, 

PINK1 and DJ-1 are causative genes of autosomal recessive PD, in which clinical phenotype is often 

indistinguishable from early-onset idiopathic PD (Kitada et al., 1998; Valente et al., 2004; Bonifati et al., 2003). 

Identification of these genes have promoted generation of gene-modified models to investigate the 

pathomechanisms of the disease (Shulman et al., 2011).  

Recent studies have revealed that these genes share, at least in part, a common pathway in mitochondria quality 

control and protein quality control. Genetic studies using Parkin and PINK1 knockout Drosophila indicated that 

PINK1 acts upstream of Parkin (Clark et al., 2006; Park et al., 2006; Yang et al., 2006). Further studies elucidated 

that Parkin and PINK1 share a common mitochondrial quality control pathway conserved in mammalian cells 

(Narendra et al., 2011; Matsui, Gavinio and Asano et al., 2013). Meanwhile, it is still controversial whether DJ-1 

works in association with PINK1/Parkin pathway (Yang et al., 2006; Exner et al., 2007; Hao et al., 2010; Thomas 

et al., 2011). Although several previous studies suggested that Parkin and/or PINK1 interact with DJ-1 to promote 

protein degradation (Olzmann et al., 2007; Xiong et al., 2009), the precise genetic and functional relationships 

between these genes remain elusive. 

Genetic mammalian models of autosomal recessive PD, such as Parkin-, PINK1- and DJ-1-knockout mice, 

have failed to recapitulate the hallmark features of PD, especially the progressive loss of nigral dopaminergic 

neurons (Moore et al., 2008). Furthermore, aged triple knockout mice lacking Parkin, DJ-1, and PINK1 do not 

exhibit PD-related phenotypes (Kitada et al., 2009). These observations raise the possibility of functional 

redundancy among mice genes and suggest the limitation of gene-modified mice model to clarify the relationship 

among these genes (Shulman et al., 2011). A novel model using higher vertebrates would be helpful to further 

reveal their functional association. 

Here we established DJ-1 -/- DT40 cells and examined their phenotype to evaluate whether DT40 cells could 

be used as a relevant model of PD. DT40 is an avian leukosis virus-induced chicken B cell line with an 

exceptionally high ratio of targeted to random DNA integration of a transfected genomic DNA fragment to its 

homologous genomic locus (Buerstedde and Takeda., 1991). This feature enables efficient targeted gene 

disruption in vertebrate cells without generating a knockout animal model. We report that DJ-1 -/- DT40 cells 

recapitulate multiple phenotypes compatible to those of DJ-1 deficient mammalian cells and that mitochondrial 

membrane potential and morphology are available as a readout of phenotype analysis in DT40 cells. 
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Results 

Generation of DJ-1 -/- DT40 Cells － We disrupted two DJ-1 alleles by sequentially transfecting the two 

targeting constructs (Fig. 1A) carrying puromycin or histidinol resistance gene into DT40 cells (Iiizumi et al., 

2006, Kohzaki et al., 2010). Disruption of both alleles was confirmed by genomic Southern blotting (Fig. 1B). 

Absence of detectable mRNA or protein was confirmed by RT-PCR using primers designed to flank 

drug-resistance gene (Fig. 1C) and western blotting (Fig. 1D). In the following phenotype analyses, experiments 

were repeated independently three times using one representative DJ-1 -/- clone after having confirmed by a 

preliminary experiment that two or three different DJ-1 -/- clones exhibit the same phenotype. 

Increased vulnerability to oxidative stress in DJ-1 -/- DT40 cells － DJ-1 was originally identified as an 

oncogene and was found to be the causative gene of autosomal recessive Parkinson's disease, PARK7 (Nagakubo 

et al., 1997, Bonifati et al., 2003). Although DJ-1 has been suggested to have multiple possible functions, a 

consistent finding is that DJ-1 protects against oxidative stress in vitro and in vivo (Cookson, 2010). Therefore, we 

first investigated whether this was recapitulated in DT40 cells. We treated cells with H2O2 and determined 

intracellular accumulation of ROS by flow cytometric analysis with 

5-(and-6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA). DJ-1 -/- DT40 cells showed 

significantly increased accumulation of intracellular ROS compared to wild type cells (Fig. 2A). To examine 

vulnerability of DJ-1 -/- DT40 cells to oxidative stress, we analyzed H2O2-induced cell death by labeling the cells 

with Annexin-V and propidium iodide. At 24 hours after H2O2 treatment, we measured the ratio of viable cells, 

early-apoptotic cells, and late-apoptotic and necrotic cells by flow cytometric analysis. We found that the ratio of 

viable cells was significantly lower and that early-apoptotic and late-apoptotic and necrotic cells were 

significantly higher in DJ-1 -/- cells than in wild type cells (Fig. 2B, 2C). These results were compatible with the 

notion that DJ-1 has physiological antioxidant property in DT40 cells. 

Decreased mitochondrial membrane potential in DJ-1 -/- DT40 cells － Mitochondrial dysfunction has long 

been implicated in the etiopathogenesis of PD (Imai et al., 2011). Indeed, DJ-1-deficient mammalian cells show 

mitochondrial dysfunction (Krebiehl et al., 2010). To analyze whether loss of DJ-1 resulted in mitochondrial 

dysfunction in DT40 cells, we evaluated mitochondrial membrane potential (MMP) using the following two 

MMP-dependent dyes, MitoTracker Red CMXRos and tetramethylrhodamine ethyl ester (TMRE). The staining 

with the former reagent showed a decrease of MMP in DJ-1 -/- DT40cells, as indicated by lower levels of staining 

in the mutant cells compared to wild type DT40 cells (Fig. 3A). We confirmed this result by detecting the 

intensity of TMRE staining, a quantitative indicator of membrane potential, by flow cytometry. The MMP of DJ-1 

-/- DT40 cells was significantly decreased compared to wild type cells (Fig. 3B, 3C). To exclude the possibility 

that the decreased staining with these dyes was caused by a decrease in the number of mitochondria, we stained 

the cells with MitoTracker Green, which is a MMP-independent dye. The intensity of MitoTracker Green signals 

did not differ between wild type and DJ-1 -/- cells. This indicated that the reduced staining with MitoTracker Red 

CMXRos or TMRE was not due to decrease in the number of mitochondria in DJ-1 -/- cells (Fig. 3D). Overall, 
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these results suggested that loss of DJ-1 in DT40 cells resulted in decreased mitochondrial membrane potential. 

Fragmented mitochondria in DJ-1 -/- DT40 cells － Recent studies have consistently demonstrated that 

DJ-1-deficient mammalian cells exhibit mitochondrial fragmentation (Krebiehl et al., 2010;Irrcher et al., 2010). 

To confirm the reproducibility of this phenotype in DJ-1 -/- DT40 cells, we immunostained mitochondria with 

Tom20, a mitochondrial outer membrane specific protein, and imaged by laser confocal microscope (Fig. 4A). We 

determined the average size of mitochondria using Spot Detector software by analyzing the size of each spot 

surrounded by Tom20-positive signal and the number of the spots per cell. Remarkably, in DJ-1 -/- DT40 cells, 

the average size of these spots was significantly decreased (Fig. 4B) and the number of these spots per cell was 

significantly increased (Fig. 4C) compared to wild type DT40 cells.  

 

Discussion 

  In the present study, we generated DJ-1 deficient DT40 cells, which exhibited vulnerability to oxidative stress, 

mitochondrial dysfunction and mitochondrial fragmentation.  

  We utilized DT40, a lymphocyte cell line, as a novel PD cellular model. The rationale for our approach is that 

Parkin, PINK1 and DJ-1 are highly conserved across species and are expressed in lymphocytes. Moreover, 

analysis of lymphocytes would contribute to understanding the pathomechanism of PD. This is evidenced by 

subclinical PD-related phenotypes in lymphocytes or lymphoblasts of PD patients.  Mitochondrial dysfunction 

and increased oxidative stress were observed in lymphocytes of PD patients (Müftüoglu et al., 2004; Prigione et 

al., 2009). Lymphoblasts established from a PD patient with DJ-1 mutation exhibited abnormal mitochondrial 

fragmentation (Irrcher et al., 2010). These subclinical phenotypes are consistent with the phenotype of 

DJ-1-deficient DT40 cells. These lines of evidence support the recent concept of PD as a systemic disorder (Imai 

et al., 2011) and demonstratesthe validity of our approach. Although the effect of DJ-1 loss in DT40 cells on ROS 

accumulation and mitochondrial membrane potential were relatively small compared to previous studies, we 

speculate that this was because of the highly rapid turnover of DT40 cells. Furthermore, although the 

mitochondrial morphology is relatively fragmented in wild type DT40 cells compared to those typically observed 

in adherent culture cell lines, the difference in the quantitated Tom20-positive area indicated that loss of DJ-1 led 

to further mitochondrial fragmentation in DT40 cells.   

The advantage of this approach compared to the currently-available cellular models including induced 

pluripotent stem cells-derived lines from patients, mouse embryonic fibroblasts from knockout mice and RNAi 

approaches, are the efficacy and consistency in generating and analyzing the effect of multiple gene disruption. 

These advantages rely on the following multiple unique characteristics of this cell line. Firstly, DT40 cell line 

exhibits the extraordinary high ratio of targeted to random DNA integration (Buerstedde and Takeda, 1991). This 

ensures highly efficient multiple targeted gene disruption in a single cell using seven different selection markers, 

which can be recycled by the cre/loxP (Winding et al., 2001; Arakawa et al., 2001). Secondly, although RNAi 

technology has been widely used in mammalian cell lines for targeted knockdown, the residual mRNA is always 
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problematic for interpretation of the resulting phenotype (Neumann et al., 2010). Genetically engineered 

knockout of DT40 helps overcome this problem. The fact that wild type and gene-disrupted DT40 cells have 

completely identical genetic background also contributes to increase consistency in phenotype analysis. Moreover, 

DT40 cells have a short doubling time (~8h) and are genetically stable even after repeated passages compared to 

mammalian cells including mouse embryonic fibroblasts. These also help increase efficiency and consistency in 

phenotype analysis. 

All these features make DT40 cell line attractive for analyzing effects of gene disruption as well as functional 

relationships among multiple genes. These advantages of DT40 cell lines have been previously taken to analyze 

the functions of B cell antigen receptor signaling, histone gene function, RNA processing, DNA repair, cell cycle, 

calcium signaling and autophagy (Winding et al., 2001; Alers et al., 2011). As accumulating evidence suggests the 

primary role of mitochondrial dysfunction in the pathomechanism of PD (Schapira, 2012), it is crucial to evaluate 

mitochondria function in PD models. We showed that mitochondrial membrane potential and morphology are 

available as a readout of phenotypic analysis in DT40 cells.  

Generation and functional analyses of double- or triple- knockout DT40 cell model of Parkin, PINK1 and DJ-1 

will help further reveal the functional association among these genes in the maintenance of mitochondria as well 

as in the pathophysiology of PD. Furthermore, elucidating the pathomechanism of PD using DT40 lymphocyte 

line could lead to the development of novel tools to utilize patients’ lymphocytes as noninvasive diagnostic or 

therapeutic biomarkers. This approach also has a great potential for developing high-throughput assays for drug 

screening using patient-derived lymphocytes. 
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Figure legends 

FIGURE 1. Targeted disruption of DJ-1 in DT40 cells. A. Schematic representation of the chicken DJ-1 locus and 

the gene-targeting constructs. Black squares indicate exon 2-7. The restriction enzyme sites and the probe used for 

genomic Southern blot analysis are shown. B. Southern blot analysis of BglII-digested genomic DNA from wild 

type, DJ-1 +/-, and DJ-1 -/- DT40 cells. C. Representative RT-PCR analysis of wild type and DJ-1 -/- cells. The 

forward primer was designed in exon 3, and the reverse primer was designed in exon 7. The expected length of 

amplicon from wild-type DT40 cells is 460 bp. No band corresponding to DJ-1 was observed in DJ-1 knockout 

cells. D. Western blot analysis of whole cell lysate from wild type and DJ-1 -/- DT40 cells. Blots were probed 

with anti-DJ-1 polyclonal antibody and anti-GAPDH polyclonal antibody. No band corresponding to DJ-1 was 

observed. 

 

FIGURE 2. Increased vulnerability to oxidative stress in DJ-1 -/- DT40 cells. A. Flow cytometric analysis of 

intracellular ROS. Wild type or DJ-1 -/- DT40 cells were treated with 10uM H2O2 for 24 hours and stained with 

carboxy-H2DCFDA, a ROS indicator. The fluorescence intensity was measured by flow cytometry. The amount of 

intracellular ROS after H2O2 treatment was significantly greater in DJ-1 -/- cells. Error bars indicate mean ± SEM 

values from three independent experiments. *P<0.05, N.S.; not significant by Bonferroni multiple comparison test. 

B. Representative flow cytometric analysis of cell viability after H2O2 treatment. Wild type or DJ-1 -/- DT40 cells 

were treated with 10 µM H2O2 for 24 hours and stained with Annexin-V (AV) and propium iodide (PI). Lower 

right quadrant (AV positive and PI negative) corresponds to early-apoptotic cells, and upper right quadrant (AV 

and PI doublepositive) corresponds to late-apoptotic and necrotic cells. Cells not stained with AV and PI (lower 

left quadrant) are viable cells. C. Quantification of viable, early-apoptotic, and late-apoptotic and necrotic cells 

after treatment with 10 µM H2O2 for 24 hours. The percentage of the cells in lower left (LL), lower right (LR) or 

upper right (UR) quadrant shown in figure 2B were quantified and were analyzed by Bonferroni multiple 

comparison test. Error bars indicate mean ± SEM values from three independent experiments. *P<0.05, N.S.; not 

significant. 
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FIGURE 3. Decreased mitochondrial membrane potential in DJ-1 -/- DT40 cells. A. Representative imaging of 

wild type and DJ-1 -/- DT40 cells stained with MitoTracker Red CMXRos. DJ-1 -/- cells had lower staining 

intensity of mitochondria than wild-type cells. CCCP treatment was performed as a positive control. B. 

Representative flow cytometric analysis of TMRE staining intensity. C. Quantification of TMRE staining. DJ-1 -/- 

cells had significantly lower TMRE staining. Three independent experiments were performed and analyzed by 

unpaired t-test. Error bars indicate mean ± SEM values. *P<0.01. D. Quantification of MitoTracker GreenFM 

staining from flow cytometric analysis. Three independent experiments were performed and analyzed by unpaired 

t-test. Error bars indicate mean ± SEM values. N.S.; not significant. 

 

FIGURE 4. Fragmented mitochondria in DJ-1 -/- DT40 cells. A. Representative imaging of wild type and DJ-1 -/- 

DT40 cells immunostained with anti-Tom20 antibody. Mitochondria were fragmented in DJ-1 -/- cells. B. 

Quantification of mitochondrial size. Randomly obtained images from anti-Tom20-stained DT40 cells were 

analyzed by Spot Detector Version 3.0 BioApplication. The average size of Tom20-positive spots was 

significantly smaller in DJ-1 -/- cells. Error bars indicate mean ± SEM values. *P<0.05 by unpaired t-test. C. 

Quantification of mitochondrial number. The number of Tom20-positive spots per cell was significantly larger in 

DJ-1 -/- cells. Error bars indicate mean ± SEM values. *P<0.05 by unpaired t-test. 
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