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Chapter 1

Introduction

Since around the industrial revolution in the end of 18th century, the world population has
been increasing explosively and reached about 7 billion in the middle of 2013 and United
Nations prospects that the world population will increase up to about 10 billion in 2050 [1].
The global energy demand has been also increasing along with the world population growth
and has been supplied mainly by the fossil energy and the fission energy until the present
day. However it is necessary to suppress the use of the fossil energy and the fission energy as
much as possible for the sustainable development since the they are unrenewable resources.

From the aspect of the environment conservation, the use of them should be also sup-
pressed. For the fossil energy, the fuel waste have caused the critical environment issues
all over the world, for example, the extreme climate and the global warming by the green-
house effect gas (GHG), the acid rain by the SOx and the NOx, and the air pollution by the
particulate matter (PM). For the fission energy, although the GHG is not directly emitted
during generating electricity, the disposal method of the high-level waste (HLW) has not
been established yet. Moreover, if the severe disaster occurs in the nuclear power plant like
Chernobyl disaster and Fukushima Daiichi nuclear disaster, the vast area is contaminated
by the high-level radioactive matter and its decontamination requires immeasurable cost
and time.

Therefore the development of the alternative energy sources is one of the most important
issues for the sustainable development of the human race and the fusion energy is the one
of promising candidates for its preferable features;

• Inexhaustible fuel resource: Fuels of the nuclear fusion reactor are deuterium (D)
and tritium (T). Deuterium is contained in large amounts in the water and tritium is
mainly produced by the neutron activation of lithium (1.1)-(1.2) and lithium is also
contained in large amounts in the ground and the sea,

6Li + n → 4He + T + 4.8MeV, (1.1)
7Li + n → 4He + T + n − 2.5MeV, (1.2)

where n is the neutron.

• High-level long-lived waste free: Although the structural material turns into the
short-lived low-level waste by the neutron exposure, there is no high-level long-lived
waste unlike the fission reactor, since the nuclear fusion reactor uses fusion reactions
among light nuclei.

1



Name Reaction Ratio Energy
D-D (a) D + D → T(1.01MeV) + p(3.02MeV) 50 % 4.03 MeV
D-D (b) D + D → He3(0.82MeV) + n(2.45MeV) 50 % 3.27 MeV

D-T D + T → He4(3.5MeV) + n(14.1MeV) 100 % 17.6 MeV
D-He3 D + He3 → He4(3.6MeV) + p(14.7MeV) 100 % 18.3 MeV

Table 1.1: Promising fusion reactions for fusion reactor [2], p is proton and ratios are
correct for energies near the cross section peaks

• Critical excursion free: Although the core of the nuclear reactor reaches the very
high temperature, its stored energy is very low due to its very low energy density.
Moreover the fusion reaction stops when the fusion reactor is not under the controlled
condition since the condition for maintaining the fusion reaction is very severe.

• Low environment load: The fusion energy does not emit the GHG, SOx, NOx
and PM unlike the thermal energy and also does not emit the HLW unlike the fission
energy.

1.1 Nuclear fusion reaction

The nuclear fusion reaction is a nuclear reaction in which two light atomic nuclei accelerated
enough to overcome the coulomb barrier collide and fuse together to produce a heavy
nucleus. The mass difference between two incident nuclei and fusion products ∆m is
converted into the kinetic energy E according to Einstein’s mass-energy equivalence formula

E = ∆mc2, (1.3)

where c is the speed of light in vacuum.
Some of promising fusion reactions for the fusion reactor and their reaction rates are

listed in Table 1.1 and Figure 1.1, respectively. Since Figure 1.1 shows that the cross section
of D-T reaction is much larger than those of the other fusion reactions at a relatively low
temperature (∼ 10 keV), D-T reaction is expected for a top candidate and will be employed
in the ITER project.

1.2 Tokamak

The thermonuclear reaction requires to keep the hydrogen atoms in the high energy state
(10 keV or higher) and hydrogen atoms ionize and form a hot plasma in such a high energy
state. Therefore achieving the thermonuclear reactor requires a system to keep the plasma
away from the first wall. There are two main types of the plasma confinement system.

The former is the inertial confinement fusion (ICF) which creates an extremely dense
plasma by laser implosion. In ICF, the plasma density reaches extremely high so that the
fusion reaction accomplishes instantaneously before the plasma meets the first wall. The
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Figure 1.1: Cross sections of fusion reactions in m3/s [3], where eV is the unit for temper-
ature and is converted into K and J by 1eV = 11604K = 1.602 × 10−19J.

latter is the magnetic confinement fusion (MCF) which employs the property of the charged
particles moving along the magnetic field line due to the cyclotron motion. Although there
are many types of magnetic confinement systems, we focus on the tokamak type magnetic
confinement system which is employed in the ITER project.

Tokamak is a magnetic confinement system with axisymmetric torus geometry shown in
Figure 1.2. In torus devices sustaining the plasma equilibrium requires the helical magnetic
field structure. The principle magnetic field of a torus device is the toroidal magnetic
field induced by external toroidal coils and the intensity of the magnetic field is inversely
proportional to the distance R from the toroidal axis. This inhomogeneous magnetic field
drives the drift motion of the charged particles called the ∇B drift and the curvature drift.
Unfortunately the direction of these drift motions is the opposite direction for the positive
and negative charged particles and then the charge separation occurs. Unless the poloidal
magnetic field exist, the electric field arises in the vertical direction and this electric field
drives the outward-directed drift called as E × B drift and the plasma equilibrium can
no longer exist. If the poloidal magnetic field exist and the magnetic field has the helical
structure, the charge separation can be short-circuited since the charged particle can move
freely along the field line. In the tokamak device, the poloidal magnetic field is induced by
the toroidal current. The helicity of magnetic field is defined by the dimensionless quantity
called the safety factor defined by

q =
∆φ

2π
, (1.4)

where ∆φ is the deviation angle of the magnetic field in the toroidal direction during the
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Figure 1.2: The geometry of torus fusion device, (R,Z, φ) and (r, θ, φ) are the cylindrical
coordinate and the toroidal coordinate respectively

magnetic field line going around the torus in the poloidal direction. In the large aspect
ratio limit ε = r/R → 0, the safety factor can be approximated as

q =
rBφ

R0Bθ

, (1.5)

where ε = r/R is the inverse aspect ratio.

1.3 Transport in tokamak plasma

Understanding of transport phenomena of plasmas is important to achieve a high temper-
ature and high density enough required for the fusion reaction. There are three type of
transport mechanisms in torus fusion devices; classical transport, neoclassical transport
and turbulent transport. In this section we will explain them briefly.

1.3.1 Classical transport theory

The classical transport theory is based on the Coulomb collision in a homogeneous magnetic
field. Since a charged particle moves along the magnetic field line due to the cyclotron
motion, the transport in the radial direction is driven by the Coulomb collision with another
particle. The classical transport can be estimated by the random work diffusion whose step
size is the Larmor radius % as

Dcl = ν%2, (1.6)
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where ν is the collision frequency.

1.3.2 Neoclassical transport theory

The neoclassical transport theory is based on the Coulomb collision in the inhomogeneous
magnetic field and its property is classified into three regimes which are the Pfirsh-Schlüter
regime, the banana regime and the plateau regime respectively.

The Pfirsh-Schlüter regime corresponds to the strongly collisional case described by

ν � vT

qR
, (1.7)

where vT is the thermal velocity of the particle. Since the magnetic field line in tokamak
a device has a helical structure, the drift surface is away from the magnetic surface by

δ ∼ ±%q. (1.8)

If the plasma is strongly collisional, the neoclassical transport can be therefore estimated
by the random work diffusion whose step size is the Larmor radius δ as

DP.S. = ν%2q2, (1.9)

which is larger than that of the classical diffusion (1.6) by the factor q2.
The banana regime correspond to the weakly collisional case described by

ν � ε3/2 vT

qR
. (1.10)

In the tokamak configuration, the magnetic field intensity B is inversely proportional to
the major radius R. This inhomogeneous magnetic field results in the two kind of particles.
One is the trapped particle which reflects at the points where its parallel velocity becomes 0
and whose guiding center describes the banana orbit due to the magnetic mirror effect. The
other is the passing particle which completes its circular orbit. If the plasma is collisionless
so that charged particles complete these orbits, the neoclassical transport is driven by the
Coulomb collision between the trapped particle and the passing particle. Since the ratio of
the trapped particle can be estimated by ε1/2, the neoclassical transport can be estimated
by the random work diffusion whose step size by the banana width ∆b ∼ q%/

√
ε and the

effective collision frequency by νeff ∼ ν/ε,

Db ∼ ε1/2∆2
bνeff ∼ ε−3/2q2%2ν (1.11)

Since ε � 1 in the ordinary tokamak, the neoclassical transport is much larger than the
classical transport in the weakly collisional regime.

The plateau regime correspond to the intermediate regime between the Pfirsh-Schlüter
regime and the banana regime described by

ε3/2 vT

qR
� ν � vT

qR
, (1.12)
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Figure 1.3: Diagram of the collisional transport in tokamak configuration. (a) is the
diagram of the diffusive transport in the case of high collisionality and (b) the diagram of
the diffusive transport in the case of low collisionality

and the estimation of the transport in the plateau regime is more complicated than the
other regimes. From the kinetic theory however the transport in the plateau regime can
be roughly estimated by

Dp ∼ q2%2 vT

qR
(1.13)

D
p

D
b

D
P.S.

D
cl

νε−3/2v
T
/qR v

T
/qR

D

Figure 1.4: Dependent of classical and neoclassical diffusion coefficient on collisionality at
large aspect ratio

1.3.3 Turbulent transport theory

The turbulent transport theory is based on the turbulence driven by micro-instabilities
whose wavelength is comparable to the Larmor radii of ion or electron. Since the radial
transport driven by turbulence is much larger than the other transport mechanism, the
suppression of the turbulent transport is an important issue for good plasma confinement.
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1.4 H-mode plasma

The performance of the plasma confinement is evaluated by the energy confinement time
τE defined by

τE = W/P, (1.14)

where W is the total stored energy of the plasma and P is the total power input. The
experimental energy confinement time is much shorter than that of the neoclassical predic-
tion due to the turbulent transport and it has an undesirable dependence on the heating
power. If the higher heating power is applied, the plasma pressure becomes higher and the
turbulent transport is also enhanced; as a result, the confinement performance becomes
worse.

It was discovered, however, that under certain operation conditions there is a discon-
tinuous improvement in confinement when the heating power is increased. This improved
confinement mode is called the H-mode, on the other hand the previous low confinement
mode is called the L-mode and this discontinuous improvement in confinement is called as
the L-H transition.

The H-mode was discovered in ASDEX tokamak [4] for the first time and was confirmed
in various tokamak devices. It has been found that in the L-H transition, the turbulent
transport is suppressed to the neoclassical level and the pedestal density and temperature
profiles with steep gradient are formed in the edge region, which is called the edge transport
barrier (ETB). Although the physics of ETB formation has not been well understood, some
experimental studies indicated that a strongly sheared radial electric field and plasma
rotation contribute to the ETB formation.

The steep gradient of density and temperature profiles in the ETB may induce plasma
instabilities called the edge localized mode (ELM). The ELM triggers an emission of the
energy stored in the edge region and an extraordinary heat load on the divertor plate which
may cause the critical erosion of divertor plates. From the aspect of the divertor designing,
a singular large ELM has to be avoided. Therefore the understanding of the H-mode physics
is indispensable for not only the achievement of high confinement performance but also the
divertor design.

1.5 Transport modeling in tokamak plasma

The concept of the single-null divertor tokamak configuration is shown in Figure 1.5, where
“single-null” indicates that there is one point where the poloidal magnetic field vanishes
in the poloidal cross section. In the single-null divertor configuration, the magnetic field
structure is quite different inside and outside of the separatrix and therefore the key physics
of transport is also different inside and outside of the separatrix.

The transport in the core and the peripheral regions have been therefore analyzed
separately until recently owing to the difference in modeling configurations in spite of the
fact that the core and peripheral plasmas are strongly coupled with each other.

7



Core region

Separatrix

First wall 

SOL region

Divertor region

Outer divertor plate

Inner divertor plate

X-point

Private region

R

Z

φ

}Peripheral region

Edge region

Figure 1.5: Concept of single-null divertor configuration of tokamak plasmas

1.5.1 Transport modeling in the core region

In the core region, the field lines are closed and their puncture plot on the poloidal cross
section is nested surface structure called as the flux surface. Since the transport along
the field lines is much faster than that in the radial direction, the poloidal and toroidal
dependences of the plasma quantities such as the particle density and the temperature are
negligibly small. The transport in the core region is therefore treated as one-dimensional
problem in the radial direction by the use of the magnetic flux surface average for the quan-
tities which have poloidal asymmetry. The core transport is explained by the neoclassical
transport theory and turbulent transport theory.

A standard core transport modeling consists of diffusion equations for particle, toroidal
momentum and energy transport as well as poloidal magnetic field [5, 6]. The force and
the energy-weighted force balances in the parallel direction are employed to determine the
poloidal particle and heat fluxes in the neoclassical theory [7, 8] and the charge neutrality
is assumed. A new core transport modeling [9, 10] has been introduced for the analysis of
plasma rotation. It includes the equation of motion and the radial electric field in addition
to those mentioned above and the charge neutrality is not assumed, since the rotation and
the radial electric field are strongly coupled.

One-dimensional (1D) core transport codes or 1.5D core transport codes composed of an
one-dimensional core transport module and a two-dimensional MHD equilibrium module
have been used for analyzing various transport issues [9–16], comparison of turbulent trans-
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port models [15], analysis of edge transport mechanism [16], analysis of plasma rotation [10]
and so on.

1.5.2 Transport modeling in the peripheral region

In the peripheral region, the field line does not close and strikes at divertor plate so that
the variation of quantities along field line is relatively large and important to understand
the transport mechanism in the peripheral region. The peripheral transport therefore
is usually described as an one dimensional problem in the parallel direction or a two-
dimensional problem on the poloidal cross-section. The peripheral transport is explained
by the classical transport theory and turbulent transport theory.

A standard peripheral transport modeling consists of advection-diffusion equations for
particle, parallel momentum and energy transport [5]. These are based on the Braginskii’s
equations [17] extended to multi-species plasma [18, 19]. A new modeling [20] has been
introduced for smooth extension to the weakly collision regime. It includes the contribution
of the heat flux to the parallel viscosity term, since the contribution of the heat flux is
comparable to that of the particle flux and important in the weakly collisional regime.

1D peripheral transport codes or 2D peripheral transport codes are used for various
peripheral transport issues, impurity transport analysis [21], divertor designing [22], and
so on.

1.5.3 Transport modeling in the edge region

Since the understanding of the edge transport physics is one of the critical issues as we
have mentioned before, integrated core-edge-peripheral transport simulations on the whole
tokamak plasma have been done by coupling a 1.5D core transport code with a 2D periph-
eral transport code. The simulation with TOPICS-IB [16] and SONIC [21] analyzed a L-H
transition in JT-60SA [23] and that with a integrated suite JINTRAC [24] also analyzed a
consecutive ELM-crash in JET [25]. There is an ambiguity, however, in the connection at a
computational boundary which is an appropriately chosen flux surface inside and near the
last closed flux surface (LCFS). In order to resolve this issue, the overlap computational
domain in the edge region has been proposed [23]. However there are three problems in
the conventional transport analysis for the edge transport.

The first issue is the applicability of the core transport modeling. Although the core
transport modeling is developed on the assumption that the poloidal symmetry of some
physical quantities, this assumption is violated in the edge region lying in the vicinity of
the separatrix and interacting strongly with the peripheral plasma.

The second issue is the applicability of the peripheral transport modeling. In the H-
mode discharge, the temperature reaches a few keV in the edge region and the edge plasma
becomes weakly collisional. Since the peripheral transport modeling is developed on the
assumption that the temperature is so low that the plasma is collisional.

The third issue is that the computational boundary in or near the edge region. Since
simulation results may depend on the choice of the location of the boundary and the
connection rule, it is desirable to remove computational boundaries near and in the edge
region.

9



In order to resolve these three issues, it requires a two-dimensional transport modeling
based on the neoclassical transport theory and the turbulent transport theory.
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1.6 Contents of this thesis

The objective of this thesis is to develop a new two-dimensional transport modeling and a
two-dimensional transport code applicable to the core, edge and peripheral regions of toka-
maks to study the transport in the edge region and whole reactor plasmas self-consistently.
The final goal of this study is to understand the ETB formation mechanism, since the
understanding of the ETB formation mechanism is indispensable for improving the con-
finement performance and evaluating the heat load due to the ELM burst as we mentioned
before.

In chapter 2, a set of equations describing the two-dimensional transport in a whole
tokamak plasma is derived from the multi-fluid equations and Maxwell’s equations. We
show that our transport modeling is consistent with the neoclassical transport theory in
the core region and with the classical transport theory in the strongly collisional limit.

Description of a new fluid-type two-dimensional transport code TASK/T2 is given in
chapter 3. In TASK/T2, transport equations obtained in chapter 2 are implemented as a
simultaneous advection-diffusion equations by the use of the finite element method. We
discuss the numerical schemes of TASK/T2; a spatial discretization scheme, a time ad-
vancing scheme, and a computational grid, boundary conditions and initial conditions for
a limiter configuration and the concept of a computational grid for a single null divertor
configuration.

Finally the summary of this thesis and the future perspective are given in chapter 4.
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Chapter 2

Formulation of two-dimensional
multi-fluid transport

The core and peripheral plasmas are strongly coupled with each other in tokamaks. The
particle and heat fluxes from the core determine the behavior of the peripheral plasma, while
the peripheral plasma determines the edge density and temperature, boundary conditions
of the core plasma. The transport in the core and the peripheral regions, however, have
been analyzed separately until recently owing to the difference in modeling configurations.

In most conventional transport analyses in the core region, transport is usually de-
scribed as one-dimensional problem in the radial direction based on the magnetic flux
surface average, since the transport along the field lines is so fast that the poloidal and
toroidal dependences of the plasma quantities such as the particle density and the temper-
ature are small. One-dimensional (1D) core transport codes or 1.5D core transport codes
composed of an one-dimensional core transport module and a two-dimensional MHD equi-
librium module have been used for analyzing various transport issues [9–16], comparison
of turbulent transport models [15], analysis of edge transport mechanism [16], analysis of
plasma rotation [10] and so on.

A standard core transport modeling consists of diffusion equations for particle, toroidal
momentum and energy transport as well as poloidal magnetic field [5, 6]. The force and
the energy-weighted force balances in the parallel direction are employed to determine the
poloidal particle and heat fluxes in the neoclassical theory [7, 8] and the charge neutrality
is assumed. A new core transport modeling [9, 10] has been introduced for the analysis of
plasma rotation. It includes the equation of motion and the radial electric field in addition
to those mentioned above and the charge neutrality is not assumed, since the rotation and
the radial electric field are strongly coupled.

On the other hand, in the peripheral region, the transport is usually described as a two-
dimensional problem on the poloidal cross-section, since variation of physical quantities
along a field line is relatively large and important to understand the transport mechanism
in the peripheral region. Two-dimensional (2D) peripheral transport codes, for example
B2 [18], B2.5 [19], EDGE2D [26], UEDGE [27] and SONIC [21, 22] have been developed
and integrated with the neutral particle transport code and atomic process data. They
are used for various peripheral transport issues, impurity transport analysis [21], divertor
designing [22], and so on. Since these analyses are mainly based on the collisional transport
model, they are not directly applicable to the weakly collisional core plasmas.
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A standard peripheral transport modeling consists of advection-diffusion equations for
particle, parallel momentum and energy transport [5]. These are based on the Braginskii’s
equations [17] extended to multi-species plasma [18]. A new modeling [20] has been in-
troduced for smooth extension to the weakly collision regime. It includes the contribution
of the heat flux to the parallel viscosity term, since the contribution of the heat flux is
comparable to that of the particle flux and important in the weakly collisional regime.

Recently, integrated core-peripheral transport simulations on the whole tokamak plasma
have been done by coupling a 1.5D core transport code with a 2D peripheral transport code.
The simulation with TOPICS-IB [16] and SONIC [21] analyzed a L-H transition in JT-
60SA [23] and that with a integrated suite JINTRAC [24] also analyzed a consecutive ELM-
crash in JET [25]. There is an ambiguity, however, in the connection at the computational
boundary which is an appropriately chosen flux surface inside and near the last closed flux
surface (LCFS).

In order to resolve this issue, the overlap computational domain in the edge region has
been proposed [23]. Since simulation results may depend on the choice of the location
of the boundary and the connection rule, a transport code applicable to a whole plasma
is desired for consistent transport simulation in both core and peripheral plasmas. Some
efforts have been devoted to two-dimensional transport modeling, though they have not
been published yet.

In this paper, we formulate two-dimensional fluid transport equations including the neo-
classical transport [7] in the magnetic surface coordinate system. Our model is applicable
to both core and peripheral plasmas in the axisymmetric tokamak configuration.

This paper is organized as follows. In section 2, the property and advantage of the
magnetic surface coordinate system are described. The orderings used in this paper is
discussed in section 3. The set of the multi-fluid equations and its closure are discussed in
section 4. The set of two-dimensional transport equations is derived and it is confirmed that
our two-dimensional transport model is consistent with the conventional one-dimensional
neoclassical transport model in section 5. In section 6, the set of the electromagnetic
equations is derived from Maxwell’s equations. In section 7, the procedure for coupling a
2D transport solver with a 2D equilibrium solver is discussed. Summary and discussion
are given in section 8.

2.1 Assumptions and coordinate system

In this paper, we assume axisymmetry of the system and the existence of flux surfaces with
two-dimensional equilibrium magnetic field. Based on these assumptions, we employ a
magnetic surface coordinate system (MSCS) (ρ, χ, ζ) in order to develop a two-dimensional
transport model applicable to both the core and the peripheral regions. Here ρ is the
radial coordinate label, χ is the poloidal angle, and ζ is the toroidal angle. In our MSCS,
ρ is defined as the direction perpendicular to the magnetic field B and constructed by the
toroidal flux function φ,

φ ≡
∫ ρ

0

dρ′
∫
dχ

√
gBζ/

∫
dχ, (2.1)
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χ is defined by the normalized length of the field line projected on a constant-ζ surface and
ζ is defined by the geometrical toroidal angle.

Since the poloidal and toroidal angles are defined independently of the magnetic flux
functions, MSCS is a kind of the non-flux coordinate system and is applicable even outside
the separatrix on which the safety factor q ≡ dφ/dψ diverges to infinity, where ψ is the
poloidal flux function

ψ ≡
∫ ρ

0

dρ′
√
gBχ. (2.2)

The axisymmetric magnetic field B can be written by the use of the two flux functions ψ
and I = Bζ [28],

B = ∇ζ ×∇ψ + I∇ζ. (2.3)

The contravariant basis vectors (eξi ≡ ∇ξi) for the MSCS (ξi = ρ, χ, ζ) are eρ ≡ ∇ρ,
eχ ≡ ∇χ, eζ ≡ ∇ζ. The covariant basis vectors ( eξi

≡ ∂x/∂ξi) are eρ ≡ √
g∇χ × ∇ζ,

eχ ≡ √
g∇ζ ×∇ρ, eζ ≡ √

g∇ρ ×∇χ. The Jacobian is
√
g−1 ≡ ∇ρ · ∇χ ×∇ζ. Since the

geometrical toroidal angle is employed, the constant-ζ surface is orthogonal to both the
constant-ρ and -χ surfaces so that eζ and eζ are parallel to one another,

eζ = R2∇ζ = R2eζ , Bζ = BζR2, (2.4)

where R is the major radius.
In this paper, the time evolution of the direction of the magnetic field and that of the

metric tensor are neglected by assuming the slow change of magnetic flux surface. This
assumption will be satisfied in most of phenomena with transport time scale, while it is
not satisfied in rapid phenomena with Alfvén time scale.

The relation between the time derivatives in a fixed laboratory frame and in a moving
magnetic surface frame can be expressed with a drift velocity of the flux surface ug as

∂

∂t

∣∣∣∣
x

=
∂

∂t

∣∣∣∣
ρ,χ,ζ

− ug · ∇, (2.5)

where the subscript x indicates the time derivative in the laboratory frame and the sub-
script ρ, χ, ζ in the magnetic surface frame. In the following discussion, the latter subscript
is dropped for simplicity. The drift velocity of the magnetic surface is defined by

ug ≡− ∂ρ

∂t

∣∣∣∣
x

eρ −
∂χ

∂t

∣∣∣∣
x

eχ = uρ
geρ + uχ

g eχ (2.6)

and its actual expression depends on the definitions of ρ and χ. From the conservation of
volume, Eq.(2.5) can be transformed as

∂f

∂t

∣∣∣∣
x

=
1
√
g

∂

∂t
(
√
gf) −∇ · (ugf) . (2.7)
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2.2 Multi-fluid equations

We consider the multi-fluid equations which describe the time evolution of macroscopic
quantities, such as the particle density na, the momentum manaua, the pressure pa and
the total heat flux Qa, derived from the kinetic equation for each plasma species,

∂fa

∂t

∣∣∣∣
x

+ va · ∇fa +
ea

ma

(E + va × B) · ∂fa

∂v
= C(fa) +DQL(fa) + S(fa). (2.8)

where fa is the distribution function in six-dimensional phase space, va is the particle
velocity, C is the collision operator, DQL represents the quasi-linear interaction with waves,
and S is the kinetic source. The multi-fluid equations are obtained by taking velocity
moments (1,mv,mv2/2,mv2v/2) of the kinetic equation.

Define the velocity moment of the distribution function with respect to ga(r,va, t) by

〈ga〉f ≡ 1

na

∫
gafadv, (2.9)

na ≡
∫
fadv. (2.10)

By the use of Eq.(2.9), the velocity moment of the kinetic equation (2.8) can be written as

∂

∂t

(
na 〈ga〉f

)∣∣∣∣
x

+ ∇ ·
(
na 〈vaga〉f

)
− ea

ma

na

〈
(E + va × B) · ∂ga

∂va

〉
f

− na

[〈
∂ga

∂t

〉
f

∣∣∣∣∣
x

+ 〈∇ · (naga)〉f

]
=

∫
gaC(fa)dv +

∫
gaDQL(fa)dv +

∫
gaS(fa)dv,

(2.11)

where the following three relations has been used in the calculation of Eq.(2.11),∫
ga
∂fa

∂t

∣∣∣∣
x
dv =

∂

∂t

(
na 〈ga〉f

)∣∣∣∣
x
− n

∂

∂t

(
〈ga〉f

)∣∣∣∣
x
, (2.12)∫

gav · ∇fadv = ∇ ·
(
na 〈gava〉f

)
− na 〈∇ · (gava)〉f , (2.13)∫

ga
ea

ma

(E + va × B) · ∂fa

∂va

dv = − ea

ma

na

〈
(E + va × B) · ∂ga

∂va

〉
f

. (2.14)

The fourth term in the LHS of Eq.(2.11) vanishes if ga is independent of the time and the
position.

2.2.1 Equation of continuity

In the case of ga = 1, Eq.(2.11) corresponds to the equation of continuity

∂na

∂t

∣∣∣∣
x

+ ∇ · (naua) = Sna, (2.15)
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where ua ≡ 〈va〉f is the flow velocity and Sna is the particle source

Sna =

∫
S(fa)dv. (2.16)

Note that the collision term and the quasi-linear wave interaction term vanish in the case
of g = 1, if the effect of the atomic process, e.g. the ionization and the recombination, are
regarded as the particle source.

2.2.2 Equation of motion

In the case of ga = mava, Eq.(2.11) corresponds to the equation of motion

∂

∂t

(
na 〈mva〉f

)∣∣∣∣
x

+ ∇ ·
(
na 〈mavava〉f

)
− eana

〈
(E + va × B) ·

↔
I
〉

f

=

∫
mavaC(fa)dv +

∫
mavaD

QL(fa)dv +

∫
mavaS(fa)dv, (2.17)

where na 〈mva〉f is the momentum manaua and the total stress tensor
↔
P a, the Lorentz

force F Lor
a , the friction force F fri

a , the force driven by the interaction with waves F QL
a and

the momentum source Sma are introduced respectively by

↔
P a ≡ na 〈mavava〉f , (2.18)

F Lor
a ≡ eana

〈
(E + va × B) ·

↔
I
〉

f
= eana (E + ua × B) (2.19)

F fri
a ≡

∫
mavaC(fa)dv, (2.20)

F QL
a ≡

∫
mavaDQL(fa)dv, (2.21)

Sma ≡
∫
mavaS(fa)dv. (2.22)

In order to evaluate the total stress tensor
↔
P a with the macroscopic quantities, the

particle velocity va is decomposed into the macroscopic velocity ua and the random velocity
wa,

va = ua + wa, (2.23)

where 〈wa〉f = 0 from the definition of ua. Substituting Eq.(2.27) into Eq.(2.18), the total
stress tensor can be decomposed into the inertial stress tensor manauaua and the pressure
tensor mana 〈wawa〉f ,

↔
P a = na 〈mavava〉f = na 〈ma (ua + wa) (ua + wa)〉f

= manauaua +mana 〈wa〉f ua +manaua 〈wa〉f +mana 〈wawa〉f
= manauaua +mana 〈wawa〉f . (2.24)
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Furthermore, the pressure tensor can be decomposed as

mana 〈wawa〉f ≡ pa

↔
I +

↔
πa, (2.25)

where pa is the isotropic pressure and
↔
πa is the viscous stress tensor,

pa ≡ 1

3
nama

〈
w2

a

〉
f
, (2.26)

↔
πa ≡ na

〈
ma

(
wawa −

1

3
w2

a

↔
I

)〉
f

. (2.27)

The expression of
↔
πa in the strongly magnetized toroidal plasma is discussed as well as that

of the friction force F fri
a in section 2.4.1. Therefore the total stress tensor can be written

as
↔
P a ≡ pa

↔
I +

↔
πa +manauaua. (2.28)

The turbulent transport is induced by the interaction with low-frequency fluctuations.
In the present framework, the quasi-linear term in the kinetic equation generates the force
FQL

a and this force induces particle and heat flux in the perpendicular direction. In the
case of the electrostatic fluctuation, the poloidal force acting on electrons can be expresses
in the toroidal coordinate (r, θ, φ) as [30,31]

FQL
eθ =eBφneDe

[
− 1

ne

∂ne

∂r
+

e

Te

Er −
〈 ω
m

〉
e
r
eBφ

Te

−
(
µe

De

− 1

2

)
1

Te

∂Te

∂r

]
(2.29)

where ω and m are the mode frequency and poloidal mode number respectively, and 〈ω/m〉
denotes the spectrum average of the phase velocity in the poloidal direction. In the above
expression, we have assumed a symmetric wave spectrum with respect to k‖ and weak
velocity shear. The factor De is proportional to the square of the wave amplitude and
corresponds to the ordinary diffusion coefficient. If the momentum is conserved between
charged particles, the particle flux is intrinsically ambipolar. This particle transport model
has been successfully implemented in the TASK/TX code [9]. The momentum and heat
flux can be similarly implemented. The parallel component of the turbulence-induced force
is neglected for simplicity, since the neoclassical term is considered to be dominant in the
parallel direction.

Therefore the equation for motion becomes

∂

∂t
(manaua)

∣∣∣∣
x

+ ∇ ·
↔
P a = F Lor

a + F fri
a + F QL

a + Sma, (2.30)

2.2.3 Equation for energy transport

In the case of g = mav
2
a/2, Eq.(2.11) corresponds to the equation for energy transport

∂

∂t

(
na

〈
1

2
mav

2
a

〉
f

)∣∣∣∣∣
x

+ ∇ ·

(
na

〈
1

2
mav

2
ava

〉
f

)
− eana 〈(E · va × B) · va〉f

=

∫
1

2
mv2

aC(fa)dv +

∫
1

2
mv2

aDQL(fa)dv +

∫
1

2
mv2

aS(fa)dv, (2.31)
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where na

〈
1
2
mav

2
a

〉
f

is the total kinetic energy,

na

〈
1

2
mav

2
a

〉
f

= na

〈
1

2
ma (ua + wa) · (ua + wa)

〉
f

=
1

2
manau

2
a +

1

2
manaua · 〈wa〉f +

1

2
mana 〈wa〉f · ua +

1

2
mana

〈
w2

a

〉
f

=
1

2
manau

2
a +

3

2
pa, (2.32)

and the total heat flux Qa, the work by Lorentz force W Lor
a , the energy exchange by the

collision W col
a , the work by the interaction with waves WQL

a , the total energy source SEa

are introduced respectively by

Qa ≡ na

〈
1

2
mav

2
ava

〉
f

, (2.33)

W Lor
a ≡ eana 〈(E · va × B) · va〉f , (2.34)

W col
a ≡

∫
1

2
mv2

aC(fa)dv, (2.35)

WQL
a ≡

∫
1

2
mv2

aDQL(fa)dv, (2.36)

SEa ≡
∫

1

2
mv2

aS(fa)dv. (2.37)

By the use of commutative law of the scalar product, the total heat flux Qa is described as

Qa = na

〈
1

2
maua · vava

〉
f

+ na

〈
1

2
maua · wava

〉
f

+ na

〈
1

2
maw

2
ava

〉
f

= ua ·
(
na 〈mavava〉f

)
− 1

2
manau

2
aua + na

〈
1

2
maw

2
a

〉
f

ua + na

〈
1

2
maw

2
awa

〉
f

= qa +
5

2
paua +

1

2
manau

2
aua +

↔
πa · ua, (2.38)

where qa is the heat flux defined by

qa ≡ 1

2
nama

〈
w2

awa

〉
f
. (2.39)

The work by the Lorentz force W Lor
a becomes

W Lor
a = eana 〈(E + va × B) · va〉f = eana 〈E · va〉f = eanaE · ua. (2.40)

The energy exchange by the collision W col
a can be expressed with the friction force F fri

a and
the energy equipartition term Q∆a

W col
a =

1

2
mau

2
a

∫
C(fa)dv + ua ·

∫
mvaC(fa)dv +

∫
1

2
maw

2
aC(fa)dv

= ua · F a +Q∆a, (2.41)

Q∆a ≡
∑

b

3

2
na
Tb − Ta

τab

, (2.42)
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where Ta ≡ pa/na is the temperature. In Eq.(2.42), τab is the heat exchange time defined
by

τab ≡
3
√

2π3/2ε2
0mamb

nbe4Z2
aZ

2
b ln Λab

(
Ta

ma

+
Tb

mb

)3/2

, (2.43)

where ln Λab is the Coulomb logarithm and provided by the following formulas [3]:

• electron-electron collisions

ln Λee = 14.9 − 1

2
lnne + lnTe ne in 1020m−3 Te in keV, (2.44)

• electron-ion collisions

ln Λei = 15.2 − 1

2
lnne + lnTe ne in 1020m−3 Te in keV, (2.45)

• ion-ion collision (singly charged ions, Ti ≤ 10(mi/mp) keV)

ln Λii = 17.3 − 1

2
lnne +

3

2
lnTi ne in 1020m−3 Ti in keV, (2.46)

where mp is the proton mass.

The work by the interaction with waves WQL
a can be expressed with F QL

a and the energy
exchange by the interaction with waves QQL

∆a,

WQL
a =

1

2
mau

2
a

∫
DQL(fa)dv + ua ·

∫
mvaDQL(fa)dv +

∫
1

2
maw

2
aDQL(fa)dv

= ua · F QL
a +QQL

∆a, (2.47)

where the specific expression of QQL
∆a is not described further in this thesis.

The equation for energy transport therefore can be written as

∂

∂t

(
3

2
pa +

1

2
manaua

)∣∣∣∣
x

+ ∇ · Qa = W Lor
a +W fri

a +WQL
a + SEa. (2.48)

The energy transport equation for internal energy (2.49) is employed instead of Eq.(2.48)
in this thesis,

∂

∂t

(
3

2
pa

)∣∣∣∣
x

+ ∇ ·
(

Qa −
1

2
manau

2
aua

)
= ua · ∇pa + ua · ∇ · ↔πa +Q∆a +QQL

∆a + Spa,

(2.49)

where Spa is the internal energy source defined by

Spa ≡ SEa − ua · Sma +
1

2
mau

2
aSna. (2.50)

In Eq.(2.50), the expression of internal energy source Spa differs from the ordinary expres-
sion Spa ≡ SEa − 1

2
mau

2
aSna, since Spa in Eq.(2.50) includes contributions from not only

particle source Sna but also momentum source Sma.
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2.2.4 Equation for total heat flux

In the case of g = mav
2
ava/2, Eq.(2.11) corresponds to the equation for total heat flux,

∂

∂t

(
na

〈
1

2
mav

2
ava

〉
f

)∣∣∣∣∣
x

+ ∇ ·

(
na

〈
1

2
mav

2
avava

〉
f

)

− eana

〈
(E + va × B) ·

(
vava +

1

2
v2

a

↔
I

)〉
f

=

∫
1

2
mav

2
avaC(fa)dv +

∫
1

2
mav

2
avaDQL(fa)dv +

∫
1

2
mav

2
avaS(fa)dv (2.51)

where the energy weighted (EW) total stress tensor
↔
Ra, the EW Lorentz force GLor

a , the
EW friction force Gfri

a , the total heat flux source Sqa are defined respectively by

↔
Ra ≡ na

〈
1

2
mav

2
avava

〉
f

(2.52)

GLor
a ≡ eana

〈
(E + va × B) ·

(
vava +

1

2
v2

a

↔
I

)〉
f

(2.53)

Gfri
a ≡

∫
1

2
mav

2
avaC(fa)dv (2.54)

GQL
a ≡

∫
1

2
mav

2
avaDQL(fa)dv (2.55)

Sqa ≡
∫

1

2
mav

2
avaS(fa)dv. (2.56)

The EW total stress tensor can be decomposed into the EW inertial stress tensor part and
the EW pressure tensor part,

↔
Ra = −

(
na

〈
1

2
mav

2
a

〉
f

)
uaua +

(
na

〈
1

2
mav

2
ava

〉
f

)
ua

+ ua

(
na

〈
1

2
mav

2
ava

〉
f

)
+ na

〈
1

2
mav

2
awawa

〉
f

= −
(

1

2
manau

2
a +

3

2
pa

)
uaua + Qaua + uaQa + na

〈
1

2
mav

2
awawa

〉
f

. (2.57)

For the formulation of the EW pressure tensor, we introduce the dimensionless parameter
related to the particle velocity xa ≡ va/vTa and decompose the EW pressure tensor into
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the EW isotropic pressure and the EW viscous tensor similarly as the pressure tensor,

na

〈
1

2
mav

2
awawa

〉
f

=
Ta

ma

[
5

2
na

〈
ma

(
wawa −

w2
a

3

↔
I

)〉
f

+na

〈
ma

(
wawa −

w2
a

3

↔
I

)(
x2

a −
5

2

)〉
f

]

+
Ta

ma

[
5

2
na

〈
1

3
maw

2
a

〉
f

+ na

〈
1

3
maw

2
a

(
x2

a −
5

2

)〉
f

]
↔
I

=
↔
r a +

(
5

2
+ ca

)
Ta

ma

pa

↔
I , (2.58)

where
↔
r a is the EW viscous tensor consisting of the viscous tensor

↔
πa and the heat viscous

tensor
↔
θ a and ca is the dimensionless coefficient related to the higher moment of the

isotropic pressure,

↔
r a ≡ Ta

ma

(
5

2

↔
πa +

↔
θ a

)
(2.59)

↔
θ a ≡ na

〈
ma

(
wawa −

1

3
w2

a

↔
I

)(
x2

a −
5

2

)〉
f

(2.60)

ca ≡ 1

Ta

〈
1

3
maw

2
a

(
x2

a −
5

2

)〉
f

. (2.61)

Therefore the EW total stress tensor
↔
Ra becomes

↔
Ra ≡

(
5

2
+ ca

)
Ta

ma

pa

↔
I +

↔
r a + Qaua + uaQa −

(
3

2
pa +

1

2
manau

2
a

)
uaua. (2.62)

The EW Lorentz force GLor
a becomes

GLor
a = eana

〈
(E + va × B) ·

(
vava +

1

2
v2

a

↔
I

)〉
f

=
ea

ma

[
E ·

(
na 〈mavava〉f + na

〈
1

2
mav

2
a

〉
f

↔
I

)
+ na

〈
1

2
mav

2
ava

〉
f

× B

]

=
ea

ma

{
E ·

[
manauaua +

(
5

2
pa +

1

2
manau

2
a

)
↔
I +

↔
πa

]
+ Qa × B

}
. (2.63)

The EW friction force Gfri
a can be written by the use of the friction force F fri

a and the heat
friction force H fri

a ,

Gfri
a ≡ Ta

ma

[∫
mavaC(fa)

(
x2

a −
5

2

)
dv +

5

2

∫
mavaC(fa)dv

]
=

Ta

ma

(
5

2
F fri

a + H fri
a

)
(2.64)

H fri
a ≡

∫
mavaC(fa)

(
x2

a −
5

2

)
dv (2.65)
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Therefore the equation for total heat flux becomes

∂Qa

∂t

∣∣∣∣
x

+ ∇ ·
↔
Ra = GLor

a + Gfri
a + GQL

a + Sqa, (2.66)

where the EW Lorentz force and the EW total stress tensor will be reduced to the extent
that they keep consistency with the neoclassical theory in section 2.4.2.

2.3 Small gyro-radius ordering

In this paper, we employ the small gyro-radius ordering in order to formulate the two-
dimensional transport model. In this ordering, a small expansion parameter δa for particle
species a

δa ≡ %a

L⊥
� 1 (2.67)

is introduced, where %a ≡ vTa/ωca is the Larmor radius, L⊥ is the macroscopic characteristic
length in the perpendicular direction, vTa ≡

√
2Ta/ma is the thermal velocity, ωca ≡

|ea|B/ma is the cyclotron frequency, ea is the charge and ma is the mass. Since δi ∼√
mi/meδe in general, we consider δ ∼ δi as the most severe restriction for the small

gyro-radius ordering.

2.4 Modeling of the fluid closures

2.4.1 Friction forces and viscous tensors

The viscosity tensor
↔
πa, the heat viscosity tensor

↔
θ a, the friction force F fri

a , and the heat
friction force H fri

a must be modeled in order to complete the multi-fluid equations. Ac-
cording to the moment approach [8], the lowest order friction force F fri

a and heat friction
force H fri

a can be expressed in terms of flows

F fri
a =

∑
b

(
lab
11ub − lab

12

2qb

5pb

)
, (2.68)

H fri
a =

∑
b

(
−lab

21ub + lab
22

2qb

5pb

)
, (2.69)

where the coefficients lab
ij can be expressed in terms of the Braginskii’s matrix elements of

the collision operator [8]. Since the equation for total heat flux Qa is employed instead of
the equation for heat flux qa in our formulation, the following approximation for the heat
flux qa up to O(δ) have been employed for simplicity,

qa = Qa −
5

2
paua + O(δ2). (2.70)

where Eq.(2.70) has sufficient accuracy for the modeling of the neoclassical friction force,
since Eq.(2.68) and Eq.(2.69) describe the friction forces up to O(δ).
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In the strongly magnetized toroidal plasma, the viscous stress tensor
↔
πa is decomposed

into the parallel viscous tensor
↔
π‖a, the gyro viscous tensor

↔
π∧a and the perpendicular

viscous tensor
↔
π⊥a and these three terms are scaled in the small gyro-radius ordering as

↔
πa ≡ ↔

π‖a +
↔
π∧a +

↔
π⊥a (2.71)

↔
π‖a ∼ O(δpa),

↔
π∧a ∼ O(δ2pa),

↔
π⊥a ∼ O(δ3pa) (2.72)

In this paper, we take only the parallel viscous tensor into account for simplicity and In

the lowest order of the drift ordering O(δ), the viscosity tensor
↔
πa and the heat viscosity

tensor
↔
θ a are in the CGL form as

↔
πa = π‖a

(
e‖e‖ −

1

3

↔
I

)
+ O(δ2), (2.73)

↔
θ a = θ‖a

(
e‖e‖ −

1

3

↔
I

)
+ O(δ2), (2.74)

where e‖ ≡ B/B is the unit vector in the parallel direction. In this paper, we define the
parallel viscosities π‖a and θ‖a in terms of the neoclassical parallel viscosity coefficients µai

and the parallel-parallel components of the rate-of-strain tensors W ua
zz and W qa

zz as[
π‖a
θ‖a

]
= −3

2

[
µa1 µa2

µa2 µa3

] [
W ua

zz

W qa
zz

]
, (2.75)

where

W ua
zz = 2

(
∇‖ua‖ − ua · κ

)
, (2.76)

W qa
zz = 2

[
∇‖

(
2qa‖
5pa

)
− 2qa

5pa

· κ
]
. (2.77)

In Eqs.(2.76) and (2.77), the incompressibility of flows,

∇ · ua = 0, (2.78)

∇ · (2qa/5pa) = 0, (2.79)

have been assumed for simplicity and κ = e‖ · ∇e‖ is the magnetic curvature. For the
axisymmetric magnetic field (2.3), the curvature component of the vector Vκ ≡ V · κ
becomes

Vκ = V · κ =

[
V ρeρ +

V χ

Bχ
B +

(
Vζ −

I

Bχ
V χ

)
∇ζ
]
· κ,

=

[
V ρκρ −

(
Vζ −

I

Bχ
V χ

)
Bζ

B2
∇‖B

]
, (2.80)

where we have used the following relations

e‖ · κ = 0, (2.81)

∇ζ · κ = −B
ζ

B2
∇‖B. (2.82)
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Since the flows in the radial direction are much slower than those in the parallel and the
toroidal direction,

uρ
a ∼ qρ

a/pa ∼ O(δ2) � uχ
a ∼ qχ

a/pa ∼ uaζ ∼ qaζ/pa ∼ O(δ), (2.83)

Eq.(2.80) can be reduced to

Vκ = −
(
Vζ −

I

Bχ
V χ

)
Bζ

B2
∇‖B, for V = ua, qa. (2.84)

Therefore Eq.(2.76) and Eq.(2.77) can be expressed as

W ua
zz = 2

[
∇‖ua‖ +

(
uaζ −

I

Bχ
uχ

a

)
Bζ

B2
∇‖B

]
, (2.85)

W qa
zz =

4

5

[
∇‖

(
qa‖
pa

)
+

(
qaζ

pa

− I

Bχ

qχ
a

pa

)
Bζ

B2
∇‖B

]
. (2.86)

It is easily shown that Eq.(2.75) is equivalent to the Hirshman-type parallel viscosities inside

the LCFS in the sense of the flux averaged viscous forces
〈
B · ∇ · ↔πa

〉
and

〈
B · ∇ ·

↔
θ a

〉
and also equivalent to the Braginskii-type parallel viscosity outside the LCFS [32].

Since the parallel flows have great influence on tokamak transport, we consider three
components of vector quantities, (ρ, ‖, ζ) in the radial, the parallel to the field line, and the
toroidal, rather than those of MSCS (ρ, χ, ζ). The contravariant poloidal component V χ is
therefore expressed by

V χ =
Bχ

B2
p

(
V‖B −BζVζ

)
. (2.87)

Unfortunately the poloidal magnetic field intensity Bp vanishes at the magnetic axis in
toroidal configurations and Eq.(2.87) has singularity at the magnetic axis so that we do
not employ Eq.(2.87) and leave V χ in Eq.(2.84). A singularity free procedure for calculating
V χ from V‖ and Vζ will be described in chapter 3.

In the above discussion, the neoclassical parallel coefficients µai obtained from the
bounce-averaged drift kinetic equation are assumed, which means that µai in Eq.(2.75) are
flux functions and lose their poloidal dependence. In the core region, the equilibrium return
flows are formed and transport is essentially reduced to one-dimensional problem. There-
fore the poloidal dependence of µai is assumed to be small enough to be negligible. In the
edge region where the plasma is weakly collisional, µai should have weak poloidal depen-
dence. We assume, however, that the effect of the poloidal non-uniformity of the plasma
density and temperature on the viscosity is small and use the bounce averaged µai as an
approximation. In the peripheral region where the plasma is collisional, Eq.(2.75) is reduce
to the Braginskii’s expression [8, 32] so that Eq.(2.75) recovers its poloidal dependence.

2.4.2 Equation for total heat flux

Completing the multi-fluid equations also requires that the EW total stress tensor
↔
Ra and

the EW Lorentz force GLor
a are simplified to the extent that they keep consistency with
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the neoclassical theory. As for the EW total stress tensor, the leading terms of the EW
isotropic pressure, the EW viscous tensor and the EW inertial stress tensor in the small
gyroradius ordering are taken into account as(

5

2
+ ca

)
Ta

ma

pa

↔
I =

5

2

Ta

ma

pa

↔
I + O(δ), (2.88)

↔
r a =

Ta

ma

(
5

2
π‖a + θ‖a

)(
e‖e‖ −

1

3

↔
I

)
+ O(δ2),

(2.89)

Qaua + uaQa −
(

3

2
pa +

1

2
manau

2
a

)
uaua = Qaua + uaQa −

3

2
pauaua + O(δ3). (2.90)

Therefore the EW total stress tensor is reduced to

↔
Ra =

5

2

Ta

ma

pa

↔
I +

↔
r ‖a + Qaua + uaQa −

3

2
pauaua. (2.91)

As for the EW Lorentz force, the terms can be evaluated as

ea

ma
E ·manauaua ∼ O(δ2), (2.92)

ea

ma
E · 5

2
pa

↔
I ∼ O(δ0), (2.93)

ea

ma
E · 1

2
manau

2
a

↔
I ∼ O(δ2), (2.94)

ea

ma
E · ↔π‖a ∼ O(δ), (2.95)

ea

ma

Qa × B ∼ O(δ). (2.96)

Since the consistency with the neoclassical theory requires terms up to O(δ), the EW
Lorentz force can be therefore reduced to

GLor
a =

ea

ma

[
E ·

(
5

2
pa

↔
I +

↔
π‖a

)
+ Qa × B

]
. (2.97)

From Eq.(2.91) and Eq.(2.97), the reduced equation for the total heat flux is obtained as

∂Qa

∂t

∣∣∣∣
x

+ ∇ ·
[
5

2

Ta

ma

pa

↔
I +

↔
r ‖a + Qaua + uaQa −

3

2
pauaua

]
=

ea

ma

[
E ·

(
5

2
pa

↔
I +

↔
π‖a

)
+ Qa × B

]
+ GLor

a + Sqa. (2.98)

2.5 Derivation of two-dimensional transport equations

In this section, we derive the two-dimensional transport modeling equations composed of
the equations for particle density, momentum in the three direction (radial, parallel and
toroidal), internal energy, and total heat flux in the three direction (radial, parallel and
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toroidal) for each species, and Maxwell’s equations for electromagnetic field. Since the
toroidal symmetry is assumed, the spatial variation of quantities are two-dimensional, in
the radial and poloidal directions. Since the parallel flows have great influence on tokamak
transport, we consider three components of vector quantities, (ρ, ‖, ζ) in the radial, the
parallel to the field line, and the toroidal, rather than those of MSCS (ρ, χ, ζ).

2.5.1 Equation for particle density

In this paper the equation of continuity (2.15) is employed as the equation for particle
density,

∂na

∂t

∣∣∣∣
x

+ ∇ · (naua) = Sna. (2.99)

2.5.2 Equation of motion in the parallel direction

We formulate the evolution equation for the parallel momentum by taking a scalar product
of the equation of motion (2.30) and B:

∂

∂t

(
manaua‖B

)∣∣
x + B · ∇ · (manauaua)

+B∇‖pa + B · ∇ · ↔πa = eanaE‖B + F fri
a‖B + FQL

a‖ B + Sma‖B. (2.100)

The time derivative term in Eq.(2.100) is reduced, since the time variation of mag-
netic field is much slower than that of momentum, where we have evaluated ua ∼ O(δ),
∂B/∂t|x ∼ O(δ2) and ∂(manaua‖B)/∂t|x ∼ O(δ2). Though the inertial force driven by
the drift of the flux surfaces ug included in the time derivative term in Eq.(2.100) is O(δ3),
we retain it from the aspect of volume conservation.

Next, we evaluate the inertial force in the parallel direction. To obtain a simple ex-
pression, we split the flow velocity into the parallel and the perpendicular components,
ua = ua‖ +ua⊥. The inertial stress tensor manauaua now is split into 4 terms and we keep
terms up to O(δ2) in our transport model:

manauaua = manaua‖ua‖ + O(δ3). (2.101)

Therefore the inertial force in the parallel direction F ine
a‖ is rewritten in a simple form:

F ine
a‖ B = B · ∇ ·

(
manaua‖ua‖

)
= B∇‖

(
manaua‖ua‖

)
−manaua‖ua‖∇‖B, (2.102)

where we have used the following relation

B · ∇ ·
(
fe‖e‖

)
= B∇‖f − f∇‖B. (2.103)

The viscous force in the parallel direction F vis
a‖ can be written as

F vis
a‖ B = B · ∇ · ↔πa = −π‖a∇‖B +

2

3
B∇‖π‖a, (2.104)
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since the parallel viscosity tensor is in the CGL form.
From Eq.(2.100), the force due to the pressure gradient in the parallel direction F∇p

a‖ ,

the Lorentz force in the parallel direction F Lor
a‖ and the friction force in the parallel direction

F fri
a‖ can be written respectively as

F∇p
a‖ B = B∇‖pa, (2.105)

F Lor
a‖ B = eanaE‖B = eana

(
ψ′
√
g
Eχ +

I

R2
Eζ

)
, (2.106)

F fri
a‖B =

∑
b

(
lab
11ub‖ − lab

12

2qb‖
5pb

)
B. (2.107)

Therefore the equation for the parallel momentum is obtained as

∂

∂t

(
manaua‖B

)∣∣∣∣
x

+ F ine
a‖ B + F∇p

a‖ B + F vis
a‖ B = F Lor

a‖ B + F fri
a‖B + FQL

a‖ B + Sma‖B (2.108)

2.5.3 Equation of motion in the toroidal direction

Taking the scalar product of the equation of motion (2.30) and the covariant toroidal basis
eζ , we obtain

∂

∂t
(manauaζ)

∣∣∣∣
x

+ ∇ ·
(
eζ ·

↔
P a

)
= eana (Eζ + ψ′uρ

a) + Faζ + FQL
aζ + Smaζ . (2.109)

where ζ is defined geometrically so that its time derivative is identically zero and ψ′ indicates
the derivative of ψ with respect to ρ.

Since the total stress tensor
↔
P a is symmetric, the following useful identity of the second-

rank symmetric tensor
↔
S has been used in taking the toroidal projection of total stress

eζ · ∇ ·
↔
P a:

eζ · ∇ ·
↔
S = ∇ ·

(
eζ ·

↔
S
)
. (2.110)

The inertial force in the toroidal direction F ine
aζ and the viscous force in the toroidal

direction F vis
aζ therefore can be expressed as

F ine
aζ = ∇ · (manauaζua) (2.111)

F vis
aζ = B∇‖

(
I

B2
π‖a

)
. (2.112)

Note that the parallel viscous force in the toroidal direction may not vanish in two-
dimensional transport modeling in contrast to the traditional one-dimensional transport
modeling. It is easily confirmed that the flux-surface-averaged value of Eq.(2.112) vanishes
as 〈B · ∇f〉 = 0, which is consistent with the one-dimensional transport theory.
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The Lorentz force in the toroidal direction F Lor
aζ and the friction force in the toroidal

direction F fri
aζ can be written as

F Lor
aζ = eanaEζ + eanaψ

′uρ
a, (2.113)

F fri
aζ =

∑
b

(
lab
11ubζ − lab

12

2qbζ
5pb

)
. (2.114)

Therefore, the equation for the toroidal momentum is obtained as follows:

∂

∂t
(manauaζ)

∣∣∣∣
x

+ F ine
aζ + F vis

aζ = F Lor
aζ + F fri

aζ + FQL
aζ + Smaζ . (2.115)

2.5.4 Equation of radial force balance

Since the time derivative of the radial momentum is O(δ3) and small enough to be negligible,
we assume the lowest order O(1) force balance in the radial direction for simplicity:

∇ρ · ∇pa = eanaE
ρ + ∇ρ · (eanaua × B) . (2.116)

From Eq.(2.116), the force due to the pressure gradient in the radial direction F∇p ρ
a and

the Lorentz force in the radial direction F Lor ρ
a can be written as

F∇p ρ
a = gρρ∂pa

∂ρ
+ gρχ∂pa

∂χ
, (2.117)

F Lor ρ
a = eanaE

ρ
a + ea

IB

ψ′ naua‖ − ea
B2

ψ′ nauaζ , (2.118)

where the following relation have been used in Eq.(2.118):

∇ρ · (f × B) =
IB

ψ′ f‖ −
B2

ψ′ fζ . (2.119)

Therefore, we obtain the equation of the force balance in the radial direction:

F∇p ρ
a = F Lor ρ

a (2.120)

2.5.5 Equation for energy transport

The energy transport equation for internal energy does not change from Eq.(2.49), since
the equation for total heat flux Qa is solved simultaneously. We substitute Eq.(2.38) into
Eq.(2.49), however, in order to evaluate the terms in Eq.(2.49) in terms of δ

∂

∂t

(
3

2
pa

)∣∣∣∣
x

+ ∇ ·
(

qa +
5

2
paua +

↔
πa · ua

)
= ua · ∇pa + ua · ∇ · ↔πa + Spa. (2.121)

Moreover, Eq.(2.121) can be transformed to the expression for the adiabatic entropy√
g5/3pa. All terms in Eq.(2.121) are O(δ2) in the equilibrium state.

28



The viscous heating term by the parallel viscous force Qvis
a ≡ ua · ∇ ·↔πa can be written

as

Qvis
a = B∇‖

(ua‖π‖a
B

)
− π‖a

(
∇‖ua‖ − ua · κ

)
− 1

3
ua · ∇π‖a, (2.122)

since
↔
πa is in the CGL form. Now we will show that Eq.(2.122) is consistent with the result

of one-dimensional modeling. Substituting the equilibrium return flows,

ūa ≡ ωuaR
2∇ζ + LuaB, (2.123)

q̄a ≡ ωqaR
2∇ζ + LqaB, (2.124)

into Eq.(2.122) and averaging it over the flux surfaces, we obtain〈
Qvis

a

〉
= Lua

〈
B · ∇ · ↔πa

〉
, (2.125)

where ωua and ωqa are the toroidal angular frequencies and Lua and Lqa are quantities
related to the equilibrium poloidal flows. We have used 〈B · ∇f〉 = 0 in the derivation of
Eq.(2.125). Eq.(2.125) is consistent with the viscous heating term in the one-dimensional
transport modeling [33].

Therefore, the equation for internal energy is

3

2

∂pa

∂t

∣∣∣∣
x

+ ∇ ·
(

Qa −
1

2
manau

2
aua

)
= ua · ∇pa +Qvis

a +Q∆a + Spa. (2.126)

2.5.6 Equations for total heat flux

The equations for total heat flux can be derived by analogy with the derivation of the
equation for momentum.

Taking a scalar product of the equation for total heat flux (2.66) and B, we obtain
the equation for total heat flux in the parallel direction

∂

∂t

(
Qa‖B

)∣∣∣∣
x

+Gine
a‖B +G∇p

a‖ B +Gvis
a‖B = GLor

a‖ B +Gfri
a‖B +GQL

a‖ B + Sqa‖B, (2.127)

where Gine
a‖ , G∇p

a‖ , Gvis
a‖ , GLor

a‖ and Gfri
a‖ are the EW inertial force, the EW force due to the

EW pressure gradient, the EW viscous force, the EW Lorentz force and the EW friction
force in the parallel direction respectively and defined as

Gine
a‖B ≡ B∇‖

(
Qa‖ua‖ + ua‖Qa‖ −

3

2
paua‖ua‖

)
−
(
Qa‖ua‖ + ua‖Qa‖ −

3

2
paua‖ua‖

)
∇‖B,

(2.128)

G∇p
a‖ B ≡ B∇‖

(
5Ta

2ma

pa

)
, (2.129)

Gvis
a‖B ≡ −r‖a∇‖B +

2

3
B∇‖r‖a, (2.130)

GLor
a‖ B ≡ ea

ma

(
5

2
pa +

2

3
πa‖

)
E‖B, (2.131)

Gfri
a‖B ≡ 5Ta

2ma

∑
b

(
lab
11ua‖ − lab

12

2qb‖
5pb

)
B +

Ta

ma

∑
b

(
−lab

21ua‖ + lab
22

2qb‖
5pb

)
B, (2.132)
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where r‖a is the EW parallel viscosity,

r‖a ≡ Ta

ma

(
5

2
π‖a + θ‖a

)
. (2.133)

Taking a scalar product of the equation for total heat flux (2.66) and eζ , we obtain
the equation for total heat flux in the toroidal direction,

∂Qaζ

∂t

∣∣∣∣
x

+Gine
aζ +Gvis

aζ = GLor
aζ +Gfri

aζ +GQL
aζ + Sqaζ , (2.134)

where Gine
aζ , Gvis

aζ , GLor
aζ and Gfri

aζ are the EW inertial force, the EW viscous force, the EW
Lorentz force and the EW friction force in the toroidal direction respectively and defined
as

Gine
aζ ≡ ∇ ·

(
Qaζua + uaζQa −

3

2
pauaζua

)
, (2.135)

Gvis
aζ ≡ B∇‖

(
I

B2
ra‖

)
, (2.136)

GLor
aζ ≡ ea

ma

[(
5

2
pa −

1

3
πa‖

)
Eζ +

I

B
πa‖E‖ + ψ′Qρ

a

]
, (2.137)

Gfri
aζ ≡

5Ta

2ma

∑
b

(
lab
11uaζ − lab

12

2qbζ
5pb

)
+
Ta

ma

∑
b

(
−lab

21uaζ + lab
22

2qbζ
5pb

)
. (2.138)

The equation for total heat flux in the radial direction in the lowest order is given by

G∇p ρ
a = GLor ρ

a , (2.139)

where F∇p ρ
qa and F Lor ρ

qa are the force due to the EW pressure gradient and the EW Lorentz
force in the radial direction respectively and defined as

G∇p ρ
a ≡ gρρ ∂

∂ρ

(
5Ta

2ma

pa

)
+ gρχ ∂

∂χ

(
5Ta

2ma

pa

)
(2.140)

GLor ρ
a ≡ 5

2

Ta

ma

eanaE
ρ +

ea

ma

IB

ψ′ Qa‖ −
ea

ma

B2

ψ′ Qaζ (2.141)

2.5.7 Consistency with the conventional neoclassical transport
theory

We will show that our two-dimensional transport model is consistent with the ordinary
flux-surface-averaged neoclassical transport theory [7, 8]. Assuming the equilibrium state
inside of the LCFS and the force balance up to O(δ) in Eq.(2.108) and averaging on the
flux surfaces, we obtain〈

F∇p
a‖ B

〉
+
〈
F vis

a‖ B
〉

=
〈
F Lor

a‖ B
〉

+
〈
F fri

a‖B
〉
. (2.142)
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Substituting Eqs.(2.123) and (2.124) into Eq.(2.142), we obtain〈
3(∇‖B)2

〉(
µa1Lua + µa2

2Lqa

5pa

)
=
∑

b

(
lab
11

〈
ub‖B

〉
− lab

12

〈
qb‖B

〉)
+ eana

〈
E‖B

〉
, (2.143)

where we have used 〈B · ∇f〉 = 0. The flux-surface-averaged parallel force balance up to
O(δ) in Eq.(2.127) also becomes〈

G∇p
a‖ B

〉
+
〈
Gvis

a‖B
〉

=
〈
GLor

a‖ B
〉

+
〈
Gfri

a‖B
〉

(2.144)

and we obtain〈
3(∇‖B)2

〉(
µa2Lua + µa3

2Lqa

5pa

)
=
∑

b

(
−lab

21

〈
ub‖B

〉
+ lab

22

〈
qb‖B

〉)
, (2.145)

where we have used 〈B · ∇f〉 = 0 and Eq.(2.143). The flux-surface-averaged parallel flows〈
ua‖B

〉
and

〈
qa‖B

〉
are decomposed by the use of Eqs.(2.123) and (2.124)〈

ua‖B
〉

= V1aB + Lua

〈
B2
〉
, V1a ≡ I

B
ωua (2.146)〈

qa‖B
〉

= V2aB +
2Lqa

5pa

〈
B2
〉
, V2a ≡ I

B
ωqa (2.147)

Substituting Eqs.(2.146) and (2.147) into Eqs.(2.143) and (2.145), the equations for poloidal
rotations in the conventional neoclassical theory is obtained as

〈
3
(
∇‖B

)2〉(µ1a µ2a

µ2a µ3a

) Lua

2Lqa

5pa


=
∑

b

(
lab
11 −lab

12

−lab
21 lab

22

)V1bB + Lub

〈
B2
〉

V2bB +
2Lqb

5pb

〈
B2
〉+

(
eana

〈
E‖B

〉
0

)
. (2.148)

2.6 Derivation of electromagnetic equations

In this section, the electromagnetic equations are derived from Maxwell’s equations:

∂B

∂t

∣∣∣∣
x

+ ∇× E = 0 (2.149)

1

c2
∂E

∂t

∣∣∣∣
x
−∇× B + µ0j = 0 (2.150)

∇ · B = 0 (2.151)

∇ · E =
ρc

ε0

, (2.152)

where ρc is the electric charge density. Gauss’s law for magnetism (2.151) has already been
taken into account through the expression of the equilibrium magnetic field.
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Variables used to describe the electromagnetic field are chosen as follows. For the
magnetic field B, the contravariant poloidal component Bχ(= ψ′√g−1) and the covariant
toroidal component Bζ(= I) are suitable for describing the magnetic field B in Eq.(2.3).
For the electric field E, the covariant components are suitable for taking a scalar product of
E and B. We should note that the distinction between the covariant and the contravariant
components is not essential in the toroidal direction in MSCS owing to its orthogonality in
the toroidal direction. Therefore, the following five variables are employed to describe the
evolution of the electromagnetic field, ψ′, I, Eρ, Eχ and Eζ .

Since the existence of magnetic surfaces is assumed, ψ′ and I are the flux functions.
From Faraday’s law, Eζ is also the flux function as is shown later. Taking account of
the consistency with these properties, we introduce flux-surface-average for some of elec-
tromagnetic field equations. This approximation is necessary for the compatibility of the
two-dimensional transport analysis with the existence of magnetic surfaces. The validity
of this approximation has to be examined a posteriori.

For Faraday’s law (2.149), the contravariant poloidal direction ∇χ and the toroidal
direction ∇ζ are chosen for the direction of projection, since there is no contravariant
radial component of the magnetic field in MSCS. For Ampère’s law (2.150), the projection
in the parallel direction B and the toroidal direction ∇ζ are used owing to the compatibility
with the direction of the current density j derived from the equation of motion. Instead
of the contravariant radial component of Ampère’s law, we solve Gauss’s law (2.152) which
is the time integral of the divergence of Ampère’s law.

2.6.1 Equations for magnetic field

In this section, we will derive the equations for ψ′ and I from Faraday’s law (2.149).
Substituting Eq.(2.3) into Faraday’s law (2.149), we obtain

∂ψ′

∂t

∣∣∣∣
x
∇ζ ×∇ρ+

∂I

∂t

∣∣∣∣
x

eζ + ∇× E = 0. (2.153)

Taking a scalar product of (2.153) and ∇χ, we obtain the equation for ψ′

∂ψ′

∂t

∣∣∣∣
x
− ∂Eζ

∂ρ
= 0. (2.154)

Since ψ′ is the flux function, Eζ is also the flux function.
Since the covariant toroidal magnetic field Bζ(= I) is the flux function, we take a scalar

product of (2.153) and eζ and the ∇×E term is averaged over the flux surfaces to obtain

∂I

∂t

∣∣∣∣
x

+

〈
R2

√
g

(
∂Eχ

∂ρ
− ∂Eρ

∂χ

)〉
= 0. (2.155)

2.6.2 Equations for electric field

In this section the equations for the covariant toroidal electric field Eζ and the covariant
poloidal electric field Eχ are derived from Ampère’s law and the equation for the covariant

32



radial electric field Eρ from Gauss’s law. The rotation of the magnetic field can be expressed
as

∇× B = ∇× (∇ζ ×∇ψ + I∇ζ)
= ∇ · (∇ψ∇ζ −∇ζ∇ψ) + ∇I ×∇ζ

= ∇ ·
(

1

R2
∇ψ
)
R2∇ζ + ∇I ×∇ζ, (2.156)

where ∇ψ∇ζ−∇ζ∇ψ is a 2nd-rank antisymmetric tensor and the following tensor identities

for any vectors f and g and any second-rank antisymmetric tensor
↔
A have been employed:

∇× (f × g) = ∇ · (gf − fg) (2.157)

∇ ·
↔
A =

∑
ξi=ρ,χ,ζ

∇ ·
(↔
A · eξi

)
eξi
, (2.158)

Substituting Eq.(2.156) into Eq.(2.150), we obtain the equation for the electric field in the
axisymmetric system,

1

c2
∂E

∂t

∣∣∣∣
x
−∇ ·

(
1

R2
∇ψ
)
R2∇ζ −∇I ×∇ζ + µ0j = 0. (2.159)

Taking a scalar product of Eq.(2.159) and eζ , we obtain the equation for the covariant
toroidal electric field Eζ ,

1

c2
∂Eζ

∂t

∣∣∣∣
x
−R2∇ ·

(
1

R2
∇ψ
)

+ µ0jζ = 0. (2.160)

This equation reduces to the Grad-Shafranov equation in a stationary state. Since Eζ is
the flux function, we employ the flux-surface-average of the second and the third terms to
obtain,

1

c2
∂Eζ

∂t

∣∣∣∣
x
−
〈
R2∇ ·

(
ψ′

R2
∇ρ
)〉

+ µ0 〈jζ〉 = 0. (2.161)

This equation corresponds to the flux-surface-averaged Grad-Shafranov equation employed
in the Flux Conserving Tokamak (FCT) scheme [34–36].

Taking a scalar product of Eq.(2.159) and B, we obtain

1

c2

(
ψ′
√
g

∂Eχ

∂t

∣∣∣∣
x

+ I
∂Eζ

∂t

∣∣∣∣
x

)
−∇ ·

(
1

R2
∇ψ
)
I +

gρρ

R2
ψ′dI

dρ
+ µ0j‖B = 0. (2.162)

Substituting Eq.(2.160) into Eq.(2.162), we obtain the equation for the covariant poloidal
electric field Eχ,

1

c2
∂Eχ

∂t

∣∣∣∣
x

+
gχχ√
g

dI

dρ
+ µ0

√
g
(
j‖B − jζI

)
ψ′ = 0. (2.163)

Finally the covariant radial electric field Eρ is obtained by solving Gauss’s law,

1
√
g

∂

∂ρ
[
√
g (gρρEρ + gρχEχ)] +

1
√
g

∂

∂χ
[
√
g (gχρEρ + gχχEχ)] =

ρc

ε0

. (2.164)
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2.7 Connection between transport and equilibrium solver

In this section we briefly describe the procedure for coupling the transport solver with an
equilibrium solver. At the beginning, MSCS is calculated by solving the Grad-Shafranov
equation for initial profiles.

At the first step, in the transport solver, the set of transport equations, Eqs.(2.99),
(2.108), (2.115), (2.120), (2.126), (2.127), (2.134) and (2.139), and the set of electromag-
netic equations, Eqs.(2.154) , (2.155), (2.161), (2.163) and (2.164) are solved simultaneously
in MSCS in an implicit way. Since the transport coefficients and the source terms depend
on the plasma quantities, densities, temperatures, and flows, this procedure has to be
repeated until the solutions are converged.

At the second step, the two-dimensional toroidal current density profile jζ(ρ, χ) and the
toroidal component of the displacement current density profile jdc

ζ (ρ) = 1/(µ0c
2)∂Eζ/∂t|x

calculated by the transport solver in MSCS, are converted to the two-dimensional profiles
jζ(R,Z) and jdc

ζ (R,Z) in the cylindrical coordinate system (R,ϕ, Z) and sent to the free-
boundary equilibrium solver.

At the third step, in the free-boundary equilibrium solver, Eq.(2.160) is solved with
given jζ(R,Z) and jdc

ζ (R,Z) to calculate ψ(R,Z),

1

R

∂

∂R

(
1

R

∂ψ

∂R

)
+

1

R2

∂2ψ

∂Z2
=
µ0

R2

(
jζ + jdc

ζ

)
. (2.165)

In this recalculation of the equilibrium magnetic field, we employ the FCT scheme [34–36]
in which the toroidal and poloidal fluxes are conserved; therefore q(ρ) is unchanged. The
particle density, the momentum, the pressure and the heat flux are also changed adiabati-
cally according to the change of volume. In order to obtain the equilibrium satisfying these
constrains, Eqs.(2.161) and (2.165) are solved iteratively. In the 1.5D transport modeling,
Eq.(2.161) without the displacement current is solved for fixed q(ρ) and p(ρ) with adiabatic
constraint to obtain I(ρ), which is related to the plasma volume as well as the toroidal
magnetic field. In the present 2D transport modeling, the safety factor q(ρ) or ψ′(ρ) and
the toroidal current density jζ(ρ, χ) are fixed in solving Eq.(2.161) to calculate the deriva-
tive of the volume dV/dρ. This quantity is used to calculate jζ(R,Z) from jζ(ρ, χ) before
solving Eq.(2.165)

2.8 Summary and discussion

The set of equations describing the two-dimensional transport in a whole tokamak plasma
has been derived in MSCS from the multi-fluid equations and Maxwell’s equations, where
the flux-surface-average has been applied on Eq.(2.155) and Eq.(2.161) in order to meet
the constraint for the existence of the magnetic surface. The set of the fluid equations
consists of the equation for the particle density na (2.99), the parallel momentum manaua‖
(2.108), the toroidal momentum manauaζ (2.115), the radial momentum manau

ρ
a (2.120),

the pressure pa (2.126), the parallel total heat flux Qa‖ (2.127), the toroidal total heat flux
Qaζ (2.134) and the radial total heat flux Qρ

a (2.139) for each particle species. The set
of equations for electromagnetic field includes the poloidal magnetic field ψ′ (2.154), the

34



toroidal magnetic field I (2.155), the toroidal electric field Eζ (2.161), the poloidal electric
field Eχ (2.163) and the radial electric field Eρ (2.164).

The neoclassical parallel viscosity and heat viscosity have been rewritten in order to
be applicable in the open field region outside the LCFS. We have shown that our parallel
viscosity is consistent with the Hirshman-type parallel viscosity inside the LCFS and the
Braginskii-type one outside the LCFS.

We have shown that our fluid equations are consistent with the neoclassical transport
theory by yielding the neoclassical force balance equations from the equations for the
parallel momentum and the parallel total heat flux. These equations are expected to
provide a better description of the time evolution of the tokamak plasma, especially that
of the poloidal and toroidal rotation.

We have emphasized the extension of the neoclassical transport in this article. The
turbulent transport induced by the interaction with wave fluctuations will be included
similarly as discussed in [9].
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Chapter 3

Numerical scheme of TASK/T2

In this chapter we will describe the methodology for implementing the two-dimensional
transport equations derived in chapter 2 into TASK/T2 component. In the TASK/T2 the
set of two-dimensional transport equations is solved in both the core and the peripheral
region as the advection-diffusion equations by finite element method (FEM).

FEM has some advantages for two-dimensional transport analysis in the tokamak
plasma including both the core and the peripheral region such as, 1) the high flexibility for
the structure of the numerical grid, 2) the easy implementation of stabilization scheme for
advection driven numerical instability for example SUPG [37], BTD [38], GLS [39] and so
on, and 3) the easy implementation of boundary conditions. Especially the first advantage
is very important for two-dimensional transport in the both core and peripheral plasmas,
since the characteristic length of the transport in the radial direction is quite different in
the core region and the peripheral region and the topological structure of the magnetic field
is different in the core region and the peripheral region. In addition, the transport parallel
and perpendicular to the magnetic field line are different in several orders of magnitude
and this anisotropy may cause the numerical instability and degrade the computational
accuracy. In order to resolve these issues, we employ a hierarchical rectangular grid in
MSCS which highly separates the parallel and perpendicular transport in order to sup-
press the numerical instability by the strong anisotropy and keeps the spatial resolution in
the poloidal direction in the outer region.

This chapter is organized as follows. A coordinate system and dependent variables in
TASK/T2 are discussed in section 1. In section 2, a numerical formulation of the transport
equations as advection diffusion form is described. In section 3, properties and advantages
of FEM, a formulation of finite element equations of advection diffusion equation and a
concept of hierarchical rectangular grid are described. A flux surface averaging scheme in
TASK/T2 are shown in section 4. In section 5, A time discretization scheme is described.
In section 6, a concept of a computational grid, boundary conditions and initial conditions
for limiter configuration are discussed. A concept of a computational grid for single-null
divertor configuration is described in section 7. Summary and discussion are given in
section 8.
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3.1 Coordinates and dependent variables in TASK/T2

In this section we will discuss a methodology for implementing transport equations in a
torus coordinate system (TCS) (σ, χ, ζ) in TASK/T2 as a preliminary step for the MSCS.
Although the TCS does not take the self-consistent magnetic equilibrium configuration, it
is useful to discuss the singularity of the equation system at the magnetic axis.

Since both the derivative of poloidal flux function with respect to the radial label ψ′

and the contravariant poloidal magnetic field Bχ have to be definable, a TCS in TASK/T2
has to have a non-zero Jacobian at the magnetic axis. We therefore employ the torus
coordinate defined by,

R = R0 + a
√
σ cosχ (3.1)

φ = ζ (3.2)

Z = −a
√
σ sinχ (3.3)

where σ is defined by the area and has the relation, σ = r2, with the minor radius r. This
torus coordinate system is orthogonal and has metric coefficients defined by

gσσ =
a2

4σ
(3.4)

gχχ = a2σ (3.5)

gζζ = R2 (3.6)

gσσ =
4σ

a2
(3.7)

gχχ =
1

a2σ
(3.8)

gζζ =
1

R2
(3.9)

√
g = a2R. (3.10)

Its covariant radial-radial geometrical coefficient gσσ and contravariant poloidal-poloidal
geometrical coefficient gχχ have 1/σ-singularity while its Jacobian is non-zero at the mag-
netic axis. In order to eliminate these singularity at the magnetic axis, we employ naū

χ
a ,

Q̄σ
a and Ēχ as dependent variables instead of nau

χ
a , Qσ

a and Eχ, which are defined by

naū
σ
a ≡ σ−1nau

σ
a (3.11)

Q̄a
σ ≡ σ−1Qσ (3.12)

Ēχ ≡ σ−1Eχ. (3.13)

Note that the definitions (3.11)-(3.13) imply that nau
χ
a , Qσ

a and Eχ always vanish at the
magnetic axis.

There is also a singularity at the magnetic axis due to the poloidal magnetic field. In the
toroidal configuration, the poloidal magnetic field Bp essentially vanishes at the magnetic
axis, since there is no loop current inside the flux surface corresponding to the magnetic
axis. Therefore the transformation relation from the parallel flow V‖ and the covariant
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Maxwell’s equations (1D) ψ′, I, Eζ

Maxwell’s equations (2D) Ēχ, Eσ

Transport equations (2D) na, naū
σ
a , naua‖, nauaζ , nau

χ
a , pa, Q̄

σ
a , Qa‖, Qaζ , Q

χ
a

Table 3.1: The dependent variables in TASK/T2

toroidal flow Vζ to contravariant poloidal flow V χ obtained by the parallel projection of the
flow vector,

V χ =
Bχ

B2
p

(
V‖B − VζB

ζ
)
, V = ua,Qa (3.14)

is no longer available at the magnetic axis. In the derivation of Eq.(3.14), the ordering,

V σ ∼ O(δ2) � V‖ ∼ Vζ ∼ O(δ), (3.15)

has been employed for simplicity. In order to avoid this singularity, we employ the con-
travariant poloidal flows as additional dependent variables and solve the equations ex-
pressed by

nau
χ
agχχB

χ = naua‖B − nauaζB
ζ (3.16)

Qχ
agχχB

χ = Qa‖B −QaζB
ζ . (3.17)

The resulting set of the dependent variables in TASK/T2 is therefore summarized in
Table 3.1.
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3.2 Numerical formulation of transport equations in

TASK/T2

Although we derived the set of equations for two-dimensional transport in tokamak plas-
mas in chapter 2, some of them are required to be deformed into advection-diffusion form.
In TASK/T2, the two-dimensional transport equations are solved as the simultaneous
advection-diffusion equations,∑

b

[
1
√
g

∂

∂t
(
√
gMabfb) + ∇ · (V abfb) −∇ ·

(↔
Dab · ∇fb

)
+ Aab · ∇fb + Cabfb

]
= Sa,

(3.18)

and some of them are flux surface averaged as∑
b

[
1

V ′
∂

∂t
(V ′ 〈Mab〉 fb) + 〈∇ · (V abfb)〉 −

〈
∇ ·
(↔
Dab · ∇fb

)〉
+ 〈Aab · ∇fb〉 + 〈Cabfb〉

]
= 〈Sa〉 , (3.19)

where a, b is the variable index, fb is the unknown variables, Mab is the mass scalar coeffi-

cient, V ab is the advection vector coefficient,
↔
Dab is the diffusion tensor coefficient, Aab is

the gradient vector coefficient, Cab is the excitation scalar coefficient and Sa is the source
term. Since some of the coefficients of the two-dimensional transport equations consist of
the spatial derivatives, V ab, Aab and Cab in Eq.(3.19) and Eq.(3.18) are required to be
decomposed as

V ab = V 1
ab −

∑
x

↔
V

2
abx · ∇gx, (3.20)

Aab = A1
ab +

∑
x

∇gx ·
↔
A

2
abx, (3.21)

Cab = C1
ab +

∑
x

∇gx · C2
abx +

∑
x,y

∇gx ·
↔
C

3
abxy · ∇gy, (3.22)

in order to ensure the C0 continuity of numerical coefficients at the interface of the element,
where gx and gy are the known integrands. Therefore the governing equations of the
TASK/T2 code can be expressed as

∑
b

1
√
g

∂

∂t
(
√
gMabfb) +

∑
b

∇ ·

[(
V 1

ab −
∑

x

↔
V

2
abx · ∇gx

)
fb

]

−
∑

b

∇ ·
(↔
Dab · ∇fb

)
+
∑

b

(
A1

ab +
∑

x

∇gx ·
↔
A

2
abx

)
· ∇fb

+
∑

b

(
C1

ab +
∑

x

∇gx · C2
abx +

∑
x,y

∇gx ·
↔
C

3
abxy · ∇gy

)
fb = Sa. (3.23)

39



After the lengthy and tedious manipulation, the advection-diffusion forms of the two-
dimensional transport equations are obtained respectively, where the derivation process
and the specific expressions of the coefficients are summarized in Appendix A.

• Equation for poloidal magnetic flux function

1

V ′
∂

∂t
(V ′ 〈M01.01〉ψ′) +

〈
∇ ·
(
V 1

01.01ψ
′)〉+

〈
A1

01.03 · ∇Eζ

〉
= 0, (3.24)

• Equation for poloidal current function

1

V ′
∂

∂t
(V ′ 〈M02.02〉 I) +

〈
∇ ·
(
V 1

02.01I
)〉

+
〈
A1

02.04 · ∇Ēχ

〉
+
〈
A1

02.05 · ∇Eσ

〉
+
〈
C1

02.04Ēχ

〉
= 0 (3.25)

• Equation for covariant toroidal electric field

1

V ′
∂

∂t
(V ′ 〈M03.03〉Eζ) +

〈
∇ ·
(
V 1

03.01ψ
′)〉+

〈
∇ ·
(
V 1

03.03Eζ

)〉
+
∑

a

〈
C1

03.09anauaζ

〉
+
〈(
∇R · C2

03.01.02

)
ψ′〉 = 0 (3.26)

• Equation for covariant poloidal electric field

1
√
g

∂

∂t

(√
gM04.04Ēχ

)
+ ∇ ·

(
V 1

04.04Eχ

)
+ A1

04.02∇I

+
∑

a

C1
04.07anaūa‖ +

∑
a

C1
04.10anauaζ = 0 (3.27)

• Equation for covariant radial electric field

∇ ·
(
V 1

05.04Ēχ

)
+ ∇ ·

(
V 1

05.05Eσ

)
+
∑

a

C1
05.06ana = 0 (3.28)

• Equation for particle density

1
√
g

∂

∂t
(
√
gM06a.06ana) + ∇ ·

(
V 1

06a.06ana

)
= S06a.06a (3.29)

• Equation for contravariant radial particle flux

A1
07a.11a · ∇pa + C1

07a.04Ēχ + C1
07a.05Eσ + C1

07a.08anaua‖ + C1
07a.09anauaζ = 0 (3.30)
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• Equation for parallel particle flux

1
√
g

∂

∂t

(√
gM08a.08anaua‖

)
+ ∇ ·

(
V 1

08a.08anaua‖
)

+ ∇ ·
(
V 1

08a.11apa

)
−∇ ·

[(↔
V

1
08a.09a.01 · ∇B

)
nauaζ

]
−∇ ·

[(↔
V

1
08a.10a.01 · ∇B

)
nau

χ
a

]
−∇ ·

[(↔
V

1
08a.14a.01 · ∇B

)
Qaζ

]
−∇ ·

[(↔
V

1
08a.15a.01 · ∇B

)
Qχ

a

]
−∇ ·

(↔
D08a.06a · ∇na

)
−∇ ·

[↔
D08a.08a · ∇

(
naua‖

)]
−∇ ·

(↔
D08a.11a · ∇pa

)
−∇ ·

(↔
D08a.13a · ∇Qa‖

)
+
(
∇B ·

↔
A

1
08a.06a.01

)
· ∇na +

(
∇B ·

↔
A

1
08a.08a.01

)
· ∇
(
naua‖

)
+
(
∇B ·

↔
A

1
08a.11a.01

)
· ∇pa +

(
∇B ·

↔
A

1
08a.13a.01

)
· ∇Qa‖

+ C1
08a.03Eζ + C1

08a.04Ēχ +
∑

b

C1
08a.08bnaub‖ +

∑
b

C1
08a.12bQb‖

+
(
C2

08a.08a.01 · ∇B
)
naua‖

+
(
∇B ·

↔
C

3
08a.09a.01.01 · ∇B

)
nauaζ +

(
∇B ·

↔
C

3
08a.10a.01.01 · ∇B

)
nau

χ
a

+
(
∇B ·

↔
C

3
08a.14a.01.01 · ∇B

)
Qaζ +

(
∇B ·

↔
C

3
08a.15a.01.01 · ∇B

)
Qχ

a

= S08a.08a (3.31)

• Equation for covariant toroidal particle flux

1
√
g

∂

∂t
(
√
gM09a.09anauaζ) + ∇ ·

(
V 1

09a.09anauaζ

)
−∇ ·

[(↔
V

2
09a.09a.01 · ∇B

)
nauaζ

]
−∇ ·

[(↔
V

2
09a.10a.01 · ∇B

)
nau

χ
a

]
−∇ ·

[(↔
V

2
09a.14a.01 · ∇B

)
Qaζ

]
−∇ ·

[(↔
V

2
09a.15a.01 · ∇B

)
Qχ

a

]
−∇ ·

(↔
D09a.06a · ∇na

)
−∇ ·

[↔
D09a.08a · ∇

(
naua‖

)]
−∇ ·

(↔
D09a.11a · ∇pa

)
−∇ ·

(↔
D09a.13a · ∇Qa‖

)
+ C1

09a.03Eζ + C1
09a.07anaū

σ
a +

∑
b

C1
09a.09bnaubζ +

∑
b

C1
09a.14bQbζ

= S09a.09a. (3.32)

• Expression of contravariant poloidal particle flux

C1
10a.08anaua‖ + C1

10a.09anauaζ + C1
10a.010anau

χ
a = 0 (3.33)
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• Equation for pressure

1
√
g

∂

∂t
(
√
gM11a.11apa) + ∇ ·

(
V 1

11a.11apa

)
−∇ ·

[(↔
V

2
11a.09a.01 · ∇B

)
nauaζ

]
−∇ ·

[(↔
V

2
11a.10a.01 · ∇B

)
nau

χ
a

]
−∇ ·

[(↔
V

2
11a.14a.01 · ∇B

)
Qaζ

]
−∇ ·

[(↔
V

2
11a.15a.01 · ∇B

)
Qχ

a

]
−∇ ·

(↔
D11a.06a · ∇na

)
−∇ ·

[↔
D11a.08a · ∇

(
naua‖

)]
−∇ ·

(↔
D11a.11a · ∇pa

)
−∇ ·

(↔
D11a.13a · ∇Qa‖

)
+ A1

11a.11a · ∇pa

+
(
∇B ·

↔
A

2
11a.06a.01

)
· ∇na +

(
∇ua‖ ·

↔
A

2
11a.06a.03a

)
· ∇na

+
(
∇B ·

↔
A

2
11a.08a.01

)
· ∇
(
naua‖

)
+
(
∇ua‖ ·

↔
A

2
11a.08a.03a

)
· ∇
(
naua‖

)
+
(
∇B ·

↔
A

2
11a.11a.01

)
· ∇pa +

(
∇ua‖ ·

↔
A

2
11a.11a.03a

)
· ∇pa

+
(
∇B ·

↔
A

2
11a.13a.01

)
· ∇Qa‖ +

(
∇ua‖ ·

↔
A

2
11a.13a.03a

)
· ∇Qa‖

+ C1
11a.11apa

+
(
∇B ·

↔
C

3
11a.09a.01.01 · ∇B

)
nauaζ +

(
∇ua‖ ·

↔
C

3
11a.09a.03a.01 · ∇B

)
nauaζ

+
(
∇B ·

↔
C

3
11a.10a.01.01 · ∇B

)
nau

χ
a +

(
∇ua‖ ·

↔
C

3
11a.10a.03a.01 · ∇B

)
nau

χ
a

+
(
∇B ·

↔
C

3
11a.14a.01.01 · ∇B

)
Qaζ +

(
∇ua‖ ·

↔
C

3
11a.14a.03a.01 · ∇B

)
Qaζ

+
(
∇B ·

↔
C

3
11a.15a.01.01 · ∇B

)
Qχ

a +
(
∇ua‖ ·

↔
C

3
11a.15a.03a.01 · ∇B

)
Qχ

a

= S11a.11a (3.34)

• Equation for contravariant radial total heat flux

A1
12a.06a · ∇na + A1

12a.11a · ∇pa

+ C1
12a.04Ēχ + C1

12a.05Eσ + C1
12a.13aQa‖ + C1

12a.14aQaζ = 0 (3.35)
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• Equation for parallel total heat flux

1
√
g

∂

∂t

(√
gM13a.13aQa‖

)
+ ∇ ·

(
V 1

13a.08anaua‖
)

+ ∇ ·
(
V 1

13a.11apa

)
+ ∇ ·

(
V 1

13a.13aQa‖
)

−∇ ·
[(

∇B ·
↔
V

2
13a.06a.01

)
nauaζ

]
−∇ ·

[(
∇B ·

↔
V

2
13a.10a.01

)
nau

χ
a

]
−∇ ·

[(
∇B ·

↔
V

2
13a.14a.01

)
Qaζ

]
−∇ ·

[(
∇B ·

↔
V

2
13a.15a.01

)
Qχ

a

]
−∇ ·

(↔
D13a.06a · ∇na

)
−∇ ·

[↔
D13a.08a · ∇

(
naua‖

)]
−∇ ·

(↔
D13a.11a · ∇pa

)
−∇ ·

(↔
D13a.13a · ∇Qa‖

)
+
(
∇B ·

↔
A

2
13a.06a.01

)
· ∇na +

(
∇B ·

↔
A

2
13a.08a.01

)
· ∇
(
naua‖

)
+
(
∇B ·

↔
A

2
13a.11a.01

)
· ∇pa +

(
∇B ·

↔
A

2
13a.13a.01

)
· ∇Qa‖

+ C1
13a.03Eζ + C1

13a.04Ēχ +
∑

b

C1
13a.08bnbub‖ +

∑
b

C1
13a.13bQb‖

+
(
∇B · C2

13a.03.01

)
Eζ +

(
∇ua‖ · C2

13a.03.03a

)
Eζ +

(
∇wa‖ · C2

13a.03.04a

)
Eζ

+
(
∇B · C2

13a.04.01

)
Ēχ +

(
∇ua‖ · C2

13a.04.03a

)
Ēχ +

(
∇wa‖ · C2

13a.04.04a

)
Ēχ

+
(
∇B · C2

13a.08a.01

)
naua‖ +

(
∇ua‖ · C2

13a.13a.01

)
Qa‖

+
(
∇B ·

↔
C

3
13a.09a.01.01 · ∇B

)
nauaζ +

(
∇B ·

↔
C

3
13a.10a.01.01 · ∇B

)
nau

χ
a

+
(
∇B ·

↔
C

3
13a.14a.01.01 · ∇B

)
Qaζ +

(
∇B ·

↔
C

3
13a.15a.01.01 · ∇B

)
Qχ

a

= S13a.13a (3.36)

• Equation for covariant toroidal total heat flux

1
√
g

∂

∂t
(
√
gM14a.14anauaζ) + ∇ ·

(
V 1

14a.09anauaζ

)
+ ∇ ·

(
V 1

14a.14aQaζ

)
−∇ ·

[(↔
V

2
14a.09a.01 · ∇B

)
nauaζ

]
−∇ ·

[(↔
V

2
14a.10a.01 · ∇B

)
nau

χ
a

]
−∇ ·

[(↔
V

2
14a.14a.01 · ∇B

)
Qaζ

]
−∇ ·

[(↔
V

2
14a.15a.01 · ∇B

)
Qχ

a

]
−∇ ·

(↔
D14a.06a · ∇na

)
−∇ ·

[↔
D14a.08a · ∇

(
naua‖

)]
−∇ ·

(↔
D14a.11a · ∇pa

)
−∇ ·

(↔
D14a.13a · ∇Qa‖

)
+ C1

14a.03Eζ + C1
14a.12aQ̄

σ
a +

∑
b

C1
14a.09bnbubζ +

∑
b

C1
14a.14bQbζ

+
(
∇B · C2

14a.03.01

)
Eζ +

(
∇ua‖ · C2

14a.03.03a

)
Eζ +

(
∇wa‖ · C2

14a.03.04a

)
Eζ

+
(
∇B · C2

14a.04.01

)
Ēχ +

(
∇ua‖ · C2

14a.04.03a

)
Ēχ +

(
∇wa‖ · C2

14a.04.04a

)
Ēχ

= S14a.14a (3.37)

• Expression of contravariant poloidal particle flux

C1
15a.13aQa‖ + C1

15a.14aQaζ + C1
15a.15aQ

χ
a = 0 (3.38)
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3.3 Finite element method

3.3.1 Weighted residual method and weak formulation

Finite element method (FEM) is a kind of numerical techniques for finding an approximate
solution for a partial differential equation and has some advantages such as the high flex-
ibility for the numerical domain configuration and the direct treatment of the boundary
conditions. In this section We will briefly explain the principle of the weighted residual
method (WRM) which is the basis of FEM by taking Poisson equation for instance,

∇2f − S = 0. (3.39)

We introduce spatial coordinate (ξ1, ξ2, ξ3) and bounded domain Ω whose boundary ∂Ω
consists of the fixed boundary Γ1 and free boundary Γ2.

∇2f − S = 0 on Ω , (3.40)

f = fb on Γ1, (3.41)

(∇f)n = q on Γ2, (3.42)

where S is the known source term on Ω, fb is the known value of f on Γ1, q is the the
known value of the normal gradient of f on Γ2 and the subscript n is the projection in the
normal direction of the boundary Γ2.

In WRM, a residual r(f) is defined in terms of f satisfying Eqs.(3.40)-(3.42),

r(ξ) = ∇2f(ξ) − S(ξ), (3.43)

where r(ξ) vanishes at any point of Ω if f satisfies Eq.(3.40) rigorously. In the weighted
residual method, the functional I is introduced,

I =

∫
w(ξ)r(ξ)dΩ, (3.44)

where w is the arbitrary weighting function and I corresponds to the weighted average of
the residual r. Since the functional I vanishes for the arbitrary weighting function w in
the case where r(ξ) = 0 for ξ ∈ Ω, the following weighted residual equation corresponding
to Eq.(3.40) is obtained by substituting Eq.(3.43) to Eq.(3.44),

I =

∫
w(ξ)

[
∇2f − S(ξ)

]
dΩ = 0. (3.45)

In the WRM, f satisfying Eq.(3.45) is calculated instead of f satisfying Eq.(3.40).
In the WRM, the boundary conditions of the weighting function w and the unknown

function f is applied on the fixed boundary Γ1 and the free boundary Γ2 respectively,

f = fb, w = 0 on Γ1, (3.46)∫
Γ2

[(∇f)n − q] dΓ = 0 on Γ2. (3.47)
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The problem finding f satisfying Eqs.(3.40)-(3.41) is therefore reduced to the problem
finding f satisfying Eq.(3.48),∫

Ω

w
(
∇2f − S

)
dΩ +

∫
Γ2

w [(∇f)n − q] dΓ = 0. (3.48)

Since there is a second order differential of f in Eq.(3.48), the solution f is required to be
of C2. By the use of the partial integral in Eq.(3.48), we can eliminate the second order
differential of f and then the restriction for the continuity of the solution f can be reduced
to C1, ∫

Ω

∇w · ∇fdΩ −
∫

Ω

wSdΩ −
∫

Γ2

wqdΓ = 0, (3.49)

where Eq.(3.49) is known as the weak form of the advection diffusion equation and Eq.(3.49)
also requires that w is of C1.

3.3.2 Finite element equation

In FEM, the solution of Eq.(3.49) is limited in the function space V h spanned by N known
functions φi which vanish on the boundary Γ1,

V h(fb) =

{
vh(ξ); vh = fb(ξ) +

N∑
i=1

fiφi(ξ)

}
, (3.50)

where fb(ξ) is a function satisfying the fixed boundary condition (3.46) and fi is the set
of the coefficients. Therefore the problem is reduced to find the best approximate function
fh(ξ)

fh(ξ) = fb(ξ) +
N∑

i=1

fiφi(ξ). (3.51)

The weighting function w is limited to N known functions ϕi which also vanish on the
boundary Γ1, which means not that Eq.(3.47) is solved in order to make the residual
vanish at any point of Γ2 and Ω but that the solution of Eq.(3.47) is solved in order
to make the N -points weighted average of the residual vanish. If Eq.(3.49) is valid for
w = ϕ1, · · · , w = ϕN , Eq.(3.49) is also valid for any element of the function space W h,

W h =

{
w(ξ); w(ξ) =

N∑
i=1

wiϕi(ξ)

}
. (3.52)

Substituting Eq.(3.52) into Eq.(3.49), the problem to solve Eq.(3.49) is reduce to the prob-
lem to find the best approximation function fh for i = 1, . . . , N ,∫

Ω

∇ϕi · ∇fhdΩ −
∫

Ω

ϕiSdΩ −
∫

Γ2

ϕiqdΓ = 0, (3.53)
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where Eq.(3.53) is called as finite element equation. Substituting Eq.(3.51) into Eq.(3.53),
the following simultaneous equations are obtained as

N∑
j=1

fj

∫
Ω

∇ϕi · ∇φjdΩ =

∫
Ω

ϕiSdΩ +

∫
Γ2

ϕiqdΓ −
∫

Ω

∇ϕi · ∇fgdΩ. (3.54)

The following symbols are introduced in order to express the integral quantities in Eq.(3.54)

Aij =

∫
Ω

∇ϕi · ∇φjdΩ (3.55)

bi =

∫
Ω

ϕiSdΩ +

∫
Γ2

ϕiqdΓ −
∫

Ω

∇ϕi · ∇fgdΩ. (3.56)

By the use of Eq.(3.55) and Eq.(3.56), Eq.(3.54) can be written in matrix equation form
as

Af = b, fT =
[
f1 · · · fN

]
. (3.57)

Therefore the problem solving Eq.(3.39) is reduced to the problem solving the matrix
equation (3.57) in FEM.

The two sets of known functions φi and ϕ have been introduced and the choice of these
sets has some freedom. For the symmetrical system with respect to f and w such as Poisson
equation and diffusion equation, the same set of known functions should be applied to f
and w in order to keep the symmetry of the system, which is called as Galerkin FEM,

ϕi = φi. (3.58)

On the other hand, in the asymmetrical system with respect to f and w such as advection
equation and advection-diffusion equation, the use of the same set of known functions for f
and w may cause the numerical instability. In order to suppress this numerical instability,
the different set of function are used for f and w, which is called as Petrov-Galerkin (PG)
FEM,

ϕi 6= φi. (3.59)

In this thesis we employ Stream Upwind/Petrov Galerkin (SUPG) method which is
a kind of PG-FEM for the advection diffusion equation when the set of our transport
equations are formulated into the finite element equations,

ϕi = φi + τu · ∇φi (SUPG), (3.60)

where τ and u is the stabilization parameters in SUPG-FEM and there are some models
determining them.
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Figure 3.1: Concept of master rectangular element

3.3.3 Domain decomposition and basis functions

In FEM the computational domain Ω is decomposed into Nelm small sub-domains called as
the finite element Ω1,Ω2, . . . ,ΩNelm

and Nnode nodal points Pi as Figure 3.1, where there
must not be any overlapped domain and uncovered domain. Fig 1-(a) is the concept of the
domain decomposition by the quadrangle element with arbitrary shape. Since the basis
functions called the known function are more easily derivable and it is easier to evaluate the
area integral over the square domain than that over the arbitrary quadrangle domain, the
finite element Ωe in MSCS is transformed into the normalized square element in the local
coordinate space (LCS) (η1, η2) in Figure 3.1-(b). The coordinate transformation between
MSCS and LCS is summarized in Figure 3.1-(c).

Domain decomposition

We introduce the basis function φi satisfying

φi(Pj) = δij (j = 1, . . . , Nnode) (3.61)

as the known function in Eq.(3.49). By the use of Eq.(3.61), The approximate function f
is expressed as

fh(r) = fg(r) +
∑

Pi∈Ω∪Γ2

fiφi(r), (3.62)

where fi is a value of the function fh at a nodal point Pi. The function fb(r) is also
expressed as

fb(r) =
∑

Pi∈Γ1

fb(Pi)φi(r). (3.63)
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Figure 3.2: The master rectangular elements; (a) linear Lagrange element and (b) quadratic
Lagrange element element

In the case of Galarkin-FEM, the matrix coefficient Aij (3.55) and the vector coefficient bj

therefore become respectively

Aij =

∫
Ω

∇φi(r) · ∇φj(r)dΩ =
∑
elm

∫
Ωelm

∇φi(r) · ∇φj(r)dΩ (3.64)

bi =

∫
Ω

φi(r)S(r)dΩ +

∫
Γ2

φi(r)q(r)dΓ −
∫

Ω

∇φi(r) · ∇fb(r)dΩ

=
∑
elm

∫
Ωelm

φi(r)S(r)dΩ +
∑
elm

∫
Γ2elm

φi(r)q(r)dΓ −
∑
elm

∫
Ωelm

∇φi(r) · ∇fb(r)dΩ,

(3.65)

where i, j are indices satisfying Pi, Pj ∈ Ω ∪ Γ2.

Basis functions and Coordinate transformation

As we have mentioned in the previous section, the master element and their master basis
functions are preferable to evaluate the area integral and the line integral in Eq.(3.64) and
Eq.(3.65). The typical master rectangular elements are shown in Figure 3.2 and their basis
functions are in Table3.2. In this section we will discuss how the derivatives in MSCS are
expressed in LCS. By the use of the interpolation functions in Table 3.2 instead of the
basis functions, Eq.(3.64) becomes

Aelm
IJ =

2∑
i=1

2∑
j=1

∫
Ωe

gξiξj(σ, χ)
∂φelm

I

∂ξi

∂φelm
J

∂ξj

√
g(σ, χ)dσdχ, (3.66)

where nnode is the number of nodal point in the element and Eq.(3.66) requires the coordi-
nate transformation from MSCS to LCS. At first, the map between Ωelm and ΩM is written
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Element type Interpolation functions Remarks

Linear φelm
i = 1

4

(
1 + η†1

)(
1 + η†2

)
Node i = 1, . . . , 4

Quadratic φelm
i = 1

4
η†1

(
1 + η†1

)
η†2

(
1 + η†2

)
Corner node i

φelm
i = 1

2
(1 − η2

1) η
†
2

(
1 + η†2

)
Side node i, η1,i = 0

φelm
i = 1

2
η†1

(
1 + η†1

)
(1 − η2

2) Side node i, η2,i = 0

φelm
i = (1 − η2

1) (1 − η2
2) Interior node i

where η†1 ≡ η1,iη1, η
†
2 ≡ η2,iη2

Table 3.2: Interpolation functions for rectangular elements [40]

by a coordinate transformation expressed by

σ =

nnode∑
i=1

σelm
i φelm

i (η1, η2), χ =

nnode∑
i=1

χelm
i φelm

i (η1, η2), in Ωelm (3.67)

where (σelm
i , χelm

i ) is the position at the nodal point Pi in the subdomain Ωelm. By the use
of chain rule, the derivative of the interpolation function φelm

i with respect to the LCS can
be expressed as

∂φelm
i

∂η1

=
∂φelm

i

∂σ

∂σ

∂η1

+
∂φelm

i

∂χ

∂χ

∂η1

(3.68)

∂φelm
i

∂η2

=
∂φelm

i

∂σ

∂σ

∂η2

+
∂φelm

i

∂χ

∂χ

∂η2

. (3.69)

Eq.(3.68) and Eq.(3.70) can be also expressed in the matrix form as
∂φi

∂η1
∂φi

∂η2

 =


∂σ

∂η1

∂χ

∂η1
∂σ

∂η2

∂χ

∂η2



∂σ

∂η1
∂χ

∂η2

 =

[
J11 J12

J21 J22

] ∂φi

∂σ
∂φi

∂χ

 , (3.70)

where Jij is the Jacobi matrix from MSCS to LCS defined by

[
J11 J12

J21 J22

]
=


nnode∑
i=1

σi
∂φi

∂η1

nnode∑
i=1

χi
∂φi

∂η1
nnode∑
i=1

σi
∂φi

∂η2

nnode∑
i=1

χi
∂φi

∂η2

 . (3.71)

The Jacobian J is defined as

J = J11J22 − J12J21 > 0. (3.72)
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Therefore the volume element is expressed as

dV =
√
gdσdχ =

√
gJdη1dη2, (3.73)

and the derivative of the interpolation function φelm
i with respect to the MSCS can be

expressed as  ∂φi

∂σ
∂φi

∂χ

 =

[
J11 J12

J21 J22

]−1


∂φi

∂η1
∂φi

∂η2

 =

[
J∗

11 J∗
12

J∗
21 J∗

22

]
∂φi

∂η1
∂φi

∂η2

 , (3.74)

where J∗
ij is the inverse matrix of Jij. By the use of Eq.(3.73) and Eq.(3.74), Eq.(3.66) can

be reduced to the area integral over the square element in LCS as

Aelm
IJ =

2∑
k=1

2∑
l=1

2∑
m=1

2∑
n=1

∫
ΩM

J∗
ik

∂φelm
I

∂ηk

J∗
jl

∂φelm
J

∂ηl

φelm
K Jdη1dη2

{√
ggξiξj

}elm

K
(3.75)

=

∫ 1

−1

∫ 1

−1

F (η1, η2)dη1dη2 (3.76)

The area integral in Eq.(3.76) is evaluated by the Gaussian quadrature as

Aelm
ij =

Nabs∑
i=1

Nabs∑
j=1

F (η1,i, η2,j)WiWj, (3.77)

where η1,i and η2,j are abscissas and Wi and Wj are corresponding weighting factors re-
spectively.
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3.3.4 Finite element equation of advection-diffusion equation

The finite element equation of Eq.(3.23)∑
b

∫∫
w̃a

1
√
g

∂

∂t
(
√
gMabfb)

√
gdσdχ

+
∑

b

∫∫
w̃a∇ ·

(
V 1

abfb

)√
gdσdχ−

∑
b

∑
x

∫∫
w̃a∇ ·

[(↔
V

2
abx · ∇gx

)
fb

]√
gdσdχ

−
∑

b

∫∫
w̃a∇ ·

(↔
Dab · ∇fb

)√
gdσdχ

+
∑

b

∫∫
w̃aA

1
ab · ∇fb

√
gdσdχ+

∑
b

∑
x

∫∫
w̃a

(
∇gx ·

↔
A

2
abx

)
· ∇fb

√
gdσdχ

+
∑

b

∫∫
w̃aC

1
abfb

√
gdσdχ+

∑
b

∑
x

∫∫
w̃a

(
∇gx · C2

abx

)
fb
√
gdσdχ

+
∑

b

∑
x,y

∫∫
w̃a

(
∇gx ·

↔
C

3
abxy · ∇gy

)
fb
√
gdσdχ =

∫∫
w̃aSa

√
gdσdχ, (3.78)

can be therefore written in the matrix form as∑
b

∂

∂t
[(Mab + Ms

ab) fb] +
∑

b

(
V1

ab + V1s
ab + V2

ab − V2s
ab

)
fb +

∑
b

(Dab − Ds
ab) fb

+
∑

b

(
A1

ab + A1s
ab + A2

ab + A2s
ab

)
fb +

∑
b

(
C1

ab + C1s
ab + C2

ab + C2s
ab + C3

ab + C3s
ab

)
fb

= Sa + Ss
a +

∑
b

Fab. (3.79)

where ∫∫
w̃a∇ ·

(
V 1

abfb

)√
gdσdχ = wT

a

(
V1

ab + V1s
ab

)
fb, (3.80)∑

x

∫∫
w̃a∇ ·

[(↔
V

2
abx · ∇gx

)
fb

]√
gdσdχ = wT

a

(
−V2

ab + V2s
ab

)
fb, (3.81)∫∫

w̃a∇ ·
(↔
Dab · ∇fb

)√
gdσdχ = wT

a (−Dab + Ds
ab) fb + wT

a Fab, (3.82)∫∫
w̃aA

1
ab · ∇fb

√
gdσdχ = wT

a

(
A1

ab + A1s
ab

)
fb, (3.83)∑

x

∫∫
w̃a

(
∇gx ·

↔
A

2
abx

)
· ∇fb

√
gdσdχ = wT

a

(
A2

ab + A2s
ab

)
fb, (3.84)∫∫

w̃aC
1
abfb

√
gdσdχ = wT

a

(
C1

ab + C1s
ab

)
fb, (3.85)∑

x

∫∫
w̃a

(
∇gx · C2

abx

)
fb
√
gdσdχ = wT

a

(
C2

ab + C2s
ab

)
fb, (3.86)
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∑
x,y

∫∫
w̃a

(
∇gx ·

↔
C

3
abxy · ∇gy

)
fb
√
gdσdχ = wT

a

(
C3

ab + C3s
ab

)
fb, (3.87)∫∫

w̃aSaV
′dσ = wT

a (Sa + Ss
a) , (3.88)

where wa is a vector of nodal values of the weighting function wa. The derivation of integral
matrices are summarized in Appendix B.

3.3.5 FEM with hierarchical computational grid

The rectangular grid in MSCS is employed in order to decompose the fluxes parallel and
perpendicular to the field line for the computational stability and accuracy in TASK/T2.
If the computational grid whose rectangular elements are placed at regular interval in the
poloidal direction is employed, it causes not only the over constraint of the behavior of the
solution at the vicinity of the magnetic axis but also the lack of the spatial resolution in the
poloidal direction in the outer region. Therefore the hierarchical rectangular grid shown in
Figure 3.3 is employed in TASK/T2.

FEM requires C0-level continuity on the interface between different roughness domains
corresponding to the different colored domains in Figure 3.4 the hierarchical rectangular
grid and then we employ the constrained node method to keep C0-level continuity on the
interface between different roughness. In the constrained node method the same master
element is employ in both the rough and the fine domain and the value of the depen-
dent variable at the constrained node lying on a edge of the rough element fconstrained is
constrained by the interpolation in the more rough element as

fconstrained −
nnode∑

i

f elm
i φelm

i (η1,constrained, η2,constrained) = 0, (3.89)

where (η1,constrained, η2,constrained) is the position of the constrained node in the LCS of the
rough element.

The direct elimination method is employed in order to implement the constraint (3.89)
into the FEM analysis in TASK/T2. In the following discussion we use the fact that the
minimization of the functional J is equivalent to the FEM analysis in the matrix form as

MinJ (f) =
1

2
fTAf − fTb ⇔ Af − b (3.90)

Superposing all constraint (3.89), we obtain the constraint of the system in the matrix form
as

Cf = 0, (3.91)

where we introduce the number of constrained nodes M and the number of nodes including
free nodes and constrained nodes N and then C is a M×N matrix and f is a N×1 matrix.
Decomposing f into f1 consisting M constrained value and f2 consisting N −M free value,
we can transform Eq.(3.91) as

Cf =
[

C1 C2

] [ f1
f2

]
= 0 ⇔ C1f1 + C2f2 = 0 ⇔ f1 = −C−1

1 C2f2, (3.92)
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Figure 3.3: Concept of the hierarchical rectangular grid in TASK/T2

where C1 and C2 are the submatrices of C. By the use of Eq.(3.92), the dependent variable
matrix f can be described only by the submatrix f2 as

f =

[
f1
f2

]
=

[
−C−1

1 C2

I

]
f2 = Bf2, (3.93)

where B is called the condensation matrix. Substituting Eq.(3.93) into Eq.(3.90), the
functional with respect to f can be converted to that with respect to f2 as

MinJ (f) =
1

2
fT2 BTABf2 − fT2 BTb

=
1

2
fT2 Âf2 − fT2 b̂, (3.94)

where the (N−M)× (N−M) matrix Â and (N−M)×1 matrix b̂ are defined respectively
as

Â = BTAB (3.95)

b̂ = BTb. (3.96)

Therefore the matrix equation corresponding to Eq.(3.96) is finally obtained as

Âf2 = b̂, (3.97)

where the solution of Eq.(3.97) f2 satisfies the constraint (3.91) rigorously. In TASK/T2
the direct elimination method is implemented as the element-by-element process.
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Figure 3.4: Concept of FSA in TASK/T2, red dashed line at σi shows the integral route of
FSA at σi respectively.

3.4 Flux surface averaging

Three of dependent variables in TASK/T2 are constant on the flux surfaces and their
time evolutions are described approximately by the flux surface averaged equations. In
this chapter we will briefly introduce the flux surface averaging scheme in TASK/T2 by
taking the case of the equation for covariant toroidal electric field with 4-points rectangular
elements shown in Figure 3.4 for instance.

Multiplying Eq.(3.24) by a weighting function w03 and integrating it over the radial
direction, we obtain∫

w03
∂

∂t

([∮
M03.03

√
gdχ

]
Eζ

)
dσ +

∫
w03

[∮
∇ ·
(
V 1

03.01ψ
′)√gdχ] dσ

+

∫
w03

[∮
∇ ·
(
V 1

03.03Eζ

)√
gdχ

]
dσ +

∑
a

∫
w03

[∮
C1

03.09anauaζ
√
gdχ

]
dσ

+

∫
w03

[∮ (
∇R · C2

03.01.02ψ
′) dχ] dσ = 0. (3.98)

Noting that w03 is independent of the poloidal angle χ, since it is the weighting function
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of Eζ , we obtain∫∫
w03

∂

∂t
(M03.03Eζ

√
g) dσdχ+

∫∫
w03∇ ·

(
V 1

03.01ψ
′)√gdσdχ

+

∫∫
w03∇ ·

(
V 1

03.03Eζ

)√
gdσdχ+

∑
a

∫∫
w03C

1
03.09anauaζ

√
gdσdχ

+

∫∫
w03

(
∇R · C2

03.01.02ψ
′) dσdχ = 0. (3.99)

If the interpolation functions of FEM are employ for the integration in the poloidal direction
in Eq.(3.99), the finite element equation corresponding to Eq.(3.99) in the line segment
between σi and σi+1 becomes

N∑
j=1

∫
Ω(i,j)

w03
∂

∂t
(M03.03Eζ

√
g) dΩ +

N∑
j=1

∫
Ω(i,j)

w03∇ ·
(
V 1

03.01ψ
′)√gdΩ

+
N∑

j=1

∫
Ω(i,j)

w03∇ ·
(
V 1

03.03Eζ

)√
gdΩ +

∑
a

N∑
j=1

∫
Ω(i,j)

w03C
1
03.09anauaζ

√
gdΩ

+
N∑

j=1

∫
Ω(i,j)

w03

(
∇R · C2

03.01.02ψ
′) dΩ = 0

N∑
j=1

w
Ω(i,j)
03

∂

∂t

(
M

Ω(i,j)
03.03 f

Ω(i,j)
03

)
+

N∑
j=1

w
Ω(i,j)
03 V

1,Ω(i,j)
03.01 f

Ω(i,j)
01 +

N∑
j=1

w
Ω(i,j)
03 V

1,Ω(i,j)
03.03 f

Ω(i,j)
03

+
∑

a

N∑
j=1

w
Ω(i,j)
03 C

1,Ω(i,j)
03.09a f

Ω(i,j)
09a +

∑
a

N∑
j=1

w
Ω(i,j)
03 C

2,Ω(i,j)
03.01.02f

Ω(i,j)
01 = 0. (3.100)

Since node 1 and node 4 lie on the σ-constant line (σ = σi) and node 2 and node 3 lie on
the σ-constant line (σ = σi+1) in each element, information of Eζ , w03 and ψ′ are condensed

and then submatrices in Eq.(3.100) are also condensed respectively. 4 × 4-matrix M
Ω(i,j)
03.03

M
Ω(i,j)
03.03 =


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44


Ω(i,j)

03.03

(3.101)

is condensed to 2 × 2-matrix M̄
Ω(i,j)
03.03 ,

M̄
Ω(i,j)
03.03 =

[
M̄11 M̄12

M̄21 M̄22

]Ω(i,j)

03.03

=

[
M11 +M14 +M41 +M44 M12 +M13 +M42 +M43

M21 +M24 +M31 +M34 M22 +M23 +M32 +M33

]Ω(i,j)

03.03

, (3.102)
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4 × 4-matrix V
1,Ω(i,j)
03.01 ,

V
1,Ω(i,j)
03.01 =


V11 V12 V13 V14

V21 V22 V23 V24

V31 V32 V33 V34

V41 V42 V43 V44


1,Ω(i,j)

03.01

(3.103)

is condensed to 2 × 2-matrix V̄
1,Ω(i,j)
03.01 ,

V̄
1,Ω(i,j)
03.01 =

[
V̄11 V̄12

V̄21 V̄22

]1,Ω(i,j)

03.01

=

[
V11 + V14 + V41 + V44 V12 + V13 + V42 + V43

V21 + V24 + V31 + V34 V22 + V23 + V32 + V33

]1,Ω(i,j)

03.01

, (3.104)

4 × 4-matrix V
1,Ω(i,j)
03.03

V
1,Ω(i,j)
03.03 =


V11 V12 V13 V14

V21 V22 V23 V24

V31 V32 V33 V34

V41 V42 V43 V44


1,Ω(i,j)

03.03

(3.105)

is condensed to 2 × 2-matrix V̄
Ω(i,j)
03.03 ,

V̄
1,Ω(i,j)
03.03 =

[
V̄11 V̄12

V̄21 V̄22

]1,Ω(i,j)

03.03

=

[
V11 + V14 + V41 + V44 V12 + V13 + V42 + V43

V21 + V24 + V31 + V34 V22 + V23 + V32 + V33

]1,Ω(i,j)

03.03

(3.106)

4 × 4-matrix C
1,Ω(i,j)
03.09a

C
1,Ω(i,j)
03.09a =


C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44


1,Ω(i,j)

03.09a

(3.107)

is condensed to 2 × 4-matrix C̄
1,Ω(i,j)
03.09a ,

C̄
1,Ω(i,j)
03.09a =

[
C̄11 C̄12 C̄13 C̄14

C̄21 C̄22 C̄23 C̄24

]1,Ω(i,j)

03.09a

=

[
C11 + C41 C12 + C42 C13 + C43 C14 + C44

C21 + C31 C22 + C32 C23 + C33 C24 + C44

]1,Ω(i,j)

03.09a

, (3.108)
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and 4 × 4-matrix C
2,Ω(i,j)
03.01

C
2,Ω(i,j)
03.01.02 =


C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44


2,Ω(i,j)

03.01.02

(3.109)

is condensed 2 × 2-matrix C̄
2,Ω(i,j)
03.01.02,

C̄
2,Ω(i,j)
03.01.02 =

[
C̄11 C̄12

C̄21 C̄22

]2,Ω(i,j)

03.01

=

[
C11 + C14 + C41 + C44 C12 + C13 + C42 + C43

C21 + C24 + C31 + C34 C22 + C23 + C32 + C33

]2,Ω(i,j)

03.01.02

. (3.110)

The finite element equation (3.100) is therefore reduced to

∂

∂t

(
M̂i

03.03

[
{Eζ}σi

{Eζ}σi+1

])
+
(
V̂1,i

03.01 + Ĉ2,i
03.01.02

)[ {ψ′}σi

{ψ′}σi+1

]

+ V̂1,i
03.03

[
{Eζ}σi

{Eζ}σi+1

]
+
∑

a

N∑
j=1

C̄
1,Ω(i,j)
03.09a


{nauaζ}1

{nauaζ}2

{nauaζ}3

{nauaζ}4


Ω(i,j)

=

[
0
0

]
, (3.111)

where M̂i
03.03, V̂1,i

03.01, V̂1,i
03.03 and Ĉ2,i

03.01.02 are defined by

M̂i
03.03 =

N∑
j=1

M̄
Ω(i,j)
03.03 (3.112)

V̂1,i
03.01 =

N∑
j=1

V̄
1,Ω(i,j)
03.01 (3.113)

V̂1,i
03.03 =

N∑
j=1

V̄
1,Ω(i,j)
03.03 (3.114)

Ĉ2,i
03.01.02 =

N∑
j=1

C̄
2,Ω(i,j)
03.01.02. (3.115)

Since the fourth term in the left hand side of Eq.(3.111) is connected to the all local
values of nauaζ at the nodal points lying on both σ = σi and σ = σi+1, we introduce the
intermediate variables X i,j

03 defined by

[
X i,j

03,1

X i,j
03,2

]
=

[
X i,j−1

03,1

X i,j−1
03,2

]
+
∑

a

C̄
1,Ω(i,j)
03.09a


{nauaζ}1

{nauaζ}2

{nauaζ}3

{nauaζ}4


Ω(i,j)

03.09a

(j = 1, · · · , N − 1) (3.116)

[
X i,0

03,1

X i,0
03,2

]
=

[
0
0

]
(3.117)
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in order to improve the locality of the matrix equation. By the use of X i,j
03 , Eq.(3.111) is

reduced to

∂

∂t

(
M̂i

03.03

[
{Eζ}σi

{Eζ}σi+1

])
+
(
V̂1,i

03.01 + Ĉ2,i
03.01.02

)[ {ψ′}σi

{ψ′}σi+1

]
+ V̂1,i

03.03

[
{Eζ}σi

{Eζ}σi+1

]

+

[
X i,N−1

03,1

X i,N−1
03,2

]
+
∑

a

[
C̄11 C̄12 C̄13 C̄14

C̄21 C̄22 C̄23 C̄24

]2,Ω(i,N)

03.09a


{nauaζ}1

{nauaζ}2

{nauaζ}3

{nauaζ}4


Ω(i,N)

03.09a

= 0. (3.118)

Introducing the intermediate variable X i,j
03 defined by

X i,j
03 ≡ X i,j

03,1 +X i−1,j
03,2 (2 ≤ i ≤M), X1,j

03 ≡ X1,j
03,1, XM+1,j

03 ≡ XM,j
03,2 , (3.119)

we finally obtain N simultaneous equations including M + 1 equations as

∂

∂t

(
M̃03.03f̃03

)
+
(
Ṽ 1

03.01 + C̃2
03.01.02

)
f̃01 + Ṽ 1

03.03f̃03 + ĨX̃N−1
03 +

∑
a

C̃N
03.09af̃

N
09a = 0 (3.120)

− ĨX̃j
03 + ĨX̃j−1

03 +
∑

a

C̃1,j
03.09af̃

j
09a = 0 (1 ≤ j ≤ N − 1), (3.121)

where

f̃01 =

 {ψ}σ1
...
{ψ}σM+1

 , f̃03 =

 {Eζ}σ1
...
{Eζ}σM+1

 , f̃j
09a =

 {nauaζ}σ1,χj

...
{nauaζ}σM+1,χj


X̃j

03 =

X
1,j
03

...

XM+1,j
03


M̃03.03 =

M∑
i=1

M̂ i
03.03, Ṽ1

03.01 =
M∑
i=1

V̂ 1,i
03.01, Ṽ1

03.03 =
M∑
i=1

V̂ 1,i
03.03,

C̃2
03.01.02 =

M∑
i=1

Ĉi
03.01.02, C̃1

03.09a =
M∑
i=1

Ĉ i
03.09a.

The other flux surface averaged equations can be discretized by the same procedure.
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3.5 Time discretization

Although we have described the derivation of the finite element equations of (FSA) advection-
diffusion equations by SUPG-FEM in the previous section, we have to also discretize these
equations in the time direction. Since the interpolation function which we employ is inde-
pendent of time and the time dependence of the dependent values are expressed as the time
evolution of their nodal values, we employ the finite difference method as the discretization
method in the time direction.

We introduce the following time-dependent nonlinear equation

∂

∂t
[M(f)f] + X(f)f = S(f). (3.122)

Eq.(3.122) is a simplified form of Eq.(3.79), where f is the dependent variable vector de-
pending only on time, M and X are coefficient matrices and S is a source vector. Applying
the finite difference approximation in the time direction on Eq.(3.122), we obtain

M(fn+1)fn+1 − M(fn)fn

∆t
+ (1 − α) X(fn)fn + αX(fn+1)fn+1 = (1 − α) S(fn) + αS(fn+1),

(3.123)

where the subscript n indicates the n-th time step, ∆t is the times step width between
n-th and (n + 1)-th time step and α is an arbitrary parameter taking 0 ≤ α ≤ 1, where
α = 0 is the full explicit method, α = 1/2 is the Crank-Nicolson method and α = 1 is the
full implicit method.

If the parameter α increases, the robustness of the discretized equation increases but its
computational cost also increases. Since solving the transport in fusion plasma requires a
robust algorithm due to its strong anisotropy and non-linearity, we employ the full implicit
method. After a short calculation, Eq.(3.123) can be reduced to

A(fn+1)fn+1 = b(fn+1, fn), (3.124)

where

A(fn+1) = M(fn+1) + ∆tX(fn+1) (3.125)

b(fn+1, fn) = ∆tS(fn+1) + M(fn)fn. (3.126)

Solving Eq.(3.124) requires a successive approximation scheme, since Eq.(3.124) is a
nonlinear equation. The Picard iterative method is therefore employed in TASK/T2. In
the Picard iterative method, successive approximations are obtained by solving

fn+1
l+1 = A(fn+1

l )−1b(fn+1
l , fn), (3.127)

where the subscript l indicates l-th iteration and fn+1
0 = fn. Eq.(3.127) is solved iteratively

till the following convergence criterion is satisfied∣∣fn+1
l+1 − fn+1

l

∣∣∣∣fn+1
l+1

∣∣ < εtolerance, (3.128)

where εtolerance is the error threshold.
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Figure 3.5: Concept of the computational grid for limiter configuration; the red colored
area is core region and the yellow colored area is the peripheral region respectively. Com-
putational boundaries are expressed by the colored heavy lines.

3.6 Computational grid, boundary conditions and ini-

tial conditions for limiter configuration

The concept of the computational grid for limiter configuration is shown in Figure 3.5. In
Figure 3.5, σSOL

wall is the position of the first wall normalized by the position of the LCFS.
The boundary conditions for the limiter configuration are summarized as follows.

• Green heavy line (σ = 0, 0 ≤ χ ≤ 2π): the green heavy line is projected to the green
point in the cylindrical coordinate so that the dependent variable have a same value

f(0, χ) = f0, (0 ≤ χ ≤ 2π) (3.129)

• Red heavy lines (0 ≤ σ ≤ 1, χ = 0, 2π): the red heavy lines are projected to the red
line in the cylindrical coordinate so that the dependent variable have the periodic
property as

f(σ, 0) = f(σ, 2π), (0 ≤ σ ≤ 2π). (3.130)

• Yellow heavy lines (1 ≤ σ ≤ σSOL
wall , χ = 0, 2π): the yellow heavy lines correspond to

limiter surfaces. As a preliminary step for the limiter tokamak analysis with boundary
conditions on limiter plate, we assume a virtual limiter system where a large particle
sink is assumed on the limiter plate in order to produce the sonic flow in the front of
the limiter plates. In the virtual limiter tokamak, periodic boundary conditions are
imposed as

f(σ, 0) = f(σ, 2π), (0 ≤ σ ≤ 2π). (3.131)
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R0 : major radius
a : minor radius
b : radial position of first wall
Bc : magnetic field intensity at the magnetic axis
qc : safety factor at the magnetic axis
nac : particle density at the magnetic axis
Tac : temperature at the magnetic axis
qs : safety factor at LCFS
nas : particle density at LCFS
Tas : temperature at LCFS
naw : particle density at first wall
Taw : temperature at first wall
nn : parameter of shape of density profile
mn : parameter of shape of density profile
nT : parameter of shape of temperature profile
mT : parameter of shape of temperature profile

Table 3.3: list of the given parameters for limiter configuration in TASK/T2

• Light blue heavy lines (σ = σSOL
wall , 0 ≤ χ ≤ 2π): the light blue heavy line corresponds

to the surface of the first wall. Since the set of equations consists of 5+6N first-order
differential equations with respect to radial direction, we need 5+6N boundary con-
ditions to solve them, where N is the number of particle species. They are determined
as

ψ = ψinitial, I = I initial, Eσ = 0, Ēχ = 0, Eζ = 0,

naū
ρ
a = 0, naua‖ = 0, nauaζ = 0, Q̄ρ

a = 0, Qa‖ = 0, Qaζ = 0

Since initial conditions may affect the result of nonlinear calculation, the number of
given parameter should be reduced as few as possible and the other conditions should be
constructed consistency from the given conditions. The given parameters in TASK/T2 are
summarized in Table 3.3.

At first the initial profiles of density and pressure are given as

na =


(nac − nas) (1 − ρnn)mn + nas (0 ≤ ρ ≤ 1)

naw +
4∑

l=1

anl (ρ− ρw)l (1 ≤ ρ ≤ ρw)
(3.132)

Ta =


(Tac − Tas) (1 − ρnT )mT + Tas (0 ≤ ρ ≤ 1)

Taw +
4∑

l=1

aT l (ρ− ρw)l (1 ≤ ρ ≤ ρw)
(3.133)

pa = naTa, (3.134)
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where ρ ≡ r/a, ρw ≡ b/a and σ ≡ ρ2. The coefficients anl and aT l are automatically
determined by following conditions,

na(1 + 0) = na(1 − 0),
∂na

∂ρ
(1 + 0) =

∂na

∂ρ
(1 − 0),

∂2na

∂ρ2
(1 + 0) =

∂2na

∂ρ2
(1 − 0),

∂na

∂ρ
(ρw) = 0

Ta(1 + 0) = Ta(1 − 0),
∂Ta

∂ρ
(1 + 0) =

∂Ta

∂ρ
(1 − 0),

∂2Ta

∂ρ2
(1 + 0) =

∂2Ta

∂ρ2
(1 − 0),

∂Ta

∂ρ
(ρw) = 0

At second, the initial profiles of ψ′ and I are determined by the profile of the safety
factor

q =

{
(qc − qs)

(
1 − ρ2

)
+ qs (0 ≤ ρ ≤ 1)

(qs − qc)ρ
2 + qc (1 ≤ ρ ≤ ρw).

(3.135)

(3.136)

According to the definition of the safety factor, its profile can be expressed with I and ψ′

as

q ≡ dφ

dψ
=

〈
Bζ
〉

〈Bχ〉
=

〈R−2〉 I〈√
g−1
〉
ψ′

=
I

ψ′
1

2π

∮ √
g

R2
dχ

=
I

ψ′
a2

2

1

2πR0

∮
1

(1 + ε0ρ cosχ)
dχ

=
a2I

2ψ′R0

1√
1 − ε20σ

, (3.137)

where ε0 = a/R0 is the inverse aspect ratio of toroidal device. In the integration in
Eq.(3.137), the following formula has been employed∫ 2π

0

dx

1 + a cos x
=

2π√
1 − a2

for (|a| < 1). (3.138)

Since I in the limit of large aspect ratio is expressed as

I = B0R0, (3.139)

the initial profile of ψ′ is therefore obtained as

ψ′ =
dψ

dσ
=

a2B0

2q
√

1 − ε20σ
. (3.140)

At third, the initial profile of current density is discussed which determines those of the
electric field and the fluxes. In the case of axisymmetric configurations, the equilibrium
current density profile is obtained from Ampère law as

µ0j = ∇× B = ∇I ×∇ζ + ∇ ·
(

1

R2
∇ψ
)
R2∇ζ. (3.141)
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From Eq.(3.139) and Eq.(3.141), there is only the toroidal current density in axisymmetric
configuration,

jσ = 0 (3.142)

jχ = 0. (3.143)

The covariant toroidal current density is obtained from total force balance in the radial
direction as

∇p · ∇ρ = [I (∇I ×∇ζ) ×∇ζ − (j · ∇ζ)∇ψ] · ∇σ
dp

dσ
=

[
− 1

µ0R2
I
∂I

∂σ
− 1

R2
jζ
dψ

dσ

]
jζ = −

(
R2 dp

dψ
+

1

µ0

I
dI

dψ

)
= −R2 dp

dψ
= −R2 1

ψ′
dp

dσ
, (3.144)

where p =
∑
pa is the total pressure. Eq.(3.144) is employed to determine the initial

profiles of covariant toroidal fluxes, but Eq.(3.144) cannot be used directly to determine
that of the covariant toroidal electric field profile by Ohm’s law since Eζ has to be constant
on the flux surface. We then take the surface average of Eq.(3.144) and obtain

〈j〉ζ =

〈
−R2 1

ψ′
dp

dρ

〉
= −

∮
R2√gdχ∮
√
gdχ

1

ψ′
dp

dσ

= −
(

1 +
3

2
ε20σ

)
R2

0

ψ′
dp

dσ
, (3.145)

where the following integration formulae have been used,∫ 2π

0

(1 + a cos x) dx = 2π (3.146)∫ 2π

0

(1 + a cos x)3 dx = 2π

(
1 +

3

2
a2

)
. (3.147)

By the use of Eq.(3.143) and Eq.(3.144), the initial profile of the parallel current density
profile is obtained as

j‖ = jχB
χ

B
+
Bζ

B
jζ = − I

B

1

ψ′
dp

dσ
(3.148)

At fourth, the initial profiles of Eζ , Êχ and Eρ are determined by the current density
profiles and the radial force balance. The initial profiles of the covariant toroidal electric
field Eζ and the covariant poloidal electric field Êχ are determined by Ohm’s law respec-
tively as

Eζ = η 〈jζ〉 = −η
(

1 +
3

2
ε20σ

)
R2

0

ψ′
dp

dσ
, (3.149)

Eχ = σÊχ = ηjχ = 0 (3.150)
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where η is the neoclassical resistivity defined as

η = 1.65 × 10−9 ln Λ/T 3/2
e (1 −√

ε0ρ)
−2 Te in keV. (3.151)

On the other hand, the initial profile of the covariant radial electric field is determined by
the radial force balance for electron as

gσσ dpe

dσ
= −gσσeneEσ +

IB

ψ′ j‖ −
B2

ψ′ jζ

gσσ dpe

dσ
= −gσσeneEσ + gσσ dp

dσ

Eσ =
1

ene

∑
a 6=e

dpa

dσ
, (3.152)

where we have assumed that ions are immobile and the current is driven only by the electron
flow.

Finally, the initial profiles of fluxes are determined by the current profiles. Since we
have assumed that ions are immobile and the current is driven only by the electron flow as
previously mentioned, the initial profiles of the particle fluxes are obtained as

ρneū
ρ
e = 0 (3.153)

neue‖ = −
j‖
e

(3.154)

neueζ = −〈jζ〉
e

(3.155)

ρnaū
ρ
a = 0 for a 6= e (3.156)

naua‖ = 0 for a 6= e (3.157)

nauaζ = 0 for a 6= e. (3.158)

As for the total heat fluxes, we have only taken the convective part of them into account
so that the initial profiles of the total heat fluxes becomes

Q̄ρ
a =

5

2
paū

ρ
a (3.159)

Qa‖ =
5

2
paua‖ (3.160)

Qaζ =
5

2
pauaζ (3.161)
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1σσ
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PRV
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SOL
wall

Z

R

Figure 3.6: Concept of the computational grid for single-null divertor configuration; the red
colored area is core region, the yellow colored area is the peripheral region and the green
colored area is the private region respectively. Computational boundaries are expressed by
the colored heavy lines.

3.7 Computational grid for single null divertor con-

figuration

The concept of the computational grid for single null divertor configuration is shown in
Figure 3.6. In Figure 3.6, σSOL

wall and σPRV
wall are the position of the first wall normalized by

the position of the LCFS and χin and χout are the extended poloidal angle defined by the
magnetic field length. The boundary conditions and initial conditions for the single-null
divertor configuration are future works, but some findings on the boundary conditions are
summarized as follows.

• Green heavy line (σ = 0, 0 ≤ χ ≤ 2π): the green heavy line is projected to the green
point in the cylindrical coordinate so that the dependent variable have a same value

f(0, χ) = f0, (0 ≤ χ ≤ 2π) (3.162)

• Red heavy lines (0 ≤ σ ≤ 1, χ = 0 + 0, 2π − 0): the red heavy lines in MSCS
are projected to the red line in the cylindrical coordinate and correspond to the
periodic boundaries in the core region so that the dependent variable have the periodic
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property

f(σ, 0 + 0) = f(σ, 2π − 0), (0 ≤ σ ≤ 1). (3.163)

• Dark blue heavy lines (σPRV
wall ≤ σ ≤ 1, χ = 0, 2π): the dark blue heavy lines in MSCS

are projected to the dark blue line in the cylindrical coordinate correspond to the
periodic boundaries in the private region so that the dependent variable have the
periodic property

f(σ, 0 − 0) = f(σ, 2π + 0), (σPRV
wall ≤ σ ≤ 1). (3.164)

• Yellow heavy lines (σPRV
wall ≤ σ ≤ σSOL

wall , χ = χin, χout): the yellow heavy lines corre-
spond to divertor plates and appropriate boundary conditions are future works.

• Light blue heavy lines (σ = σSOL
wall , χ

in ≤ χ ≤ χout): the light blue heavy line corre-
sponds to the surface of the first wall and appropriate boundary conditions are future
works.

• Purple heavy lines (σ = σPRV
wall , χin ≤ χ ≤ 0, 2π ≤ χ ≤ χout): the purple heavy line

also corresponds to the surface of the first wall and appropriate boundary conditions
are future works.

3.8 Summary and discussion

we have discussed numerical schemes and developed a transport code for the two-dimensional
transport modeling. We have reduced our two-dimensional transport model to advection-
diffusion equations and derived their coefficients. The finite element method has been
employed as a discretization scheme in space, the full implicit method has been employed
as a discretization scheme in time, and the Picard iteration has been employed as a non-
linear iteration method. The hierarchical rectangular grid in MSCS has been employed in
order to separate the fluxes parallel and perpendicular to the field line for numerical sta-
bility and accuracy, to keep the poloidal resolution of the calculation in the outer region,
and to ensure the flexibility of the grid width in the radial direction. We have discussed
boundary conditions and initial conditions for limiter tokamak plasmas
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Chapter 4

Conclusions and future perspectives

We have engaged in a fundamental study of two-dimensional transport modeling describing
the time evolution of the core and the peripheral plasmas for the purpose of analyzing the
edge transport barrier which enhances the confinement performance and the peripheral
transport which determines the heat load on the divertor plate.

Firstly, we have derived a set of two-dimensional transport equations which is a starting
point for two-dimensional transport modeling in tokamak plasmas for the first time. This
set of equations has the following features;

• The magnetic surface coordinate system is employed to evaluate transport with strong
anisotropy driven by very fast transport in the parallel direction accurately and the
poloidal coordinate based on the field line length is introduced to describe the pe-
ripheral region outside of the separatrix.

• In order to describe self-consistent time evolution of the plasma rotations and the
radial electric field, the two-dimensional equations have been derived from the multi-
fluid equation describing the electron and ion transport separately without the as-
sumption of charge quasi-neutrality.

• We have developed a unified method describing both the neoclassical transport in the
weakly collisional core plasma and the classical transport in the strongly collisional
peripheral plasma.

• In order to evaluate accurately the neoclassical heat transport playing an important
role in the transport barrier, the equation for heat flux has been also employed. It
has been confirmed that our transport equations reproduce the conventional diffusive-
type neoclassical transport model in a stationary state.

Secondly, we have derived a set of electromagnetic equations consistent with the two-
dimensional transport equation from Maxwell’s equations for the first time. This set of
equations has the following features;

• Since the existence of the flux surfaces is assumed, the time evolution of the electro-
magnetic field is described by the five components except for the contravariant radial
magnetic field.
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• The existence of axisymmetric flux surfaces requires that the poloidal flux, the
poloidal current and the covariant toroidal electric field are flux functions.

• The equations describing the time evolution of the flux functions have to be flux-
surface averaged and the equation of the covariant electric field corresponds to the
flux-surface averaged Grad-Shafranov equation employed in the conventional 1.5D
transport modeling that couples the two-dimensional equilibrium and the one-dimensional
transport modeling.

• There is an algorithm which couples our two-dimensional transport equations and
electromagnetic equations to describe the time evolution of tokamak plasmas.

In addition, we have discussed numerical schemes and developed a transport code for
the two-dimensional transport modeling. We have reduced our two-dimensional transport
model to advection-diffusion equations and derived their coefficients. The finite element
method has been employed as a discretization scheme in space, the full implicit method
has been employed as a discretization scheme in time, and the Picard iteration has been
employed as a nonlinear iteration method. The hierarchical rectangular grid in MSCS has
been employed in order to separate the fluxes parallel and perpendicular to the field line
for numerical stability and accuracy, to keep the poloidal resolution of the calculation in
the outer region, and to ensure the flexibility of the grid width in the radial direction.
We have discussed boundary conditions and initial conditions for tokamak plasmas with
limiter, launched the development of transport code and done preliminary calculations.

The future work extending the present study will include, the accomplishment of code
development, the introduction of neutral particle transport model, the introduction of
turbulent transport model and the application to divertor configurations.
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Appendix A

Two-dimensional transport equations
in advection-diffusion form

A.1 Preliminaries

A.1.1 Parallel viscous coefficients

The parallel viscous coefficient π‖a can be written with the dependent variables in TASK/T2
as

π‖a = −3µa1

(
∇‖ua‖ − uaκ

)
− 3µa2

[
∇‖

(
2qa‖
5pa

)
− 2qaκ

5pa

]
= −3

µ̄01a

na

[
Bχ

B

∂

∂χ

(
naua‖

)
− ua‖

Bχ

B

∂na

∂χ
+
B2

t

B3

Bχ

I

∂B

∂χ
nauaζ −

B2
t

B3

∂B

∂χ
nau

χ
a

]
− 3

µ̄02a

pa

[
Bχ

B

∂Qa‖

∂χ
− wa‖

Bχ

B

∂pa

∂χ
+
B2

t

B3

Bχ

I

∂B

∂χ
Qaζ −

B2
t

B3

∂B

∂χ
Qχ

a

]
(A.1)

where

µ̄01a = µa1 − µa2, (A.2)

µ̄02a =
2

5
µa2, (A.3)

wa‖ =
Qa‖

pa

. (A.4)

The EW parallel viscous coefficient r‖a can be also written as

r‖a = −3
µ̄03a

na

Ta

ma

[
Bχ

B

∂

∂χ

(
naua‖

)
− ua‖

Bχ

B

∂na

∂χ
+
B2

t

B3

Bχ

I

∂B

∂χ
nauaζ −

B2
t

B3

∂B

∂χ
nau

χ
a

]
− 3

µ̄04a

pa

Ta

ma

[
Bχ

B

∂Qa‖

∂χ
− wa‖

Bχ

B

∂pa

∂χ
+
B2

t

B3

Bχ

I

∂B

∂χ
Qaζ −

B2
t

B3

∂B

∂χ
Qχ

a

]
(A.5)

where

µ̄03a =
5

2
(µa1 − µa2) + (µa2 − µa3) (A.6)

µ̄χ
04a = µa2 +

2

5
µa3 (A.7)
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A.1.2 Friction forces

The friction force F fri
a can be written with the dependent variables in TASK/T2 as

F fri
a =

∑
b

(
lab
11ub − lab

12

2qb

5pb

)
=
∑

b

[
lab
11

naub

nb

− lab
12

2

5pb

(
Qb −

5

2
pb
nbub

nb

)]
=
∑

b

(
l̄01ab

nb

nbub +
l̄02ab

pb

Qb

)
(A.8)

where

l̄01ab = lab
11 + lab

12 (A.9)

l̄02ab = −2

5
lab
12 (A.10)

The EW friction force Gfri
a can be also written as

Gfri
a =

Ta

ma

[
5

2

∑
b

(
lab
11ub − lab

12

2qb

5pb

)
+
∑

b

(
−lab

21ub + lab
22

2qb

5pb

)]
(A.11)

=
Ta

ma

[∑
b

(
5

2

lab
11 + lab

12

nb

− lab
21 + lab

22

nb

)
nbub +

∑
b

(
−5

2

2lab
21

5pb

+
2lab

22

5pb

)
Qb

]

=
∑

b

Ta

ma

l̄03ab

na

naub +
∑

b

Ta

ma

l̄04ab

pa

Qb, (A.12)

where

l̄03ab =
5

2

(
lab
11 + lab

12

)
−
(
lab
21 + lab

22

)
(A.13)

l̄04ab = −lab
21 +

2

5
lab
22 (A.14)

A.2 Equation for poloidal magnetic flux function

1

V ′
∂

∂t
(V ′ψ′) − 〈∇ · (ugψ

′)〉 − ∂Eζ

∂σ
= 0

1

V ′
∂

∂t
(V ′ 〈M01.01〉ψ′) +

〈
∇ ·
(
V 1

01.01ψ
′)〉+

〈
A1

01.03 · ∇Eζ

〉
= 0, (A.15)

where

√
gM01.01 =

√
g (A.16)

√
gV 1

01.01 =
(
−√

guσ
g −√

guχ
g

)
(A.17)

√
gA1

01.03 =
(
−√

g 0
)

(A.18)
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A.3 Equation for poloidal current function

1

V ′
∂

∂t
(V ′I) − 〈∇ · (ugI)〉 +

〈
R2

√
g

(
∂Eχ

∂σ
− ∂Eσ

∂χ

)〉
= 0

1

V ′
∂

∂t
(V ′I) − 〈∇ · (ugI)〉 +

〈
R2σ
√
g

∂Ēχ

∂σ

〉
+

〈
R2

√
g
Ēχ

〉
−
〈
R2

√
g

∂Eσ

∂χ

〉
= 0

1

V ′
∂

∂t
(V ′ 〈M02.02〉 I) +

〈
∇ ·
(
V 1

02.02I
)〉

+
〈
A1

02.04 · ∇Ēχ

〉
+
〈
A1

02.05 · ∇Eσ

〉
+
〈
C1

02.04Ēχ

〉
= 0

(A.19)

where

√
gM02.02 =

√
g (A.20)

√
gV 1

02.02 =
(
−√

guσ
g −√

guχ
g

)
(A.21)

√
gA1

02.04 =
(
R2σ 0

)
(A.22)

√
gA1

02.05 =
(

0 −R2
)

(A.23)
√
gC1

02.04 = R2 (A.24)

A.4 Equation for covariant toroidal electric field

1

c2
∂Eζ

∂t

∣∣∣∣
x
−
〈
R2∇ ·

(
1

R2
∇ψ
)〉

+ 〈µ0jζ〉 = 0

1

V ′
∂

∂t

(
V ′ 1

c2
Eζ

)
−
〈
∇ ·
(ug

c2
Eζ

)〉
− 〈∇ · (ψ′∇σ)〉

+

〈(
∇R · 2

R
∇σ
)
ψ′
〉

+ µ0

∑
a

〈eanauaζ〉 = 0

1

V ′
∂

∂t

(
V ′ 1

c2
Eζ

)
− 〈∇ · (ψ′∇σ)〉 −

〈
∇ ·
(ug

c2
Eζ

)〉
+
∑

a

〈µ0eanauaζ〉 +

〈(
∇R · 2

R
∇σ
)
ψ′
〉

= 0

1

V ′
∂

∂t
(V ′ 〈M03.03〉Eζ) +

〈
∇ ·
(
V 1

03.01ψ
′)〉+

〈
∇ ·
(
V 1

03.03Eζ

)〉
+
∑

a

〈
C1

03.09anauaζ

〉
+
〈(
∇R · C2

03.01.02

)〉
ψ′ = 0, (A.25)
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where

√
gM03.03 =

√
g

c2
(A.26)

√
gV 1

03.01 =
(
−√

ggσσ −√
ggσχ

)
(A.27)

√
gV 1

03.03 =

(
−√

g
uσ

g

c2
−√

g
uχ

g

c2

)
(A.28)

√
gC1

03.09a =
√
gµ0ea (A.29)

√
gC2

03.01.02 =

(
√
g
2gσσ

R

√
g
2gσχ

R

)
(A.30)

A.5 Equation for covariant poloidal electric field

1

c2
∂Eχ

∂t

∣∣∣∣
x

+
gχχ√
g

∂I

∂σ
+
µ0

Bχ

(
j‖B − jζI

)
= 0

1

c2
∂Eχ

∂t

∣∣∣∣
x

+
gχχ√
g

∂I

∂σ
+ µ0jχ = 0

1
√
g

∂

∂t

(
√
g

1

c2
σĒχ

)
−∇ ·

(ug

c2
σĒχ

)
+
gχχ√
g

∂I

∂σ
+
∑

a

µ0eagχσσnaū
σ
a +

∑
a

µ0eagχχnau
χ
a = 0

1
√
g

∂

∂t

(√
gM04.04Ēχ

)
+ ∇ ·

(
V 1

04.04Ēχ

)
+ A1

04.02∇I +
∑

a

C1
04.07anaū

σ
a +

∑
a

C1
04.10anau

χ
a = 0,

(A.31)

where

√
gM04.04 =

√
g
σ

c2
(A.32)

√
gV 1

04.04 =

(
−√

g
uσ

gσ

c2
−√

g
uχ

gσ

c2

)
(A.33)

√
gA1

04.02 =
(
gχχ 0

)
(A.34)

√
gC1

04.07a =
√
gµ0eagχσσ (A.35)

√
gC1

04.10a =
√
gµ0eagχχ (A.36)

A.6 Equation for covariant radial electric field

∇ · E =
ρc

ε0

∇ ·
(
σĒχ∇χ

)
+ ∇ · (Eσ∇σ) −

∑
a

ea

ε0

na = 0

∇ ·
(
V 1

05.04Eχ

)
+ ∇ ·

(
V 1

05.05Eσ

)
+
∑

a

C1
05.06ana = 0, (A.37)
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where

√
gV 1

05.04 =
(√

ggσχσ
√
ggχχσ

)
(A.38)

√
gV 1

05.05 =
(√

ggσσ √
ggχσ

)
(A.39)

√
gC1

05.06a = −
ea
√
g

ε0

(A.40)

A.7 Equation for particle density

1
√
g

∂

∂t
(
√
gna) −∇ · (ugna) + ∇ · (naua) = Sna

1
√
g

∂

∂t
(
√
gna) + ∇ · [(ua − ug)na] = Sna

1
√
g

∂

∂t
(
√
gM06a.06ana) + ∇ ·

(
V 1

06a.06ana

)
= S06a.06a, (A.41)

where

√
gM06a.06a =

√
g (A.42)

√
gV 1

06a.06a =
(√

g
(
uσ

a − uσ
g

) √
g
(
uχ

a − uχ
g

) )
(A.43)

√
gS06a.06a =

√
gSna (A.44)

A.8 Equation for contravariant radial particle flux

1

ma

∇σ · ∇pa =
ea

ma

naE
σ +

ea

ma

IB

ψ′ naua‖ −
ea

ma

B2

ψ′ nauaζ

Bχ

ma

∇σ · ∇pa −
eana

ma

gσχσBχĒχ − eana

ma

gσσBχEσ − ea

ma

IB

ψ′ B
χnaua‖ +

ea

ma

B2

ψ′ B
χnauaζ = 0

A1
07a.11a · ∇pa + C1

07a.04Ēχ + C1
07a.05Eσ + C1

07a.08anaua‖ + C1
07a.09anauaζ = 0 (A.45)

where

√
gA1

07a.11a =

( √
ggσσ

ma

Bχ

√
ggσχ

ma

Bχ

)
(A.46)

√
gC1

07a.04 = −
√
geanaσ

ma

gσχBχ (A.47)

√
gC1

07a.05 = −
√
geana

ma

gσσBχ (A.48)

√
gC1

07a.08a = − ea

ma

IB (A.49)

√
gC1

07a.09a =
ea

ma

B2 (A.50)
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A.9 Equation of parallel particle flux

∂

∂t

(
naua‖B

)∣∣∣∣
x

+ F ine
a‖

B

ma

+ F∇p
a‖

B

ma

+ F vis
a‖

B

ma

= F Lor
a‖

B

ma

+ F fri
a‖
B

ma

+ Sma‖
B

ma

(A.51)

Inertial term

∂

∂t

(
naua‖B

)∣∣∣∣
x

+ F ine
a‖

B

ma

=
1
√
g

∂

∂t

(√
gBnaua‖

)
−∇ ·

(
ugBnaua‖

)
+B∇‖

(
naua‖ua‖

)
−
(
naua‖ua‖

)
∇‖B

=
1
√
g

∂

∂t

(√
gM08a.08anaua‖

)
+ ∇ ·

(
V 1

08a.08anaua‖
)

+
(
∇B · C2

08a.08a.01

)
naua‖ (A.52)

where

√
gM08a.08a =

√
gB (A.53)

√
gV 1

08a.08a =
(
−√

guσ
gB

√
g
(
ua‖B

χ − uχ
gB
) )

(A.54)

√
gC2

08a.08a.01 =

(
0 −√

g
Bχ

B
ua‖

)
(A.55)

Force by pressure gradient

F∇p
a‖

B

ma

=
B

ma

∇‖pa =
1
√
g

∂

∂χ

(
√
g
Bχ

ma

pa

)
= ∇ ·

(
V 1

08a.11apa

)
, (A.56)

where

√
gV 1

08a.11a =

(
0

√
g
Bχ

ma

)
(A.57)
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Viscous force

F vis
a‖

B

ma

=

(
−π‖a∇‖B +

2

3
B∇‖π‖a

)
1

ma

=
3µ̄01a

mana

[
Bχ

B

∂

∂χ

(
naua‖

)
− ua‖

Bχ

B

∂na

∂χ
+
B2

t

B3

Bχ

I

∂B

∂χ
nauaζ −

B2
t

B3

∂B

∂χ
nau

χ
a

]
Bχ

B

∂B

∂χ

+
3µ̄02a

mapa

[
Bχ

B

∂Qa‖

∂χ
− wa‖

Bχ

B

∂pa

∂χ
+
B2

t

B3

Bχ

I

∂B

∂χ
Qaζ −

B2
t

B3

∂B

∂χ
Qχ

a

]
Bχ

B

∂B

∂χ

− 1
√
g

∂

∂χ

[
√
g
2µ̄01aB

χ

mana

[
Bχ

B

∂

∂χ

(
naua‖

)
− ua‖

Bχ

B

∂na

∂χ
+
B2

t

B3

Bχ

I

∂B

∂χ
nauaζ −

B2
t

B3

∂B

∂χ
nau

χ
a

]]
− 1

√
g

∂

∂χ

[
√
g
2µ̄02aB

χ

mapa

[
Bχ

B

∂Qa‖

∂χ
− wa‖

Bχ

B

∂pa

∂χ
+
B2

t

B3

Bχ

I

∂B

∂χ
Qaζ −

B2
t

B3

∂B

∂χ
Qχ

a

]]
=
∂B

∂χ

[
−

3µ̄01aua‖

mana

(
Bχ

B

)2
]
∂na

∂χ
+
∂B

∂χ

[
3µ̄01a

mana

(
Bχ

B

)2
]
∂

∂χ

(
naua‖

)
+
∂B

∂χ

[
3µ̄01a

mana

B2
t

B3

Bχ

I

Bχ

B

]
∂B

∂χ
nauaζ +

∂B

∂χ

[
−3µ̄01a

mana

B2
t

B3

Bχ

B

]
∂B

∂χ
nau

χ
a

+
∂B

∂χ

[
−

3µ̄02awa‖

mapa

(
Bχ

B

)2
]
∂pa

∂χ
+
∂B

∂χ

[
3µ̄02a

mapa

(
Bχ

B

)2
]
∂Qa‖

∂χ

+
∂B

∂χ

[
3µ̄02a

mapa

B2
t

B3

Bχ

I

Bχ

B

]
∂B

∂χ
Qaζ +

∂B

∂χ

[
−3µ̄02a

mapa

B2
t

B3

Bχ

B

]
∂B

∂χ
Qχ

a

− 1
√
g

∂

∂χ

[
√
g

{
−

2µ̄01aua‖B

mana

(
Bχ

B

)2
}
∂na

∂χ

]

− 1
√
g

∂

∂χ

[
√
g

{
2µ̄01aB

mana

(
Bχ

B

)2
}

∂

∂χ

(
naua‖

)]

− 1
√
g

∂

∂χ

[
√
g

(
2µ̄01a

mana

B2
t

B2

Bχ

B

Bχ

I

)
∂B

∂χ
nauaζ

]
− 1

√
g

∂

∂χ

[
√
g

(
−2µ̄01a

mana

B2
t

B2

Bχ

B

)
∂B

∂χ
nau

χ
a

]
− 1

√
g

∂

∂χ

[
√
g

{
−

2µ̄02awa‖B

mapa

(
Bχ

B

)2
}
∂pa

∂χ

]

− 1
√
g

∂

∂χ

[
√
g

{
2µ̄02aB

mapa

(
Bχ

B

)2
}
∂Qa‖

∂χ

]

− 1
√
g

∂

∂χ

[
√
g

(
2µ̄02a

mapa

B2
t

B2

Bχ

B

Bχ

I

)
∂B

∂χ
Qaζ

]
− 1

√
g

∂

∂χ

[
√
g

(
−2µ̄02a

mapa

B2
t

B2

Bχ

B

)
∂B

∂χ
Qχ

a

]
(A.58)

78



F vis
a‖

B

ma

= −∇ ·
[(

∇B ·
↔
V

2
08a.09a.01

)
nauaζ

]
−∇ ·

[(
∇B ·

↔
V

2
08a.10a.01

)
nau

χ
a

]
−∇ ·

[(
∇B ·

↔
V

2
08a.14a.01

)
Qaζ

]
−∇ ·

[(
∇B ·

↔
V

2
08a.15a.01

)
Qχ

a

]
−∇ ·

(↔
D08a.06a · ∇na

)
−∇ ·

[↔
D08a.08a · ∇

(
naua‖

)]
−∇ ·

(↔
D08a.11a · ∇pa

)
−∇ ·

(↔
D08a.13a · ∇Qa‖

)
+
(
∇B ·

↔
A

2
08a.06a.01

)
· ∇na +

(
∇B ·

↔
A

2
08a.08a.01

)
· ∇
(
naua‖

)
+
(
∇B ·

↔
A

2
08a.11a.01

)
· ∇pa +

(
∇B ·

↔
A

2
08a.13a.01

)
· ∇Qa‖

+
(
∇B ·

↔
C

3
08a.09a.01.01 · ∇B

)
nauaζ +

(
∇B ·

↔
C

3
08a.10a.01.01 · ∇B

)
nau

χ
a

+
(
∇B ·

↔
C

3
08a.14a.01.01 · ∇B

)
Qaζ +

(
∇B ·

↔
C

3
08a.15a.01.01 · ∇B

)
Qχ

a (A.59)

where

√
g
↔
V

2
08a.09a.01 =

 0 0

0
√
g
2µ̄01a

mana

B2
t

B2

Bχ

B

Bχ

I

 (A.60)

√
g
↔
V

2
08a.10a.01 =

 0 0

0 −√
g
2µ̄01a

mana

B2
t

B2

Bχ

B

 (A.61)

√
g
↔
V

2
08a.14a.01 =

 0 0

0
√
g
2µ̄02a

mapa

B2
t

B2

Bχ

B

Bχ

I

 (A.62)

√
g
↔
V

2
08a.15a.01 =

 0 0

0 −√
g
2µ̄02a

mapa

B2
t

B2

Bχ

B

 (A.63)

√
g
↔
D08a.06a =

 0 0

0 −√
g
2µ̄01aua‖B

mana

(
Bχ

B

)2

 (A.64)

√
g
↔
D08a.08a =

 0 0

0
√
g
2µ̄01aB

mana

(
Bχ

B

)2

 (A.65)

√
g
↔
D08a.11a =

 0 0

0 −√
g
2µ̄02awa‖B

mapa

(
Bχ

B

)2

 (A.66)

√
g
↔
D08a.13a =

 0 0

0
√
g
2µ̄02aB

mapa

(
Bχ

B

)2

 (A.67)
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√
g
↔
A

2
08a.06a.01 =

 0 0

0 −√
g
3µ̄01aua‖

mana

(
Bχ

B

)2

 (A.68)

√
g
↔
A

2
08a.08a.01 =

 0 0

0
√
g
3µ̄01a

mana

(
Bχ

B

)2

 (A.69)

√
g
↔
A

2
08a.11a.01 =

 0 0

0 −√
g
3µ̄02awa‖

mapa

(
Bχ

B

)2

 (A.70)

√
g
↔
A

2
08a.13a.01 =

 0 0

0
√
g
3µ̄02a

mapa

(
Bχ

B

)2

 (A.71)

√
g
↔
C

3
08a.09a.01.01 =

 0 0

0
√
g
3µ̄01a

mana

B2
t

B3

Bχ

I

Bχ

B

 (A.72)

√
g
↔
C

3
08a.10a.01.01 =

 0 0

0 −√
g
3µ̄01a

mana

B2
t

B3

Bχ

B

 (A.73)

√
g
↔
C

3
08a.14a.01.01 =

 0 0

0
√
g
3µ̄02a

mapa

B2
t

B3

Bχ

I

Bχ

B

 (A.74)

√
g
↔
C

3
08a.15a.01.01 =

 0 0

0 −√
g
3µ̄02a

mapa

B2
t

B3

Bχ

B

 (A.75)

Lorentz force

F Lor
a‖

B

ma

=
ea

ma

naE‖B

=
ea

ma

naB
ζEζ +

ea

ma

naB
χEχ

=
ea

ma

naB
ζEζ +

ea

ma

naB
χσĒχ

= −C1
08a.03Eζ − C1

08a.04Ēχ, (A.76)

where

√
gC1

08a.03 = −√
g
eanaB

ζ

ma

(A.77)

√
gC1

08a.04 = −√
g
eanaB

χσ

ma

(A.78)
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Friction force

F fri
a‖
B

ma

=
∑

b

(
l̄01ab

manb

nbub‖B +
l̄02ab

mapb

Qb‖B

)
= −

∑
b

(
C1

08a.08bnbub‖ + C1
08a.13bQb‖

)
(A.79)

where,

√
gC1

08a.08b = −√
g
l̄01abB

manb

(A.80)

√
gC1

08a.13b = −√
g
l̄02abB

mapb

(A.81)

Source term

√
gS08a.08a =

√
g
Sma‖B

ma

(A.82)

Equation of parallel particle flux in advection-diffusion form

1
√
g

∂

∂t

(√
gM08a.08anaua‖

)
+ ∇ ·

(
V 1

08a.08anaua‖
)

+ ∇ ·
(
V 1

08a.11apa

)
−∇ ·

[(↔
V

1
08a.09a.01 · ∇B

)
nauaζ

]
−∇ ·

[(↔
V

1
08a.10a.01 · ∇B

)
nau

χ
a

]
−∇ ·

[(↔
V

1
08a.14a.01 · ∇B

)
Qaζ

]
−∇ ·

[(↔
V

1
08a.15a.01 · ∇B

)
Qχ

a

]
−∇ ·

(↔
D08a.06a · ∇na

)
−∇ ·

[↔
D08a.08a · ∇

(
naua‖

)]
−∇ ·

(↔
D08.11a · ∇pa

)
−∇ ·

(↔
D08.13a · ∇Qa‖

)
+
(
∇B ·

↔
A

1
08a.06a.01

)
· ∇na +

(
∇B ·

↔
A

1
08a.08a.01

)
· ∇
(
naua‖

)
+
(
∇B ·

↔
A

1
08a.11a.01

)
· ∇pa +

(
∇B ·

↔
A

1
08a.13a.01

)
· ∇Qa‖

+ C1
08a.03Eζ + C1

08a.04Ēχ +
∑

b

C1
08a.08bnaub‖ +

∑
b

C1
08a.13bQb‖

+
(
C2

08a.08a.01 · ∇B
)
naua‖

+
(
∇B ·

↔
C

3
08a.09a.01.01 · ∇B

)
nauaζ +

(
∇B ·

↔
C

3
08a.10a.01.01 · ∇B

)
nau

χ
a

+
(
∇B ·

↔
C

3
08a.14a.01.01 · ∇B

)
Qaζ +

(
∇B ·

↔
C

3
08a.15a.01.01 · ∇B

)
Qχ

a

= S08a.08a (A.83)
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A.10 Equation for covariant toroidal particle flux

∂

∂t
(nauaζ)

∣∣∣∣
x

+
F ine

aζ

ma

+
F vis

aζ

ma

=
F Lor

aζ

ma

+
F fir

aζ

ma

+
Smaζ

ma

(A.84)

Inertial term

∂

∂t
(nauaζ)

∣∣∣∣
x

+
F ine

aζ

ma

=
1
√
g

∂

∂t
(
√
gnauaζ) −∇ · (ugnauaζ) + ∇ · (nauaζua)

=
1
√
g

∂

∂t
(
√
gM09a.09anauaζ) + ∇ ·

(
V 1

09a.09anauaζ

)
, (A.85)

where

√
gM09a.09a =

√
g (A.86)

√
gV 1

09a.09a =
(√

g
(
uσ

a − uσ
g

) √
g
(
uχ

a − uχ
g

) )
(A.87)

Viscous force

F vis
aζ

ma

= B∇‖

(
I

B2

π‖a
ma

)
= − 1

√
g

∂

∂χ

{
√
g
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nama

Bχ

B

I
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B
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∂χ
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)
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B
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∂χ
+
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t

B3
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I
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∂χ
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∂B

∂χ
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χ
a

]}
− 1

√
g

∂

∂χ

{
√
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Bχ

B

I

B

[
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B
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∂χ
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B

∂pa

∂χ
+
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t

B3
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I

∂B

∂χ
Qaζ −

B2
t

B3

∂B

∂χ
Qχ

a

]}
= − 1

√
g

∂

∂χ

{
√
g

[
−

3µ̄01aua‖

nama

I

B

(
Bχ

B

)2
]
∂na

∂χ

}

− 1
√
g

∂

∂χ

{
√
g

[
3µ̄01a

nama

(
Bχ

B

)2
I

B

]
∂

∂χ

(
naua‖

)}

− 1
√
g

∂

∂χ

{
√
g

[
3µ̄01a

nama

B2
t

B3

(
Bχ

B

)2
]
∂B

∂χ
nauaζ

}

− 1
√
g

∂

∂χ

{
√
g

[
−3µ̄01a

nama

B2
t

B3

Bχ

B

I

B

]
∂B

∂χ
nau

χ
a

}
− 1

√
g

∂

∂χ

{
√
g

[
−

3µ̄02awa‖

pama

(
Bχ

B

)2
I

B

]
∂pa

∂χ

}
− 1

√
g

∂

∂χ

{
√
g

[
3µ̄02a

pama

(
Bχ

B

)2
I

B

]
∂Qa‖

∂χ

}

− 1
√
g

∂

∂χ

{
√
g

[
3µ̄02a

pama

B2
t

B3

(
Bχ

B

)2
]
∂B

∂χ
Qaζ

}
− 1

√
g

∂

∂χ

{
√
g

[
−3µ̄02a

pama

B2
t

B3

Bχ

B

I

B

]
∂B

∂χ
Qχ

a

}
(A.88)
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F vis
aζ

ma

= −∇ ·
[(↔
V

2
09a.09a.01 · ∇B

)
nauaζ

]
−∇ ·

[(↔
V

2
09a.10a.01 · ∇B

)
nau

χ
a

]
−∇ ·

[(↔
V

2
09a.14a.01 · ∇B

)
Qaζ

]
−∇ ·

[(↔
V

2
09a.15a.01 · ∇B

)
Qχ

a

]
−∇ ·

(↔
D09a.06a · ∇na

)
−∇ ·

[↔
D09a.08a · ∇

(
naua‖

)]
−∇ ·

(↔
D09a.11a · ∇pa

)
−∇ ·

(↔
D09a.13a · ∇Qa‖

)
, (A.89)

where

√
g
↔
V

2
09a.09a.01 =

 0 0

0
√
g
3µ̄01a

nama

B2
t

B3

(
Bχ

B

)2

 (A.90)

√
g
↔
V

2
09a.10a.01 =

 0 0

0 −√
g
3µ̄01a

nama

B2
t

B3

Bχ

B

I

B

 (A.91)

√
g
↔
V

2
09a.14a.01 =

 0 0

0
√
g
3µ̄02a

pama

B2
t

B3

(
Bχ

B

)2

 (A.92)

√
g
↔
V

2
09a.15a.01 =

 0 0

0 −√
g
3µ̄02a

pama

B2
t

B3

Bχ

B

I

B

 (A.93)

√
g
↔
D09a.06a =

 0 0

0 −√
g
3µ̄01aua‖

nama

(
Bχ

B

)2
I

B

 (A.94)

√
g
↔
D09a.08a =

 0 0

0
√
g
3µ̄01a

nama

(
Bχ

B

)2
I

B

 (A.95)

√
g
↔
D09a.11a =

 0 0

0 −√
g
3µ̄02awa‖

pama

(
Bχ

B

)2
I

B

 (A.96)

√
g
↔
D09a.13a =

 0 0

0
√
g
3µ̄02a

pama

(
Bχ

B

)2
I

B

 (A.97)

Lorentz force

F Lor
aζ

ma

=
ea

ma

naEζ +
ea

ma

√
gBχσnaū

σ
a

= −C1
09a.03Eζ − C1

09a.07anaū
σ
a , (A.98)
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where

√
gC1

09a.03 = −√
g
eana

ma

(A.99)

√
gC1

09a.07a = −√
g2 eaB

χσ

ma

(A.100)

Friction force

F fri
aζ

ma

=
∑

b

(
l̄01ab

manb

naubζ +
l̄02ab

mapb

Qbζ

)
= −

∑
b

(
C1

09a.09bnbubζ + C1
09a.13bQbζ

)
, (A.101)

where

√
gC1

09a.09b = −√
g
l̄01ab

manb

(A.102)

√
gC1

09a.14b = −√
g
l̄02ab

mapb

(A.103)

Source term

√
gS09a.09a =

√
g
Smaζ

ma

(A.104)

Equation for covariant toroidal particle flux in advection-diffusion form

1
√
g

∂

∂t
(
√
gM09a.09anauaζ) + ∇ ·

(
V 1

09a.09anauaζ

)
−∇ ·

[(↔
V

2
09a.09a.01 · ∇B

)
nauaζ

]
−∇ ·

[(↔
V

2
09a.10a.01 · ∇B

)
nau

χ
a

]
−∇ ·

[(↔
V

2
09a.14a.01 · ∇B

)
Qaζ

]
−∇ ·

[(↔
V

2
09a.15a.01 · ∇B

)
Qχ

a

]
−∇ ·

(↔
D09a.06a · ∇na

)
−∇ ·

[↔
D09a.08a · ∇

(
naua‖

)]
−∇ ·

(↔
D09a.11a · ∇pa

)
−∇ ·

(↔
D09a.13a · ∇Qa‖

)
+ C1

09a.03Eζ + C1
09a.07anaū

σ
a +

∑
b

C1
09a.09bnaubζ +

∑
b

C1
09a.14bQbζ

= S09a.09a. (A.105)
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A.11 Expression of contravariant poloidal particle flux

Bχgχχnau
χ
a −Bnaua‖ +Bζnauaζ = 0

C1
10a.10anau

χ
a + C1

10a.08anaua‖ + C1
10a.09anauaζ = 0 (A.106)

where

√
gC1

10a.08a = −√
gB (A.107)

√
gC1

10a.09a =
√
gBζ (A.108)

√
gC1

10a.10a =
√
ggχχB

χ (A.109)

A.12 Equation for pressure

3

2

∂pa

∂t

∣∣∣∣
x

+ ∇ ·
(

Qa −
1

2
manau

2
aua

)
= ua · ∇pa +Qvis

a +Q∆a + Spa (A.110)

Inertial term

3

2

∂pa

∂t

∣∣∣∣
x

+ ∇ ·
(

Qa −
1

2
manau

2
aua

)
=

1
√
g

∂

∂t

(
√
g
3

2
pa

)
−∇ ·

(
ug

3

2
pa

)
+ ∇ ·

[
1

pa

(
Qa −

1

2
manau

2
aua

)
pa

]
=

1
√
g

∂

∂t
(
√
gM11a.11apa) + ∇ ·

(
V 1

11a.11apa

)
(A.111)

where

√
gM11a.11a =

3

2

√
g (A.112)

√
gV 1

11a.11a =

(
√
g

(
Qσ

a

pa

− 1

2

manau
2
a

pa

uσ
a − 3

2
uσ

g

)
√
g

(
Qχ

a

pa

− 1

2

manau
2
a

pa

uχ
a − 3

2
uχ

g

))
(A.113)

Pressure heating term

ua · ∇pa = −A1
11a.11a · ∇pa (A.114)

where

√
gA1

11a.11a =
(
−√

guσ
a −√

guχ
a

)
(A.115)
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Viscous heating term

Qvis
a = B∇‖

(ua‖π‖a
B

)
− π‖a

(
∇‖ua‖ − uaκ

)
− 1

3
∇ ·
(
uaπ‖a

)
= −∇ ·

(
u∗

a

3
π‖a

)
−
(
∇‖ua‖ − uaκ

)
π‖a, (A.116)

where u∗
a and u†χa are defined by

u∗
a = ua − 3

Bχ

B
ua‖eχ, (A.117)

u†χa =
Bχ

I
uaζ − uχ

a (A.118)
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By the use of u∗
a and u†χa , the viscous heating term can be written as
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a =

∑
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∂χ
Qχ

a

]}

+
Bχ

B

∂ua‖

∂χ

3µ̄01a

na

[
Bχ

B

∂
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Qvis
a = ∇ ·

[(↔
V

2
11a.09a.01 · ∇B

)
nauaζ

]
+ ∇ ·

[(↔
V

2
11a.10a.01 · ∇B

)
nau

χ
a

]
+ ∇ ·

[(↔
V

2
11a.14a.01 · ∇B

)
Qaζ

]
+ ∇ ·

[(↔
V

2
11a.15a.01 · ∇B

)
Qχ

a

]
+ ∇ ·

[↔
D11a.06a · ∇na

]
+ ∇ ·

[↔
D11a.08a · ∇

(
naua‖

)]
+ ∇ ·

[↔
D11a.11a · ∇pa

]
+ ∇ ·

[↔
D11a.13a · ∇Qa‖

]
−
[
∇B ·

↔
A

2
11a.06a.01

]
· ∇na −

[
∇B ·

↔
A

2
11a.08a.01

]
· ∇
(
naua‖

)
−
[
∇B ·

↔
A

2
11a.11a.01

]
· ∇pa −

[
∇B ·

↔
A

2
11a.13a.01

]
· ∇Qa‖

−
[
∇ua‖ ·

↔
A

2
11a.06a.03a

]
· ∇na −

[
∇ua‖ ·

↔
A

2
11a.08a.03a

]
· ∇
(
naua‖

)
−
[
∇ua‖ ·

↔
A

2
11a.11a.03a

]
· ∇pa −

[
∇ua‖ ·

↔
A

2
11a.13a.03a

]
· ∇Qa‖

−
[
∇B ·

↔
C

3
11a.09a.01.01 · ∇B

]
nauaζ −

[
∇B ·

↔
C

3
11a.10a.01.01 · ∇B

]
nau

χ
a

−
[
∇B ·

↔
C

3
11a.14a.01.01 · ∇B

]
Qaζ −

[
∇B ·

↔
C

3
11a.15a.01.01 · ∇B

]
Qχ

a

−
[
∇ua‖ ·

↔
C

3
11a.09a.03a.01 · ∇B

]
nauaζ −

[
∇ua‖ ·

↔
C

3
11a.10a.03a.01 · ∇B

]
nau

χ
a

−
[
∇ua‖ ·

↔
C

3
11a.14a.03a.01 · ∇B

]
Qaζ −

[
∇ua‖ ·

↔
C

3
11a.15a.03a.01 · ∇B

]
Qχ

a (A.120)
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a

na

B2
t

B3

 (A.122)

√
g
↔
V

2
11a.14a.01 =

 0
√
g
µ̄02au

∗σ
a

pa

B2
t

B3

Bχ

I

0
√
g
µ̄02au

∗χ
a

pa

B2
t

B3

Bχ

I

 (A.123)

√
g
↔
V

2
11a.15a.01 =

 0 −√
g
µ̄02au

∗σ
a

pa

B2
t

B3

0 −√
g
µ̄02au

∗χ
a

pa

B2
t

B3

 (A.124)
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√
g
↔
D11a.06a =

 0 −√
g
µ̄01au

∗σ
a ua‖

na

Bχ

B

0 −√
g
µ̄01au

∗χ
a ua‖

na

Bχ

B

 (A.125)

√
g
↔
D11a.08a =

 0
√
g
µ̄01au

∗σ
a

na

Bχ

B

0
√
g
µ̄01au

∗χ
a

na

Bχ

B

 (A.126)

√
g
↔
D11a.11a =

 0 −√
g
µ̄02au

∗σ
a wa‖

pa

Bχ

B

0 −√
g
µ̄02au

∗χ
a wa‖

pa

Bχ

B

 (A.127)

√
g
↔
D11a.13a =

 0
√
g
µ̄02au

∗σ
a

pa

Bχ

B

0
√
g
µ̄02au

∗χ
a

pa

Bχ

B

 (A.128)

√
g
↔
A

2
11a.06a.01 =

 0 0

0
√
g
3µ̄01au

†χ
a ua‖

na

B2
t

B3

Bχ

B

 (A.129)

√
g
↔
A

2
11a.08a.01 =

 0 0

0 −√
g
3µ̄01au

†χ
a

na

B2
t

B3

Bχ

B

 (A.130)

√
g
↔
A

2
11a.11a.01 =

 0 0

0
√
g
3µ̄02au

†χ
a wa‖

pa

B2
t

B3

Bχ

B

 (A.131)

√
g
↔
A

2
11a.13a.01 =

 0 0

0 −√
g
3µ̄02au

†χ
a

pa

B2
t

B3

Bχ

B

 (A.132)

√
g
↔
A

2
11a.06a.03a =

 0 0

0
√
g
3µ̄01aua‖

na

(
Bχ

B

)2

 (A.133)

√
g
↔
A

2
11a.08a.03a =

 0 0

0 −√
g
3µ̄01a

na

(
Bχ

B

)2

 (A.134)

√
g
↔
A

2
11a.11a.03a =

 0 0

0
√
g
3µ̄02awa‖

pa

(
Bχ

B

)2

 (A.135)

√
g
↔
A

2
11a.13a.03a =

 0 0

0 −√
g
3µ̄02a

pa

(
Bχ

B

)2

 (A.136)
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√
g
↔
C

3
11a.09a.01.01 =

 0 0

0 −√
g
3µ̄01au

†χ
a

na

B4
t

B6

Bχ

I

 (A.137)

√
g
↔
C

3
11a.10a.01.01 =

 0 0

0
√
g
3µ̄01au

†χ
a

na

B4
t

B6

 (A.138)

√
g
↔
C

3
11a.14a.01.01 =

 0 0

0 −√
g
3µ̄02au

†χ
a

pa

B4
t

B6

Bχ

I

 (A.139)

√
g
↔
C

3
11a.15a.01.01 =

 0 0

0
√
g
3µ̄02au

†χ
a

pa

B4
t

B6

 (A.140)

√
g
↔
C

3
11a.09a.03a.01 =

 0 0

0 −√
g
3µ̄01a

naI

B2
t

B2

(
Bχ

B

)2

 (A.141)

√
g
↔
C

3
11a.10a.03a.01 =

 0 0

0
√
g
3µ̄01a

naB

B2
t

B2

Bχ

B

 (A.142)

√
g
↔
C

3
11a.14a.03a.01 =

 0 0

0 −√
g
3µ̄02a

paI

B2
t

B2

(
Bχ

B

)2

 (A.143)

√
g
↔
C

3
11a.15a.03a.01 =

 0 0

0
√
g
3µ̄02a

paB

B2
t

B2

Bχ

B

 (A.144)

Energy equipartition

Q∆a =
∑

b

3

2
na
Tb − Ta

τab

=
∑

b

3

2

(Tb/Ta) − 1

τab

pa

= −C1
10a.10apa (A.145)

where

√
gC1

10a.10a =
√
g
3

2

∑
b

1 − (Tb/Ta)

τab

(A.146)

Source term

√
gS11a.11a =

√
gSpa (A.147)
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Equation for pressure in advection-diffusion form

1
√
g

∂

∂t
(
√
gM11a.11apa) + ∇ ·

(
V 1

11a.11apa

)
−∇ ·

[(↔
V

2
11a.09a.01 · ∇B

)
nauaζ

]
−∇ ·

[(↔
V

2
11a.10a.01 · ∇B

)
nau

χ
a

]
−∇ ·

[(↔
V

2
11a.14a.01 · ∇B

)
Qaζ

]
−∇ ·

[(↔
V

2
11a.15a.01 · ∇B

)
Qχ

a

]
−∇ ·

(↔
D11a.06a · ∇na

)
−∇ ·

[↔
D11a.08a · ∇

(
naua‖

)]
−∇ ·

(↔
D11a.11a · ∇pa

)
−∇ ·

(↔
D11a.13a · ∇Qa‖

)
+ A1

11a.11a · ∇pa

+
(
∇B ·

↔
A

2
11a.06a.01

)
· ∇na +

(
∇ua‖ ·

↔
A

2
11a.06a.03a

)
· ∇na

+
(
∇B ·

↔
A

2
11a.08a.01

)
· ∇
(
naua‖

)
+
(
∇ua‖ ·

↔
A

2
11a.08a.03a

)
· ∇
(
naua‖

)
+
(
∇B ·

↔
A

2
11a.11a.01

)
· ∇pa +

(
∇ua‖ ·

↔
A

2
11a.11a.03a

)
· ∇pa

+
(
∇B ·

↔
A

2
11a.13a.01

)
· ∇Qa‖ +

(
∇ua‖ ·

↔
A

2
11a.13a.03a

)
· ∇Qa‖

+ C1
11a.11apa

+
(
∇B ·

↔
C

3
11a.09a.01.01 · ∇B

)
nauaζ +

(
∇ua‖ ·

↔
C

3
11a.10a.03a.01 · ∇B

)
nauaζ

+
(
∇B ·

↔
C

3
11a.10a.01.01 · ∇B

)
nau

χ
a +

(
∇ua‖ ·

↔
C

3
10a.10a.03a.01 · ∇B

)
nau

χ
a

+
(
∇B ·

↔
C

3
10a.14a.01.01 · ∇B

)
Qaζ +

(
∇ua‖ ·

↔
C

3
10a.14a.03a.01 · ∇B

)
Qaζ

+
(
∇B ·

↔
C

3
10a.15a.01.01 · ∇B

)
Qχ

a +
(
∇ua‖ ·

↔
C

3
10a.15a.03a.01 · ∇B

)
Qχ

a

= S11a.11a (A.148)
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A.13 Equation for contravariant radial total heat flux

∇σ · ∇
(

5

2

Ta

ma

pa

)
=

5

2

Ta

ma

eanaE
σ +

ea

ma

IB

ψ′ Qa‖ −
ea

ma

B2

ψ′ Qaζ

Bχ∇σ · ∇
(

5

2

Ta

ma

pa

)
=

5

2

Ta

ma

eanaE
σBχ +

ea

ma

IB

ψ′ Qa‖B
χ − ea

ma

B2

ψ′ QaζB
χ (A.149)

EW pressure gradient

G∇p σ
a = Bχ 5

2
∇σ · ∇

(
p2

a

mana

)
= −5

2

T 2
a

ma

Bχ∇σ · ∇na + 5
Ta

ma

Bχ∇σ · ∇pa

= A1
12a.06a · ∇na + A1

12a.11a · ∇pa, (A.150)

where

√
gA1

12a.06a =

(
−√

g
5

2

T 2
a

ma

gσσBχ −√
g
5

2

T 2
a

ma

gσχBχ

)
(A.151)

√
gA1

12a.11a =

(
√
g
5Ta

ma

gσσBχ √
g
5Ta

ma

gσχBχ

)
(A.152)

EW Lorentz force

GLor σ
a =

5

2

Ta

ma

eanaE
σBχ +

ea

ma

IB

ψ′ Qa‖B
χ − ea

ma

B2

ψ′ QaζB
χ

=
5

2

ea

ma

paB
χ
(
gσχσĒχ + gσσEσ

)
+

ea

ma

Bχ IB

ψ′ Qa‖ −
ea

ma

BχB
2

ψ′ Qaζ

= −C1
12a.04Ēχ − C1

12a.05Eσ − C1
12a.13aQa‖ − C1

12a.14aQaζ , (A.153)

where

√
gC1

12a.04 = −√
g
5

2

ea

ma

pag
σχBχσ (A.154)

√
gC1

12a.05 = −√
g
5

2
eapag

σσBχ (A.155)

√
gC1

12a.13a = − ea

ma

IB (A.156)

√
gC1

12a.14a =
ea

ma

B2 (A.157)

Equation for contravariant radial total heat flux in advection-diffusion form

A1
12.06a · ∇na + A1

12.11a · ∇pa + C1
12a.04Ēχ + C1

12a.05Eσ + C1
12a.13aQa‖ + C1

12a.14aQaζ = 0
(A.158)
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A.14 Equation for parallel total heat flux

∂

∂t

(
Qa‖B

)∣∣∣∣
x

+Gine
a‖B +G∇p

a‖ B +Gvis
a‖B = GLor

a‖ B +Gfri
a‖B + SqaB (A.159)

Inertial term

∂

∂t

(
Qa‖B

)∣∣∣∣
x

+Gine
a‖B

=
1
√
g

∂

∂t

(√
gQa‖B

)
−∇ ·

(
ugQa‖B

)
+B∇‖

(
Qa‖ua‖ + ua‖Qa‖ −

3

2
paua‖ua‖

)
−
(
Qa‖ua‖ + ua‖Qa‖ −

3

2
paua‖ua‖

)
∇‖B

=
1
√
g

∂

∂t

(√
gBQa‖

)
+

1
√
g

∂

∂χ

[
√
g
Bχ

na

(
Qa‖ −

3

2
paua‖

)
naua‖

]
+

1
√
g

∂

∂σ

[√
g
(
−uσ

gB
)
Qa‖
]
+

1
√
g

∂

∂χ

[√
g
(
ua‖B

χ − uχ
gB
)
Qa‖
]

+

{
∂B

∂χ

[
−B

χ

B

1

na

(
Qa‖ −

3

2
paua‖

)]}
naua‖ +

[
∂B

∂χ

(
−B

χ

B
ua‖

)]
Qa‖

=
1
√
g

∂

∂t

(√
gM13a.13aQa‖

)
+ ∇ ·

(
V 1

13a.08anaua‖
)

+ ∇ ·
(
V 1

13a.13aQa‖
)

+
(
∇B · C2

13a.08a.01

)
naua‖ +

(
∇B · C2

13a.13a.01

)
Qa‖, (A.160)

where

√
gM13a.13a =

√
gB (A.161)

√
gV 1

13a.08a =

(
0

√
g

na

(
Qa‖ −

3

2
paua‖

)
Bχ

)
(A.162)

√
gV 1

13a.13a =
(
−√

guσ
gB

√
g
(
ua‖B

χ − uχ
gB
) )

(A.163)

√
gC2

13a.08a.01 =

(
0 −

√
g

na

(
Qa‖ −

3

2
paua‖

)
Bχ

B

)
(A.164)

√
gC2

13a.13a.01 =

(
0 −√

gua‖
Bχ

B

)
(A.165)

EW pressure gradient term

G∇p
a‖ = B∇‖

(
5Ta

2ma

pa

)
=

1
√
g

∂

∂χ

[
√
g

(
Bχ 5Ta

2ma

)
pa

]
= ∇ ·

(
V 1

13a.11apa

)
(A.166)

where

√
gV 1

13a.11a =

(
0

√
g
5

2

Ta

ma

Bχ

)
(A.167)
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EW viscous force

Gvis
a‖B =

(
−r‖a∇‖B +

2

3
B∇‖r‖a

)
=
∂B

∂χ

[
−

3µ̄03aua‖

na

Ta

ma

(
Bχ

B

)2
]
∂na

∂χ
+
∂B

∂χ

[
3µ̄03a
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Ta

ma

(
Bχ

B

)2
]
∂

∂χ

(
naua‖

)
+
∂B

∂χ

[
3µ̄03a

na

Ta
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B2
t

B3

Bχ

I

Bχ

B

]
∂B

∂χ
nauaζ +

∂B

∂χ

[
−3µ̄03a

na

Ta

ma

B2
t

B3

Bχ

B

]
∂B

∂χ
nau

χ
a

+
∂B

∂χ

[
−

3µ̄04awa‖

pa

Ta

ma

(
Bχ

B

)2
]
∂pa

∂χ
+
∂B

∂χ

[
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pa

Ta

ma

(
Bχ

B

)2
]
∂Qa‖

∂χ

+
∂B

∂χ

[
3µ̄04a

pa

Ta

ma

B2
t

B3

Bχ

I

Bχ

B

]
∂B

∂χ
Qaζ +

∂B

∂χ

[
−3µ̄04a

pa

Ta

ma

B2
t

B3

Bχ

B

]
∂B

∂χ
Qχ

a

− 1
√
g

∂

∂χ

[
√
g

{
−

2µ̄03aua‖B

na

Ta

ma

(
Bχ

B

)2
}
∂na

∂χ

]

− 1
√
g

∂

∂χ

[
√
g

{
2µ̄03aB
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Ta

ma

(
Bχ

B

)2
}

∂

∂χ

(
naua‖
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− 1
√
g

∂

∂χ

[
√
g

(
2µ̄03a
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Ta

ma

B2
t

B2

Bχ

B

Bχ

I

)
∂B

∂χ
nauaζ

]
− 1

√
g

∂

∂χ

[
√
g

(
−2µ̄03a
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Ta

ma

B2
t

B2

Bχ

B

)
∂B

∂χ
nau

χ
a

]
− 1

√
g

∂

∂χ

[
√
g

{
−

2µ̄04awa‖B

pa

Ta

ma

(
Bχ

B

)2
}
∂pa

∂χ

]

− 1
√
g

∂

∂χ

[
√
g

{
2µ̄04aB
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Ta

ma

(
Bχ

B

)2
}
∂Qa‖

∂χ

]

− 1
√
g

∂

∂χ

[
√
g

(
2µ̄04a

pa

Ta

ma

B2
t
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Bχ

B

Bχ

I

)
∂B

∂χ
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]
− 1

√
g

∂

∂χ

[
√
g

(
−2µ̄04a

pa
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ma

B2
t
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Bχ

B

)
∂B

∂χ
Qχ

a

]
(A.168)
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Gvis
a‖B = −∇ ·

[(
∇B ·

↔
V

2
13a.09a.01

)
nauaζ

]
−∇ ·

[(
∇B ·

↔
V

2
13a.10a.01

)
nau

χ
a

]
−∇ ·

[(
∇B ·

↔
V

2
13a.14a.01

)
Qaζ

]
−∇ ·

[(
∇B ·

↔
V

2
13a.15a.01

)
Qχ

a

]
−∇ ·

(↔
D13a.06a · ∇na

)
−∇ ·

[↔
D13a.08a · ∇

(
naua‖

)]
−∇ ·

(↔
D13a.11a · ∇pa

)
−∇ ·

(↔
D13a.13a · ∇Qa‖

)
+
(
∇B ·

↔
A

2
13a.06a.01

)
· ∇na +

(
∇B ·

↔
A

2
13a.08a.01

)
· ∇
(
naua‖

)
+
(
∇B ·

↔
A

2
13a.11a.01

)
· ∇pa +

(
∇B ·

↔
A

2
13a.13a.01

)
· ∇Qa‖

+
(
∇B ·

↔
C

3
13a.09a.01.01 · ∇B

)
nauaζ +

(
∇B ·

↔
C

3
13a.10a.01.01 · ∇B

)
nau

χ
a

+
(
∇B ·

↔
C

3
13a.14a.01.01 · ∇B

)
Qaζ +

(
∇B ·

↔
C

3
13a.15a.01.01 · ∇B

)
Qχ

a (A.169)

where

√
g
↔
V

2
13a.09a.01 =

 0 0

0
√
g
2µ̄03a

na

Ta

ma

B2
t

B2

Bχ

B

Bχ

I

 (A.170)

√
g
↔
V

2
13a.10a.01 =

 0 0

0 −√
g
2µ̄03a

na

Ta

ma

B2
t

B2

Bχ

B

 (A.171)

√
g
↔
V

2
13a.14a.01 =

 0 0

0
√
g
2µ̄04a

pa

Ta

ma

B2
t

B2

Bχ

B

Bχ

I

 (A.172)

√
g
↔
V

2
13a.15a.01 =

 0 0

0 −√
g
2µ̄04a

pa

Ta

ma

B2
t

B2

Bχ

B

 (A.173)

√
g
↔
D13a.06a =

 0 0

0 −√
g
2µ̄03aua‖B

na

Ta

ma

(
Bχ

B

)2

 (A.174)

√
g
↔
D13a.08a =

 0 0

0
√
g
2µ̄03aB

na

Ta

ma

(
Bχ

B

)2

 (A.175)

√
g
↔
D13a.11a =

 0 0

0 −√
g
2µ̄04awa‖B

pa

Ta

ma

(
Bχ

B

)2

 (A.176)

√
g
↔
D13a.13a =

 0 0

0
√
g
2µ̄04aB

pa

Ta

ma

(
Bχ

B

)2

 (A.177)
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√
g
↔
A

2
13a.06a.01 =

 0 0

0 −√
g
3µ̄03aua‖

na

Ta

ma

(
Bχ

B

)2

 (A.178)

√
g
↔
A

2
13a.08a.01 =

 0 0

0
√
g
3µ̄03a

na

Ta

ma

(
Bχ

B

)2

 (A.179)

√
g
↔
A

2
13a.11a.01 =

 0 0

0 −√
g
3µ̄04awa‖

pa

Ta

ma

(
Bχ

B

)2

 (A.180)

√
g
↔
A

2
13a.13a.01 =

 0 0

0
√
g
3µ̄04a

pa

Ta

ma

(
Bχ

B

)2

 (A.181)

√
g
↔
C

3
13a.09a.01.01 =

 0 0

0
√
g
3µ̄03a

na

Ta

ma

B2
t

B3

Bχ

I

Bχ

B

 (A.182)

√
g
↔
C

3
13a.10a.01.01 =

 0 0

0 −√
g
3µ̄03a

na

Ta

ma

B2
t

B3

Bχ

B

 (A.183)

√
g
↔
C

3
13a.14a.01.01 =

 0 0

0
√
g
3µ̄04a

pa

Ta

ma

B2
t

B3

Bχ

I

Bχ

B

 (A.184)

√
g
↔
C

3
13a.15a.01.01 =

 0 0

0 −√
g
3µ̄04a

pa

Ta

ma

B2
t

B3

Bχ

B

 (A.185)
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EW Lorentz force

GLor
a‖ B =

5ea

2ma

pa

(
BζEζ +BχEχ

)
− 3µ̄01aea

ma

[
Bχ

B

∂ua‖

∂χ
+ u†χa

B2
t

B3

∂B

∂χ

] (
BζEζ +BχEχ

)
− 3µ̄02aea

ma

[
Bχ

B

∂wa‖

∂χ
+ w†χ

a

B2
t

B3

∂B

∂χ

] (
BζEζ +BχEχ

)
= −

[
− 5ea

2ma

paB
ζ

]
Eζ −

[
− 5ea

2ma

paB
χσ

]
Ēχ

− ∂B

∂χ

[
3ea

ma

(
µ̄01au

†χ
a + µ̄02aw

†χ
a

) B2
t

B3
Bζ

]
Eζ

−
∂ua‖

∂χ

[
3µ̄01aea

ma

Bχ

B
Bζ

]
Eζ −

∂wa‖

∂χ

[
3µ̄02aea

ma

Bχ

B
Bζ

]
Eζ

− ∂B

∂χ

[
3ea

ma

(
µ̄01au

†χ
a + µ̄02aw

†χ
a

) B2
t

B3
Bχσ

]
Ēχ

−
∂ua‖

∂χ

[
3µ̄01aea

ma

Bχ

B
Bχσ

]
Ēχ −

∂wa‖

∂χ

[
3µ̄02aea

ma

Bχ

B
Bχσ

]
Ēχ

= −C1
13a.03Eζ − C1

13a.04Ēχ

−
[
∇B · C2

13a.03.01

]
Eζ −

[
∇ua‖ · C2

13a.03.03a

]
Eζ −

[
∇wa‖ · C2

13a.03.04a

]
Eζ

−
[
∇B · C2

13a.04.01

]
Ēχ −

[
∇ua‖ · C2

13a.04.03a

]
Ēχ −

[
∇wa‖ · C2

13a.04.04a

]
Ēχ

(A.186)

where

√
gC1

13a.03 = −√
g
5paea

2ma

Bζ (A.187)

√
gC1

13a.04 = −√
g
5paea

2ma

Bχ (A.188)

√
gC1

13a.03.01 =

(
0

√
g
3ea

ma

B2
t

B3
Bζ
(
µ̄01au

†χ
a + µ̄02aw

†χ
a

))
(A.189)

√
gC1

13a.03.03a =

(
0

√
g
3ea

ma

Bχ

B
Bζµ̄01a

)
(A.190)

√
gC1

13a.03.04a =

(
0

√
g
3ea

ma

Bχ

B
Bζµ̄02a

)
(A.191)

√
gC1

13a.04.01 =

(
0

√
g
3ea

ma

B2
t

B3
Bχσ

(
µ̄01au

†χ
a + µ̄02aw

†χ
a

))
(A.192)

√
gC1

13a.04.03a =

(
0

√
g
3ea

ma

Bχ

B
Bχσµ̄01a

)
(A.193)

√
gC1

13a.04.04a =

(
0

√
g
3ea

ma

Bχ

B
Bχσµ̄02a

)
(A.194)
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EW friction force

Gfri
a‖B =

∑
b

Ta

ma

l̄03ab

nb

nbub‖B +
∑

b

Ta

ma

l̄04ab

pb

Qb‖B

= −
∑

b

[
− Ta

ma

l̄03abB

nb

]
nbub‖ −

∑
b

[
− Ta

ma

l̄04abB

pb

]
Qb‖

= −
∑

b

C1
13a.08bnbub‖ −

∑
b

C1
13a.13bQb‖, (A.195)

where

√
gC1

13a.08b = −√
g
Ta

ma

l̄03abB

nb

(A.196)

√
gC1

13a.13b = −√
g
Ta

ma

l̄04abB

pb

(A.197)

Source term

√
gS13a.13a =

√
gSqa‖B (A.198)

Equation for parallel total heat flux in advection-diffusion form

1
√
g

∂

∂t

(√
gM13a.13aQa‖

)
+ ∇ ·

(
V 1

13a.08anaua‖
)

+ ∇ ·
(
V 1

13a.11apa

)
+ ∇ ·

(
V 1

13a.13aQa‖
)

−∇ ·
[(

∇B ·
↔
V

2
13a.09a.01

)
nauaζ

]
−∇ ·

[(
∇B ·

↔
V

2
13a.10a.01

)
nau

χ
a

]
−∇ ·

[(
∇B ·

↔
V

2
13a.14a.01

)
Qaζ

]
−∇ ·

[(
∇B ·

↔
V

2
13a.15a.01

)
Qχ

a

]
−∇ ·

(↔
D13a.06a · ∇na

)
−∇ ·

[↔
D13a.08a · ∇

(
naua‖

)]
−∇ ·

(↔
D13a.11a · ∇pa

)
−∇ ·

(↔
D13a.13a · ∇Qa‖

)
+
(
∇B ·

↔
A

2
13a.06a.01

)
· ∇na +

(
∇B ·

↔
A

2
13a.08a.01

)
· ∇
(
naua‖

)
+
(
∇B ·

↔
A

2
13a.11a.01

)
· ∇pa +

(
∇B ·

↔
A

2
13a.13a.01

)
· ∇Qa‖

+ C1
13a.03Eζ + C1

13a.04Ēχ +
∑

b

C1
13a.08bnbub‖ +

∑
b

C1
13a.13bQb‖,

+
(
∇B · C2

13a.03.01

)
Eζ +

(
∇ua‖ · C2

13a.03.03a

)
Eζ +

(
∇wa‖ · C2

13a.03.04a

)
Eζ

+
(
∇B · C2

13a.04.01

)
Ēχ +

(
∇ua‖ · C2

13a.04.03a

)
Ēχ +

(
∇wa‖ · C2

13a.04.04a

)
Ēχ

+
(
∇B · C2

13a.08a.01

)
naua‖ +

(
∇B · C2

13a.13a.01

)
Qa‖

+
(
∇B ·

↔
C

3
13a.09a.01.01 · ∇B

)
nauaζ +

(
∇B ·

↔
C

3
13a.10a.01.01 · ∇B

)
nau

χ
a

+
(
∇B ·

↔
C

3
13a.14a.01.01 · ∇B

)
Qaζ +

(
∇B ·

↔
C

3
13a.15a.01.01 · ∇B

)
Qχ

a

= S13a.13a (A.199)
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A.15 Equation for covariant toroidal total heat flux

∂Qaζ

∂t

∣∣∣∣
x

+Gine
aζ +Gvis

aζ = GLor
aζ +Gfri

aζ + Sqaζ (A.200)

EW inertial term

∂Qaζ

∂t

∣∣∣∣
x

+Gfri
aζ =

1
√
g

∂

∂t
(
√
gQaζ) −∇ · (ugQaζ) + ∇ ·

(
Qζua + uaζQa −

3

2
pauaζua

)
=

1
√
g

∂

∂t
(
√
gQaζ) + ∇ ·

[
1

na

(
Qa −

3

2
panaua

)
nauaζ

]
+ ∇ · [(ua − ug)Qaζ ]

=
1
√
g

∂

∂t
(
√
gM14a.14aQaζ) + ∇ ·

(
V 1

14a.09anauaζ

)
+ ∇ ·

(
V 1

14a.14aQaζ

)
(A.201)

where
√
gM14a.14a =

√
g (A.202)

√
gV 1

14a.09a =

( √
g

na

(
Qσ

a − 3

2
pau

σ
a

) √
g

na

(
Qχ

a − 3

2
pau

χ
a

))
(A.203)

√
gV 1

14a.14a =
(√

g
(
uσ

a − uσ
g

) √
g
(
uχ

a − uχ
g

) )
(A.204)

EW viscous force

Gvis
aζ = B∇‖

(
I

B2
r‖a

)
= − 1

√
g

∂

∂χ

{
√
g

[
−

3µ̄03aua‖

na

Ta

ma

I

B

(
Bχ

B

)2
]
∂na

∂χ

}

− 1
√
g

∂

∂χ

{
√
g

[
3µ̄03a

na

Ta

ma

(
Bχ

B

)2
I

B

]
∂

∂χ

(
naua‖

)}

− 1
√
g

∂

∂χ

{
√
g

[
3µ̄03a

na

Ta

ma

B2
t

B3

(
Bχ

B

)2
]
∂B

∂χ
nauaζ

}

− 1
√
g

∂

∂χ

{
√
g

[
−3µ̄03a

na

Ta

ma

B2
t

B3

Bχ

B

I

B

]
∂B

∂χ
nau

χ
a

}
− 1

√
g

∂

∂χ

{
√
g

[
−

3µ̄04awa‖

pa

Ta

ma

(
Bχ

B

)2
I

B

]
∂pa

∂χ

}

− 1
√
g

∂

∂χ

{
√
g

[
3µ̄04a

pa

Ta

ma

(
Bχ

B

)2
I

B

]
∂Qa‖

∂χ

}

− 1
√
g

∂

∂χ

{
√
g

[
3µ̄04a

pa

Ta

ma

B2
t

B3

(
Bχ

B

)2
]
∂B

∂χ
Qaζ

}

− 1
√
g

∂

∂χ

{
√
g

[
−3µ̄04a

pa

Ta

ma

B2
t

B3

Bχ

B

I

B

]
∂B

∂χ
Qχ

a

}
(A.205)
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Gvis
aζ = −∇ ·

[(↔
V

2
14a.09a.01 · ∇B

)
nauaζ

]
−∇ ·

[(↔
V

2
14a.10a.01 · ∇B

)
nau

χ
a

]
−∇ ·

[(↔
V

2
14a.14a.01 · ∇B

)
Qaζ

]
−∇ ·

[(↔
V

2
14a.15a.01 · ∇B

)
Qχ

a

]
−∇ ·

(↔
D13a.06a · ∇na

)
−∇ ·

[↔
D13a.08a · ∇

(
naua‖

)]
−∇ ·

(↔
D13a.10a · ∇pa

)
−∇ ·

(↔
D13a.12a · ∇Qa‖

)
, (A.206)

where

√
g
↔
V

2
14a.09a.01 =

 0 0

0
√
g
3µ̄03a

na

Ta

ma

B2
t

B3

(
Bχ

B

)2

 (A.207)

√
g
↔
V

2
14a.10a.01 =

 0 0

0 −√
g
3µ̄03a

na

Ta

ma

B2
t

B3

Bχ

B

I

B

 (A.208)

√
g
↔
V

2
14a.14a.01 =

 0 0

0
√
g
3µ̄04a

pa

Ta

ma

B2
t

B3

(
Bχ

B

)2

 (A.209)

√
g
↔
V

2
14a.15a.01 =

 0 0

0 −√
g
3µ̄04a

pa

Ta

ma

B2
t

B3

Bχ

B

I

B

 (A.210)

√
g
↔
D14a.06a =

 0 0

0 −√
g
3µ̄03aua‖

na

Ta

ma

(
Bχ

B

)2
I

B

 (A.211)

√
g
↔
D14a.08a =

 0 0

0
√
g
3µ̄03a

na

Ta

ma

(
Bχ

B

)2
I

B

 (A.212)

√
g
↔
D14a.11a =

 0 0

0 −√
g
3µ̄04awa‖

pa

Ta

ma

(
Bχ

B

)2
I

B

 (A.213)

√
g
↔
D14a.13a =

 0 0

0
√
g
3µ̄04a

pa

Ta

ma

(
Bχ

B

)2
I

B

 (A.214)
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EW Lorentz force

GLor
aζ =

ea

ma

[
5

2
paEζ +

(
B2

t

B2
− 1

3

)
π‖aEζ +

I

B

Bχ

B
π‖aEχ + ψ′Qσ

a

]
=

5ea

2ma

paEζ +
ea

ma

√
gBχσQ̄σ

a

− 3ea

ma

(
B2

t

B2
− 1

3

)[
µ̄01a

(
Bχ

B

∂ua‖

∂χ
+ u†χa

B2
t

B3

∂B

∂χ

)
+ µ̄02a

(
Bχ

B

∂wa‖

∂χ
+ w†χ

a

B2
t

B3

∂B

∂χ

)]
Eζ

− 3ea

ma

I

B

Bχ

B

[
µ̄01a

(
Bχ

B

∂ua‖

∂χ
+ u†χa

B2
t

B3

∂B

∂χ

)
+ µ̄02a

(
Bχ

B

∂wa‖

∂χ
+ w†χ

a

B2
t

B3

∂B

∂χ

)]
σĒχ

= −
[
− 5ea

2ma

pa

]
Eζ −

[
− ea

ma

√
gBχσ

]
Q̄σ

a

− ∂B

∂χ

[
3ea

ma

(
B2

t

B2
− 1

3

)
B2

t

B3

(
µ̄01au

†χ
a + µ̄02aw

†χ
a

)]
Eζ

−
∂ua‖

∂χ

[
3µ̄01aea

ma

(
B2

t

B2
− 1

3

)
Bχ

B

]
Eζ −

∂wa‖

∂χ

[
3µ̄02aea

ma

(
B2

t

B2
− 1

3

)
Bχ

B

]
Eζ

− ∂B

∂χ

[
3ea

ma

I

B

Bχ

B

B2
t

B3

(
µ̄01au

†χ
a + µ̄02aw

†χ
a

)
σ

]
Ēχ

−
∂ua‖

∂χ

[
3µ̄01aea

ma

I

B

Bχ

B

Bχ

B
σ

]
Ēχ −

∂wa‖

∂χ

[
3µ̄02aea

ma

I

B

Bχ

B

Bχ

B
σ

]
Ēχ

= −C1
14a.03Eζ − C1

14a.12aQ̄
σ
a

−
[
∇B · C2

14a.03.01

]
Eζ −

[
∇ua‖ · C2

14a.03.03a

]
Eζ −

[
∇wa‖ · C2

14a.03.04a

]
Eζ

−
[
∇B · C2

14a.04.01

]
Ēχ −

[
∇ua‖ · C2

14a.04.03a

]
Ēχ −

[
∇wa‖ · C2

14a.04.04a

]
Ēχ (A.215)

where

√
gC1

14a.03 = −√
g

5ea

2ma

pa (A.216)

√
gC1

14a.12a = −√
g
ea

ma

√
gBχσ (A.217)

√
gC2

14a.03.01 =

(
0

√
g
3ea

ma

(
B2

t

B2
− 1

3

)
B2

t

B3

(
µ̄01au

†χ
a + µ̄02aw

†χ
a

))
(A.218)

√
gC2

14a.03.03a =

(
0

√
g
3ea

ma

(
B2

t

B2
− 1

3

)
Bχ

B
µ̄01a

)
(A.219)

√
gC2

14a.03.04a =

(
0

√
g
3ea

ma

(
B2

t

B2
− 1

3

)
Bχ

B
µ̄02a

)
(A.220)

√
gC2

14a.04.01 =

(
0

√
g
3ea

ma

I

B

Bχ

B

B2
t

B3
σ
(
µ̄01au

†χ
a + µ̄02aw

†χ
a

))
(A.221)

√
gC2

14a.04.03a =

(
0

√
g
3ea

ma

I

B

Bχ

B

Bχ

B
σµ̄01a

)
(A.222)

√
gC2

14a.03.04a =

(
0

√
g
3ea

ma

I

B

Bχ

B

Bχ

B
σµ̄02a

)
(A.223)
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EW friction force

Gfri
aζ =

∑
b

Ta

ma

l̄03ab

nb

naubζ +
∑

b

Ta

ma

l̄04ab

pb

Qbζ

= −
∑

b

[
− Ta

ma

l̄03ab

nb

]
naubζ −

∑
b

[
− Ta

ma

l̄04ab

pb

]
Qbζ

= −
∑

b

C1
14a.09bnbubζ −

∑
b

C1
14a.14bQbζ (A.224)

where

√
gC1

14a.09b = −√
g
Ta

ma

l̄03ab

nb

(A.225)

√
gC1

14a.14b = −√
g
Ta

ma

l̄04ab

pb

(A.226)

Source term

√
gS14a.14a =

√
gSqaζ (A.227)

Equation for covariant toroidal total heat flux in advection-diffusion form

1
√
g

∂

∂t
(
√
gM14a.14anauaζ) + ∇ ·

(
V 1

14a.09anauaζ

)
+ ∇ ·

(
V 1

14a.14aQaζ

)
−∇ ·

[(↔
V

2
14a.09a.01 · ∇B

)
nauaζ

]
−∇ ·

[(↔
V

2
14a.10a.01 · ∇B

)
nau

χ
a

]
−∇ ·

[(↔
V

2
14a.14a.01 · ∇B

)
Qaζ

]
−∇ ·

[(↔
V

2
14a.15a.01 · ∇B

)
Qχ

a

]
−∇ ·

(↔
D14a.06a · ∇na

)
−∇ ·

[↔
D14a.08a · ∇

(
naua‖

)]
−∇ ·

(↔
D14a.11a · ∇pa

)
−∇ ·

(↔
D14a.13a · ∇Qa‖

)
+ C1

14a.03Eζ + C1
14a.12aQ̄

σ
a +

∑
b

C1
14a.09bnbubζ +

∑
b

C1
14a.14bQbζ

+
(
∇B · C2

14a.03.01

)
Eζ +

(
∇ua‖ · C2

14a.03.03a

)
Eζ +

(
∇wa‖ · C2

14a.03.04a

)
Eζ

+
(
∇B · C2

14a.04.01

)
Ēχ +

(
∇ua‖ · C2

14a.04.03a

)
Ēχ +

(
∇wa‖ · C2

14a.04.04a

)
Ēχ (A.228)

A.16 Expression of contravariant poloidal total heat

flux

BχgχχQ
χ
a −BQa‖ +BζQaζ = 0

C1
15a.15aQ

χ
a + C1

15a.13aQa‖ + C1
15a.14aQaζ = 0 (A.229)
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where

√
gC1

15a.13a = −√
gB (A.230)

√
gC1

15a.14a =
√
gBζ (A.231)

√
gC1

15a.15a =
√
ggχχB

χ (A.232)
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Appendix B

Coefficient matrices of
advection-diffusion equations

Mass submatrix: Melm
ab∫∫

welm
a

∂

∂t

(√
gMabf

elm
b

)
dρdχ

=

nnode∑
IJK

∫∫
{wa}elm

I φelm
I

∂

∂t

(
{√gMab}elm

K φelm
K {fb}elm

J φelm
J

)
Jdη1dη2

=

nnode∑
IJK

{wa}elm
I

∂

∂t

(∫∫
φelm

I φelm
J φelm

K Jdη1dη2 {
√
gMab}elm

K {fb}elm
J

)
= welmT

a

∂

∂t

(
Melm

ab felmb

)
, (B.1)

where

Melm
abIJ =

nnode∑
K

∫∫
φelm

I φelm
J φelm

K Jdη1dη2 {
√
gMab}elm

K (B.2)

Advection martix (1): V1elm
ab∫∫

welm
a

∂

∂ξi

[(√
gV ξi

ab

)elm

f elm
b

]
dρdχ

=

∫∫
{wa}elm

I φelm
I J∗

ij

∂

∂ηj

({√
gV ξi

ab

}elm

K
φelm

K {fb}elm
J φelm

J

)
Jdη1dη2

=

nnode∑
IJK

2∑
ij

{wa}elm
I

[∫∫
φelm

I

∂

∂ηj

(
φelm

J φelm
K

)
JJ∗

ijdη1dη2

{√
gV ξi

ab

}elm

K

]
{fb}elm

J

= welmT
a V1elm

ab felmb , (B.3)

where

V1elm
abIJ =

nnode∑
K

2∑
ij

∫∫
φelm

I

∂

∂ηj

(
φelm

J φelm
K

)
JJ∗

ijdη1dη2

{√
gV ξi

ab

}elm

K
(B.4)
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Advection martix (2): V2elm
ab

∑
x

2∑
ij

∫∫
welm

a

∂

∂ξi

[(√
gV

ξiξj

abx

)elm ∂gelm
x

∂ξj
f elm

b

]
dρdχ

=
∑

x

2∑
ij ((((((((((((((((((((∫ [

welm
a

(√
gV

ξiξj

abx

)elm ∂gelm
x

∂ξj
f elm

b

]
dΓ2,i

−
∑

x

2∑
ij

∫∫
∂welm

a

∂ξi

(√
gV

ξiξj

abx

)elm ∂f elm
x

∂ξj
f elm

b dρdχ

= −
∑

x

2∑
ijkl

nnode∑
IJKL

∫∫
J∗

ik

∂

∂ηk

(
{wa}elm

I φelm
I

){√
gV

ξiξj

abx

}elm

L
φelm

L

× J∗
jl

∂

∂ηl

(
{fx}elm

K φelm
K

)
{fb}elm

J φelm
J Jdη1dη2

= −
∑

x

2∑
ijkl

nnode∑
IJKL

{wa}elm
I

[∫∫
∂φelm

I

∂ηk

φelm
J

∂φelm
K

∂ηl

φelm
L J∗

ikJ
∗
jlJdη1dη2

{√
gV

ξiξj

abx

}elm

L
{fx}elm

K

]
{fb}elm

J

= −welmT
a V2elm

ab felmb , (B.5)

where

V2elm
abIJ =

∑
x

2∑
ijkl

nnode∑
KL

∫∫
∂φelm

I

∂ηk

φelm
J

∂φelm
K

∂ηl

φelm
L J∗

ikJ
∗
jlJdη1dη2

{√
gV

ξiξj

abx

}elm

L
{fx}elm

K (B.6)
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Diffusion submatrix: Delm
ab and flux subvector Felm

ab

2∑
ij

∫∫
welm

a

∂

∂ξi

[(√
gD

ξiξj

ab

)elm ∂f elm
b

∂ξj

]
dρdχ

=
2∑
ij

∫ [
welm

a

(√
gD

ξiξj

ab

)elm

qelm
b,j

]
dξ∗i −

2∑
ij

∫∫
∂welm

a

∂ξi

(√
gD

ξiξj

ab

)elm ∂f elm
b

∂ξj
dρdχ

=
2∑
ij

nnode∑
IJ

∫ [
{wa}elm

I φelm
I

{√
gD

ξiξj

ab qb,j

}elm

J
φelm

J

]
h∗i dη

∗
i

−
2∑

ijkl

nnode∑
IJK

∫∫
J∗

ik

∂

∂ηk

(
{wa}elm

I φelm
I

){√
gD

ξiξj

ab

}elm

K
φelm

K J∗
jl

∂

∂ηl

(
{fb}elm

J φelm
J

)
Jdη1dη2

=
2∑
ij

nnode∑
IJ

{wa}elm
I

[∫
φelm

I φelm
J h∗i dη

∗
i

{√
gD

ξiξj

ab qb,j

}elm

J

]

−
2∑

ijkl

nnode∑
IJK

{wa}elm
I

[∫∫
∂φelm

I

∂ηk

∂φelm
J

∂ηl

φelm
K J∗

ikJ
∗
jlJdη1dη2

{√
gD

ξiξj

ab

}elm

K

]
{fb}elm

J

= welmT
a Felm

ab − welmT
a Delm

ab felmb , (B.7)

where

Felm
abI =

2∑
ij

nnode∑
J

∫
φelm

I φelm
J h∗i dη

∗
i

{√
gD

ξiξj

ab qb,j

}elm

J
(B.8)

Delm
abIJ =

2∑
ijkl

nnode∑
K

∫∫
∂φelm

I

∂ηk

∂φelm
J

∂ηl

φelm
K J∗

ikJ
∗
jlJdη1dη2

{√
gD

ξiξj

ab

}elm

K
(B.9)

Gradient submatrix (1): A1elm
ab

2∑
i

∫∫
welm

a

(√
gAξi

ab

)elm ∂f elm
b

∂ξi
dρdχ

=
2∑
ij

∫∫
{wa}elm

I φelm
I

{√
gAξi

ab

}elm

K
φelm

K J∗
ij

∂

∂ηj

(
{fb}elm

J φelm
J

)
Jdη1dη2

=
2∑
ij

nnode∑
IJK

{wa}elm
I

[∫∫
φelm

I

∂φelm
J

∂ηj

φelm
K J∗

ijJdη1dη2

{√
gAξi

ab

}elm

K

]
{fb}elm

J

= welmT
a A1elm

abIJ felmb , (B.10)

where

A1elm
abIJ =

2∑
ij

nnode∑
K

∫∫
φelm

I

∂φelm
J

∂ηj

φelm
K J∗

ijJdη1dη2

{√
gAξi

ab

}elm

K
(B.11)
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Gradient submatrix (2): A2elm
ab

∑
x

2∑
ij

∫∫
welm

a

∂gx

∂ξi

(√
gA

ξiξj

abx

)elm ∂f elm
b

∂ξj
dρdχ

=
∑

x

2∑
ij

nnode∑
IJKL

∫∫
{wa}elm

I φelm
I J∗

ik

∂

∂ηk

(
{gx}elm

K φelm
K

)
×
{√

gA
ξiξj

abx

}elm

L
φelm

L J∗
jl

∂

∂ηl

(
{fb}elm

J φelm
J

)
Jdη1dη2

=
∑

x

2∑
ijkl

nnode∑
IJKL

{wa}elm
I

[∫∫
φelm

I

∂φelm
J

∂ηl

∂φelm
K

∂ηk

φelm
L J∗

ikJ
∗
jlJdη1dη2

{√
gA

ξiξj

abx

}elm

K

]
{fb}elm

J

= welmT
a A2elm

ab felmb , (B.12)

where

A2elm
ab =

∑
x

2∑
ijkl

nnode∑
KL

∫∫
φelm

I

∂φelm
J

∂ηl

∂φelm
K

∂ηk

φelm
L J∗

ikJ
∗
jlJdη1dη2

{√
gA

ξiξj

abx

}elm

K
(B.13)

Excitation submatrix (1): C1elm
ab∫∫

welm
a (

√
gCab)

elm f elm
b dρdχ

=

nnode∑
IJK

∫∫
{wa}elm

I φelm
I {√gCab}elm

K φelm
K {fb}elm

J φelm
J Jdη1dη2

=

nnode∑
IJK

{wa}elm
I

[∫∫
φelm

I φelm
J φelm

K Jdη1dη2 {
√
gCab}elm

K

]
{fb}elm

J

= welmT
a C1elm

ab felmb , (B.14)

where

C1elm
ab =

nnode∑
K

∫∫
φelm

I φelm
J φelm

K Jdη1dη2 {
√
gCab}elm

K (B.15)
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Excitation submatrix (2): C2
ab

∑
x

2∑
i

∫∫
welm

a

∂gelm
x

∂ξi

(√
gCξi

abx

)elm

f elm
b dρdχ

=
∑

x

2∑
ij

nnode∑
IJKL

∫∫
{wa}elm

I φelm
I J∗

ij

∂

∂ηj

(
{gx}elm

K φelm
K

){√
gCξi

abx

}elm

L
φelm

L {fb}elm
J φelm

J Jdη1dη2

=
∑

x

2∑
ij

nnode∑
IJKL

{wa}elm
I

[∫∫
φelm

I φelm
J

∂φelm
K

∂ηj

φelm
L J∗

ijJdη1dη2 {gx}elm
K

{√
gCξi

abx

}elm

L

]
{fb}elm

J

= welmT
a C2elm

ab felmb , (B.16)

where

C2elm
ab =

∑
x

2∑
ij

nnode∑
KL

∫∫
φelm

I φelm
J

∂φelm
K

∂ηj

φelm
L J∗

ijJdη1dη2 {gx}elm
K

{√
gCξi

abx

}elm

L
(B.17)

Excitation submatrix (3): C3elm
ab

∑
xy

2∑
ij

∫∫
welm

a

∂gelm
x

∂ξi
(
√
gCabxy)

elm ∂gelm
y

∂ξj
f elm

b dρdχ

=
∑
xy

2∑
ijkl

nnode∑
IJKLM

∫∫
{wa}elm

I φelm
I J∗

ik

∂

∂ηk

(
{gx}elm

K φelm
K

)
×
{√

gC
ξiξj

abxy

}elm

M
φelm

M J∗
jl

∂

∂ηl

(
{gy}elm

L φelm
L

)
{fb}elm

J φelm
J Jdη1dη2

=
∑
xy

2∑
ijkl

nnode∑
IJKLM

{wa}elm
I

[∫∫
φelm

I φelm
J

∂φelm
K

∂ηk

∂φelm
L

∂ηl

φelm
M J∗

ikJ
∗
jlJdη1dη2

× {gx}elm
K

{√
gC

ξiξj

abxy

}elm

M
{gy}elm

L

]
{fb}elm

J

= welmT
a C3elm

ab felmb , (B.18)

where

C3elm
abIJ =

∑
xy

2∑
ijkl

nnode∑
KLM

∫∫
φelm

I φelm
J

∂φelm
K

∂ηk

∂φelm
L

∂ηl

φelm
M J∗

ikJ
∗
jlJdη1dη2 {gx}elm

K

{√
gC

ξiξj

abxy

}elm

M
{gy}elm

L

(B.19)
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Source subvector: Selm
a∫∫
welm

a (
√
gSa)

elm dρdχ

=

nnode∑
IJ

∫∫
{wa}elm

I φelm
I {√gSa}elm

J Jdη1dη2

=

nnode∑
IJ

{wa}elm
I

[∫∫
φelm

I φelm
J Jdη1dη2 {

√
gSa}elm

J

]
= welmT

a Selm
a , (B.20)

where

Selm
aI =

nnode∑
J

∫∫
φelm

I φelm
J Jdη1dη2 {

√
gSa}elm

J (B.21)

SUPG mass submatrix: Mselm
ab

2∑
i

∫∫
τ elm
a uξielm

a

∂welm
a

∂ξi

∂

∂t

[
(
√
gMab)

elm f elm
b

]
dρdχ

=
2∑
ij

nnode∑
IJKL

∫∫
τ elm
a

{
uξi

a

}elm

L
φelm

L J∗
ij

∂

∂ηj

({
welm

a

}elm

I
φelm

I

)
× ∂

∂t

(
{√gMab}elm

K φelm
K {fb}elm

J φelm
J

)
Jdη1dη2

=
2∑
ij

nnode∑
IJKL

{wa}elm
I

× ∂

∂t

([
τ elm
a

∫∫
J∗

ij

∂φelm
I

∂ηj

φelm
J φelm

K φelm
L Jdη1dη2 {

√
gMab}elm

K

{
uξi

a

}elm

L

]
{fb}elm

J

)
= welmT

a Mselm
ab felmb , (B.22)

where

Mselm
abIJ =

2∑
ij

nnode∑
KL

τ elm
a

∫∫
∂φelm

I

∂ηj

φelm
J φelm

K φelm
L J∗

ijJdη1dη2 {
√
gMab}elm

K

{
uξi

a

}elm

L
(B.23)
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SUPG advection submatrix (1): V1selm
ab

2∑
ij

∫∫
τ elm
a uξielm

a

∂welm
a

∂ξi

∂

∂ξj

[(√
gV

ξj

ab

)elm

f elm
b

]
dρdχ

=
2∑

ijkl

nnode∑
IJKL

∫∫
τ elm
a

{
uξi

a

}elm

L
φelm

L J∗
ik

∂

∂ηk

({
welm

a

}elm

I
φelm

I

)
× J∗

jl

∂

∂ηl

({√
gV

ξj

ab

}elm

K
φelm

K {fb}elm
J φelm

J

)
Jdη1dη2

=
2∑

ijkl

nnode∑
IJK

{
welm

a

}elm

I

×
[
τ elm
a

∫∫
∂φelm

I

∂ηk

∂

∂ηl

(
φelm

J φelm
K

)
φelm

L J∗
ikJ

∗
jlJdη1dη2

{√
gV

ξj

ab

}elm

K

{
uξi

a

}elm

L

]
{fb}elm

J

= welmT
a V1selm

ab felmb , (B.24)

where

V1elm
abIJ =

2∑
ijkl

nnode∑
KL

τ elm
a

∫∫
∂φelm

I

∂ηk

∂

∂ηl

(
φelm

J φelm
K

)
φelm

L J∗
ikJ

∗
jlJdη1dη2

{√
gV

ξj

ab

}elm

K

{
uξi

a

}elm

L

(B.25)

SUPG advection submatrix (2): V2selm
ab

∑
x

2∑
ijk

∫∫
τ elm
a uξielm

a

∂welm
a

∂ξi

∂

∂ξj

[(√
gV

ξjξk

abx

)elm ∂gelm
x

∂ξk
f elm

b

]
dρdχ

=
∑

x

2∑
ijklmn

nnode∑
IJKLM

∫∫
τ elm
a

{
uξi

a

}elm

M
φelm

M J∗
il

∂

∂ηl

({
welm

a

}elm

I
φelm

I

)
× J∗

jm

∂

∂ηm

[{√
gV

ξjξk

abx

}elm

L
φelm

L J∗
kn

∂

∂ηn

(
{gx}elm

K φelm
K

)
{fb}elm

J φelm
J

]
Jdη1dη2

=
∑

x

2∑
ijklmn

nnode∑
IJKLM

{
welm

a

}elm

I

[
τ elm
a

∫∫
∂φelm

I

∂ηl

∂

∂ηm

(
φelm

J

∂φelm
K

∂ηn

φelm
L J∗

kn

)
φelm

M J∗
ilJ

∗
jmJdη1dη2

×{gx}elm
K

{√
gV

ξjξk

abx

}elm

L

{
uξi

a

}elm

M

]
{fb}elm

J

= welmT
a V2selm

ab felmb , (B.26)

where

V2selm
abIJ =

∑
x

2∑
ijklmn

nnode∑
KLM

τ elm
a

∫∫
∂φelm

I

∂ηl

∂

∂ηm

(
φelm

J

∂φelm
K

∂ηn

φelm
L J∗

kn

)
φelm

M J∗
ilJ

∗
jmJdη1dη2

× {gx}elm
K

{√
gV

ξjξk

abx

}elm

L

{
uξi

a

}elm

M
(B.27)
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SUPG diffusion submatrix: Dselm
ab

2∑
ijk

∫∫
τ elm
a uξielm

a

∂welm
a

∂ξi

∂

∂ξj

[(√
gD

ξjξk

ab

)elm ∂f elm
b

∂ξk

]
dρdχ

=
2∑

ijklmn

nnode∑
IJKL

∫∫
τ elm
a

{
uξi

a

}elm

L
φelm

L J∗
il

∂

∂ηl

(
{wa}elm

I φelm
I

)
× J∗

jm

∂

∂ηm

[{√
gD

ξjξk

ab

}elm

K
φelm

K J∗
kn

∂

∂ηn

(
{fb}elm

J φelm
J

)]
Jdη1dη2

=
2∑

ijklmn

nnode∑
IJKL

{wa}elm
I

[
τ elm
a

∫∫
∂φelm

I

∂ηl

∂

∂ηm

(
∂φelm

J

∂ηn

φelm
K J∗

kn

)
φelm

L J∗
jmJ

∗
ilJdη1dη2

×
{√

gD
ξjξk

ab

}elm

K

{
uξi

a

}elm

L

]
{fb}elm

J

= welmT
a Dselm

ab felmb , (B.28)

where

Dselm
abIJ =

2∑
ijklmn

nnode∑
KL

τ elm
a

∫∫
∂φelm

I

∂ηl

∂

∂ηm

(
∂φelm

J

∂ηn

φelm
K J∗

kn

)
φelm

L J∗
jmJ

∗
ilJdη1dη2

×
{√

gD
ξjξk

ab

}elm

K

{
uξi

a

}elm

L
(B.29)

SUPG gradient submatrix (1): A1selm
ab

2∑
ij

∫∫
τ elm
a uξielm

a

∂welm
a

∂ξi

(√
gA

ξj

ab

)elm ∂f elm
b

∂ξj
dρdχ

=
2∑

ijkl

nnode∑
IJKL

∫∫
τ elm
a

{
uξi

a

}elm

L
φelm

L J∗
ik

∂

∂ηk

(
{wa}elm

I φelm
I

)
×
{√

gA
ξj

ab

}elm

K
φelm

K J∗
jl

∂

∂ηl

(
{fb}elm

J φelm
J

)
Jdη1dη2

=
2∑

ijkl

nnode∑
IJKL

{wa}elm
I

×
[
τ elm
a

∫∫
∂φelm

I

∂ηk

∂φelm
J

∂ηl

φelm
K φelm

L J∗
ikJ

∗
jlJdη1dη2
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SUPG gradient submatrix (2): A2selm
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SUPG excitation submatrix (1): C1selm
ab

2∑
i

∫∫
τ elm
a uξielm

a

∂welm
a

∂ξi
(
√
gCab)

elm f elm
b dρdχ

=
2∑
ij

nnode∑
IJKL

∫∫
τ elm
a

{
uξi

a

}elm

L
φelm

L J∗
ij

∂

∂ηj

(
{wa}elm

I φelm
I

)
× {√gCab}elm

K φelm
K {fb}elm

J φelm
J Jdη1dη2

=
2∑
ij

nnode∑
IJKL

{wa}elm
I

[
τ elm
a

∫∫
∂φelm

I

∂ηj

φelm
J φelm

K φelm
L J∗

ijJdη1dη2 {
√
gCab}elm

K

{
uξi

a

}elm

L

]
{fb}elm

J

= welmT
a C1selm

ab felmb , (B.34)

where

C1selm
abIJ =

2∑
ij

nnode∑
KL

τ elm
a

∫∫
∂φelm

I

∂ηj

φelm
J φelm

K φelm
L J∗

ijJdη1dη2 {
√
gCab}elm

K

{
uξi

a

}elm

L
(B.35)

112



SUPG excitation submatrix (2): C2selm
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SUPG excitation submatrix (3): C3selm
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SUPG source subvector: Sselm
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