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ABSTRACT

Improvement of surface wave methods for constructing subsurface S-wave velocity
structures

by

Tatsunori Tkeda

Chair: Toshifumi Matsuoka

Seismic surface waves are guided waves propagating on the surface of the earth. Al-
though surface waves have a long history in seismological studies, the use of surface
waves has not been common in geophysical explorations. In a reflection or refrac-
tion seismic survey, surface waves are regarded as noise to be eliminated. Recently,
however, a seismic exploration method using surface waves has been dramatically
developed mainly for engineering purposes. The surface wave method is attractive
because it is non-destructive, low cost, and simple compared to other seismic methods.
By the surface wave method, subsurface S-wave velocity structures can be efficiently
estimated from dispersion of surface waves. Since S-wave velocity structures down
to several tens of meters play an important role for evaluating local ground-motion
amplification, the surface wave method is one of the most important geophysical
methods to be established for earthquake-prone countries such as Japan.

The surface wave method utilizes velocity dispersion of surface waves, which can
be extracted from both passive and active seismic data by surface wave analysis. Since

surface waves can be theoretically modeled for horizontally layered structures, S-wave
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velocity structures can be obtained by inversion of observed surface wave dispersion.

Although a number of applications of the surface wave method have demonstrated
the effectiveness of the method, there still remain some issues to be resolved. In this
dissertation, we studied several challenging issues with the surface wave method to
improve the accuracy of S-wave velocity estimations and further extend its applica-
bility.

First we studied a theoretical issue in surface waves. In the surface wave method,
we usually analyze surface waves assuming isotropic media. One reason for this
restriction is that the forward modeling of surface waves in anisotropic media is not
well developed, although analyses of anisotropy have a potential to reveal attractive
information such as lithological alignment, aligned cracks, and stress conditions of
media. Therefore, we developed a forward computation method of surface waves on
transversely isotropic media with enough accuracy and computation time. It can be
effectively used in inversion analysis, which sometimes requires a number of forward
calculations.

We then studied the surface wave method using passive seismic data. By inverting
observed dispersion curves with the microtremor analysis method, S-wave velocities of
sedimentary layers can be retrieved well. The combined use of a horizontal-to-vertical
particle motion spectral ratio (HVSR) with dispersion curves can further constrain
bedrock depth or velocity contrasts in bedrock. Although a Love wave contribution to
Rayleigh waves is necessary for inverting HVSR curves, in some conditions, we need to
give an assumption of Love wave contribution. We investigated the effect of the Love
wave contribution in the joint inversion of cross-correlations including information on
surface wave dispersion with HVSR curves. The results suggested that the choice of
the assumption of Love wave contribution is insensitive to the inverted velocity models

down to bedrock, although there is an ambiguity to estimating S-wave velocities of

bedrock.



The use of higher modes of surface waves is one of the most important issues in the
surface wave method because it can improve S-wave velocity estimations, increasing
investigation depth. One of the biggest problems in multimode analysis is that sev-
eral mode components are mixed in observed surface waves. This ambiguity causes
significant errors in inversion analysis, and therefore only the fundamental mode of
surface waves is sometimes used in the surface wave analysis.

We proposed two kinds of multimode inversion methods considering the effects of
different receiver separation distances in array observations for passive seismic data
analysis. Multimode inversion can be performed for phase velocity or cross-correlation
data before converting into phase velocities. Both methods don’t require mode num-
bering for observed data. The multimode inversion methods were successfully applied
for both simulated and field data. The inverted velocity models had a good agreement
with logging data.

We also studied higher modes of surface waves in the surface wave method using
active sources. To separate mixing multimode surface waves from observed seismic
data acquired by active sources, we proposed the deconvolution technique based on
the fact that dispersion images can be described by convolution of the theoretical
spectrum with absolute values of the array smoothing function. Applying the de-
convolution technique can separate two mixing modes from single peaks. Separating
mixing modes with the deconvolution technique contributes not only to improving
phase velocity estimations but also to identifying mode transition points.

Furthermore, we studied the characteristics of horizontal components of multi-
mode Rayleigh waves. Only the vertical components of Rayleigh waves are usually
used in the surface wave method, although Rayleigh waves are also included in hori-
zontal components of P-SV waves. We demonstrated that when an explosive source
is located at a deeper depth, additional mode information can be extracted from hor-

izontal component data improving the sensitivity to S-wave velocity changes. This
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result suggests that the multimode analysis of horizontal components of Rayleigh
waves with vertical component data can be efficiently applied in seismic data ac-
quired for standard reflection seismic surveys with three-component seismometers.

In surface wave analysis, two-dimensional S-wave velocity structures can be ob-
tained by assembling one-dimensional S-wave velocity structures because surface wave
analysis requires the assumption of horizontally layered structures in inversion anal-
ysis. The key to improving the lateral resolution of estimated S-wave velocity struc-
tures is estimating dispersion curves corresponding to one-dimensional S-wave velocity
structures, removing lateral heterogeneity. To improve lateral resolution of inverted
two-dimensional velocity structures, we proposed the combined technique of CMP
cross-correlation analysis for surface waves with applying spatial windows to CMP
gathers. The wavelength-dependent window is applied, keeping enough resolution to
estimate phase velocities. The proposed method is successfully applied for remov-
ing lateral heterogeneity in estimating dispersion curves for one-dimensional velocity
structures. Therefore, two-dimensional S-wave velocity structures with high lateral
resolution can be obtained by the subsequent inversion.

In summary, we improved surface wave analysis methods to enhance the accuracy
of S-wave velocity structure estimations. We demonstrated the effectiveness of the
analysis methods by applying both numerically simulated data and field data. Our
findings in this dissertation will contribute to extending the applicability of the surface

wave method.
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CHAPTER I

Introduction

1.1 Motivation

An earthquake is one of the most dangerous natural hazards in the world. Japan is
an especially earthquake-prone country because it is surrounded by plate boundaries.
The 2011 Tohoku earthquake (Mw 9.0) that occurred northeast of Japan reminded
us not only of the fear of earthquakes but also of the importance of a risk assessment
for earthquake damages.

In order to evaluate local ground conditions in terms of local ground-motion am-
plification, impedance, damping, and resonance are key parameters (Kramer, 1996).
For example, when seismic waves propagate through low-impedance materials (e.g.,
silt and clay), the amplitude of seismic waves is increased to conserve energy (McPher-
son and Hall, 2013). However, the above parameters are difficult to obtain from a
practical point of view. As an alternative approach, S-wave velocity structures down
to 30 m (Vs3) are widely used for characterizing site conditions for earthquake site
response (e.g. Borcherdt, 1994; Boore, 2004; Matsuoka et al., 2005; Wald and Allen,
2007; McPherson and Hall, 2013). S-wave velocity models are also important for use
in estimation of strong ground motion by numerical simulation (e.g. Yamanaka and
Yamada, 2006; Kasamatsu and Yamanaka, 2006).

There are several approaches to estimating subsurface S-wave velocity structures.



The direct measurement of S-wave velocities at boreholes gives a good estimation.
However, it is difficult to estimate the spatial distribution of S-wave velocity struc-
tures, and this method cannot be applied in urban areas due to environmental prob-
lems. On the other hand, the shallow S-wave refraction method is a non-destructive
method of obtaining good estimates of near-surface S-wave velocities on the assump-
tion of horizontally layered structures. The S-wave refraction method has been com-
monly used in engineering and environmental studies. In non-horizontal media, how-
ever, estimating correct S-wave velocities is difficult because SH-waves cannot be
distinguished from converted waves in refraction data (Xia et al., 2002b). We need
to establish an alternative approach for constructing near-surface S-wave velocity

structures.

1.2 Surface wave method for constructing subsurface S-wave

velocity models

To overcome this problem, a geophysical method using seismic surface waves has
received a lot of attention and has been significantly developed in recent years because
subsurface S-wave velocity structures can be easily obtained at low cost. Surface wave
analysis has been widely applied for various fields; for example, for mapping bedrock
(Miller et al., 1999), soil liquefaction potential (Lin et al., 2004), pavement structures
(Ryden and Lowe, 2004), geothermal fields (Xu et al., 2012; Galgaro et al., 2013) and
glaciers (Tsuji et al., 2012).

Surface waves are guided waves propagating between different materials. In this
dissertation, we focus on surface waves propagating on the surface of the earth.
These surface waves can be classified into two types: Rayleigh waves and Love waves.
Rayleigh waves are generated by the interaction of P- and SV-waves, whereas Love

waves are generated by SH-waves. Rayleigh waves are usually used in surface wave



analysis because they can be easily excited.

The velocities of surface waves on layered media differ in frequency. The energy
of surface waves is concentrated down to about one wavelength. Surface waves with
shorter wavelengths (high frequencies) are sensitive to S-wave velocities at a shal-
lower depth, whereas surface waves with longer wavelengths (low frequencies) are
sensitive to a deeper structure. Thus, the depth sensitivity of surface waves depends
on wavelengths (frequencies).

The standard procedure for surface wave analysis can be divided into three main
steps (Socco et al., 2010):

(1) acquire the experimental data

(2) process the signal to obtain the experimental dispersion curve

(3) solve the inverse problem to estimate model parameters

In short, subsurface velocity structures can be estimated by the inversion of ob-
served surface waves extracted from acquired seismic data. We note that in forward
modeling of surface waves, we should assume one-dimensionally layered structures
because theoretical computations of surface waves are constrained to horizontally
layered structures developed by Thomson (1950) and Haskell (1953).

Surface wave analysis methods can be divided into two main methods depending
on data acquisition. One is the method of using surface waves included in seismic
data excited by an active source. Nazarian and Stokoe (1984) introduced the spec-
tral analysis of surface waves (SASW) method, in which dispersion curves of surface
waves can be estimated from a pair of receivers. In order to improve the accuracy of
dispersion curve estimations, Park et al. (1998, 1999a) proposed the method of using
multichannel waveform data, referred to as the multichannel analysis of surface waves
(MASW).

The other is the microtremor survey method (e.g. Okada, 2003) using microtremors

(ambient noise). Microtremors are passive seismic data excited by ambient noise from



natural phenomena (e.g., winds and ocean waves) and human activities (e.g., traffic
noise and industrial noise). Microtremors at low frequencies (<1 Hz), mostly gen-
erated by natural phenomena (Asten, 1978), contribute to retrieving deeper S-wave
velocity structures, compared to surface wave analysis using active sources.

The spatial autocorrelation (SPAC) method proposed by Aki (1957, 1965) and
the frequency-wavenumber (f-k) method developed by Lacoss et al. (1969) and Capon
(1969) are two main microtremor analysis methods for estimating surface wave disper-
sion curves with an array observation. As a single-station method, the horizontal-to-
vertical particle motion spectral ratio (HVSR) method originally proposed by Nogoshi
and Igarashi (1971) and widely popularized by Nakamura (1989) uses a spectral ratio
between vertical and horizontal components of microtremors. A peak of a HVSR curve
usually agrees well with the fundamental resonance frequency (Bonnefoy-Claudet
et al., 2008). HVSR curves can be efficiently combined with estimated dispersion
curves by an active or passive surface wave method to constrain a depth or S-wave
velocity of bedrock (e.g. Scherbaum et al., 2003; Parolai et al., 2005; Arai and Toki-
matsu, 2005). Also, a difference between in observed HVSR frequency maxima for
axial and transverse components can be an indicator of 2D effects in the geology (e.g.

Roten et al., 2006; Claprood et al., 2012).

1.3 Outline of the dissertation

In this dissertation, we have studied several challenging issues that remain in
surface wave analysis for improving subsurface S-wave velocity estimations. Figure
1.1 shows a flowchart of this dissertation. We have considered the use of surface waves
from a theoretical aspect of surface waves (chapter 2) to data processing for surface
waves included in microtremors (chapters 3 and 4) and in seismic data excited by
active sources (chapters 5-7).

In chapter 2, we address the computation of Rayleigh waves on transversely



isotropic media. In surface wave analysis, we usually assume isotropic media. Al-
though analyses of anisotropy have potential to reveal various properties of a medium
(e.g. Crampin, 1981), very few studies have been conducted on surface wave analysis
considering anisotropy. To extend surface wave analysis to anisotropic media, the
most important point is a development of stable forward modeling of surface waves
with enough accuracy and computational time for inversion. Therefore, we develop
the theoretical computation method of Rayleigh waves on transversely isotropic me-
dia. The basic theory of P-SV waves and Rayleigh waves is described in chapter
2.

In chapter 3, we apply joint inversion of the SPAC method with HVSR curves
for field data acquired in Newcastle, Australia. When we invert HVSR curves by
using modelled Rayleigh wave ellipticity, the assumption of Love wave contribution is
required in some conditions. We consider the effect of the assumption of Love wave
contribution to joint inversion. We also evaluate observed HVSR curves by zero-lag
cross-correlations to remove noise effects other than Rayleigh waves.

In chapter 4, we propose two kinds of multimode inversion procedures in the
SPAC method considering the effect of different receiver spacings. One is multimode
inversion in a phase velocity domain, and the other is in a coherency domain without
conversion from coherencies to phase velocities. Although different mode signals are
rarely separated by the SPAC method, neither inversion technique requires mode
identification for observed data owing to consideration of theoretical amplitude for
each mode component. The proposed multimode inversion methods can be easily
adapted for cross-correlation data with multiple receiver separation distances.

In chapter 5, we propose the deconvolution technique for separating mixing mul-
timode surface waves in the MASW. When the fundamental mode of surface waves
is dominant, a dispersion spectrum constructed by the MASW can be described by

convolution of the theoretical spectrum with absolute values of the array smoothing



function (ASF), which can be defined by the receiver configurations. Based on this
fact, we apply the deconvolution technique for dispersion spectra by using the ASF
to separate mixing mode signals.

In chapter 6, we study fundamental characteristics of horizontal components of
multimode Rayleigh waves. Although only vertical components of seismic data are
usually used to estimate multimode Rayleigh waves, Rayleigh waves are also included
in horizontal components of P-SV waves. The horizontal component of multimode
Rayleigh waves has different amplitude distribution from vertical component data.
To reveal the advantages of the use of horizontal components of Rayleigh waves, we
investigate the effects of source types and source depths on multimode Rayleigh waves
in horizontal component data as well as vertical component data.

In chapter 7, we discuss how to improve the lateral resolution of dispersion curve
estimations in laterally heterogeneous media. In the inversion of surface wave disper-
sion curves, we should assume horizontally layered structures. Therefore, in surface
wave analysis, two-dimensional S-wave velocity structures are obtained by assembling
one-dimensional S-wave velocity structures estimated from local dispersion curves for
different reference points. The key to improving lateral resolution of two-dimensional
S-wave velocity models is extracting local dispersion curves corresponding to one-
dimensional velocity structures beneath reference points. To improve lateral resolu-
tion of local dispersion curve estimations, we propose the window-controlled CMP
cross-correlation analysis. In the proposed method, wavelength-dependent spatial
windows are applied for the cross-correlation gathers to provide a weight for refer-
ence points.

In chapter 8, we make a conclusion and describe a recommendation for future
work.

These researches have been published in or submitted to the following journals.

Chapter 2: Computation of Rayleigh waves on transversely isotropic media by the



reduced delta matrix method, 2013, Bulletin of the Seismological Society of America,
103, 2083-2093. doi: 10.1785/0120120207.

Chapter 3: Submitted to Geophysical Journal International.

Chapter 4: Multimode inversion with amplitude response of surface waves in the
spatial autocorrelation method, 2012, Geophysical Journal International, 190, 541-
552. doi: 10.1111/j.1365-246X.2012.05496.x.

Chapter 5: A part of chapter 5 has been submitted to Geophysical Journal Inter-
national.

Chapter 6: Submitted to Geophysics.

Chapter 7: Window-controlled CMP crosscorrelation analysis for surface waves in
laterally heterogeneous media, 2013, Geophysics, 78, EN95-EN105. doi: 10.1190/GEO2013-
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CHAPTER II

Computation of Rayleigh waves on transversely
isotropic media by the reduced delta matrix

method

2.1 Introduction

Because anisotropy of a medium is mainly caused by crystal alignment, lithological
alignment, stress-induced effects, and aligned cracks (Crampin, 1981), analyses of
seismic anisotropy can reveal information about underground structures. The analysis
of S-wave splitting, the separation of an incident S-wave into two directions, is the
most general technique used in the study of seismic anisotropy. The strength of the
anisotropy and the predominant direction, estimated by S-wave splitting, has been
used for structural interpretations of the crust and the upper mantle (e.g. Crampin
et al., 1980; Silver and Chan, 1991; Crampin and Peacock, 2008).

In contrast, analyses of surface wave anisotropy have the potential to determine
anisotropy velocities with their depth distribution. The Love-Rayleigh discrepancy
(Anderson, 1961), or the directional dependence of surface waves, has been used to re-
veal anisotropy mainly in the lithosphere (e.g. Maupin and Cara, 1992; Friederich and
Huang, 1996; Gaherty, 2004; Alvizuri and Tanimoto, 2011). Recently, the anisotropy

of surface waves propagating on near the surface has been discussed (Zhang et al.,



2009; Dal Moro and Ferigo, 2011).

The estimation of underground structures using surface waves is based on an in-
version in which observed surface waves are compared with theoretically calculated
surface waves for assumed media. Theoretical computations of surface waves are
complicated and usually confined to horizontally layered media. For isotropic lay-
ered media, surface waves can be calculated by the Haskell method (Haskell, 1953),
in which surface waves are obtained by root searches of the characteristic functions.
In the computation of Rayleigh waves, however, the huge exponential functions of
the layer matrices in the Haskell method generate numerical instabilities such as un-
derflow at high frequencies. Dunkin (1965) overcame this problem by analytically
decreasing the order of the characteristic functions by using the delta matrix. Wat-
son (1970) further extended this method as the reduced delta matrix method, which
can compute Rayleigh waves more efficiently than the standard delta matrix method
by decreasing the number of independent variables. Saito and Kabasawa (1993) re-
formulated the reduced matrix method so that Rayleigh waves could be computed
without using complex numbers. Similar computational methods to overcome the nu-
merical instabilities of Rayleigh waves have been developed by Schwab (1970), Schwab
and Knopoff (1972), and Abo-Zena (1979). Kennett (1974) and Kennett and Kerry
(1979) developed a quite different approach using the Reflection-Transmission (RT)
matrix method, which was improved by Chen (1993). Although the computational
efficiencies of the above methods are different, their accuracies are essentially the same
for the computation of the characteristic function (Buchen and Ben-Hador, 1996).

Anderson (1961) computed surface waves on transversely isotropic media by ex-
tending the Haskell method, and Crampin (1970) further extended the Haskell method
to general anisotropic media. Takeuchi and Saito (1972) developed a method of com-
puting surface waves on transversely isotropic media by a numerical integration of the

equations of motion. This approach was extended to general anisotropy by Kawasak:



and Koketsu (1990). However, instabilities in the computation of surface waves at
high frequencies also exist for anisotropic media. Park (1996) developed the compu-
tational method for layered anisotropic structures with an arbitrarily oriented axis of
symmetry and three constants related to the wave speed variations of P- and S-waves
by extending the method of Chen (1993). Mandal and Mitchell (1986) derived the
delta matrix method for transversely isotropic media. As the use of the delta matrix
method makes it possible to compute partial derivatives of characteristic functions
analytically (Saito and Kabasawa, 1993), the group velocity and amplitude response
(Harkrider, 1964, 1970) can be obtained without loss of numerical precision. How-
ever, Mandal and Mitchell (1986) did not discuss how to compute Rayleigh waves for
transversely isotropic media as they used the delta matrix method for the computa-
tion of synthetic waveforms rather than surface waves. Moreover, the delta matrix
method has not yet been extended to the reduced delta matrix method.

In this paper, we demonstrate the computation of Rayleigh waves on transversely
isotropic media by the reduced matrix method. First, we derive layer matrices in the
Haskell method and the matrix elements in the delta matrix method for transversely
isotropic media. Second, we extend the delta matrix method to the reduced delta
matrix method. Third, we discuss analytical computations of partial derivatives of
the characteristic function. Finally, we show the effectiveness of the reduced matrix
method by computing the phase velocity, group velocity, ellipticity, and amplitude

response of Rayleigh waves on transversely isotropic media.

2.2 P-SV waves on transversely isotropic media

Let us consider a Cartesian coordinate system with the x — y plane horizontal
and the z axis vertical. Let the displacement, stress, and density be u = (u, v, w)7,

0 = (Opzy Oyys Oz Oyzy Oz Oy) L, and p, respectively. Then the equations of motion
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can be expressed as

32u (9am (9ny aamz
Pas = +

ot? ox dy 0z
p@% _ 0oy, Ooy, N oy

ot? ox dy 0z
Pw 0o, Doy N 00,

Porr = or ' 8y | 8z

(2.1)

Assuming Hooke’s law, the stress-strain relationship for transversely isotropic me-

dia with five independent elastic constants is written as Anderson (1961)

o

oo cin a2 ¢z 0 0 0 b
0 0 0 Qv

Oyy Ci2 Cnn1 Ci3 dy

o
Oz ci3 a3 cz3 00 0 a—f (2.2)
Oy 0 0 0 e O O et
O s 0 0 0 0 cu O Quy Qu
Oy 0 0 0 0 0 @wsa Gt o

For P-SV waves, it is sufficient to consider waves propagating along the z axis
at a velocity ¢ because transversely isotropic media are symmetric about the z axis.

Under this condition we have

v=0 —=0. (2.3)
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Substituting equation 2.3 into equations 2.1 and 2.2, we obtain

d%u 004 00,

'0(9152 Oz 0z

0w 00, 0o,

P = or o
ou ow

_ b 2.4
Ozx Cnax + c13 B (2.4)
ou n ow
0,y = Cl3— + C33—
135 335,

ou Ow
Oyp — Cyq @4—8—1’ .

We assume solutions of displacements and stresses in the form of

w = yl(z)e—i(wt—kx)
0., = yg(z)e—i(wt—kx)
(2.5)
U= iyg(z)e—i(wt—k:c)
Oy = Z-y4(z)€—i(wt—kac)7

where t is time, w is angular frequency, k is horizontal wavenumber, and y =
(Y1, Y2, Y3, y4)T is an unknown function to be determined. Substituting equation 2.5
into equation 2.4 and assuming that p and c¢;; depend only on z, we obtain the fol-

lowing linear differential equations:

dyl(Z) . 1 C13
dz C33 yQ(Z) - C33 kyg(z)
dyo(z
W) (2) 4 ha(2)
dy3<2) -k ( )—i—ik ( ) (26)
P Y1z o Ya(2
dy,(z c c?
y;( ) = —ﬁkyg(z) + [(CH — ﬁ) E? — pwﬂ y3(2).
z C33 C33

Even if ¢;j(2) is discontinuous along the z axis, y;(2) must be continuous.

As we consider only homogeneous media in the following discussion, we suppose
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solutions of the above linear differential equations in the forms

vz

y1(2) = €% y3(z) = ee”. (2.7)

Substituting equation 2.7 into equation 2.6, we obtain

Y2(2) = (ca3v — cizke)e”

ya(2) = cya(k + ve)e””
B c33V? + pw? — cyuk? (2.8)
n (c13 + c4q) kv
_ (c13 + caa) kv
c11k? — pw? — cy?’

From the third equation in equation 2.8, we obtain the following quartic equation

about v:

Ca3CaqV? + [cag(pw® — caghk®) + caz(pw?® — c11k?)
+(c13 + caa)* K22 + (pw? — cuk?)(pw? — c11k?) (2.9)

= 0.

Solutions for v? in equation 2.9 can be expressed as

2 _ —]\41:*:\/]\4'12 — 4033044M2
2¢33C44 ’

v

(2.10)

where

M1 = 044(,00.)2 — C44]€2) + 033(pw2 — 611/{72) + (613 + C44)2k72

(2.11)
M2 = (pw2 — c44k2)(pw2 — Cllk'2>,
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and then the solutions for v can be expressed as

U — \/_Ml -+ \/M12 — 4C33C44M2
1=

5 Vg = —11
C33C
33C44 (212)
Uy — —M1 — \/M12 — 4633644M2 Uy = —u
? 2c33¢44 >

A general solution for y in a homogeneous layer can be expressed as follows:

4
yl(z) _ Z Fmeumz
m=1
4
Y2(2) = Z(CS3Vm — cizken) Frne™?

m=1
) (2.13)

ys(z) = Z €mFme’™*

m=1
4

y4(2) = Z 044(k + Vmem)Fmeumz-

m=1

z

Here, F}, is a constant of integration. We then replace e”* in equation 2.13 with a

hyperbolic function. For example, y;(2) can be rewritten as

4
y1(2) _ Z Fmeumz
m=1

= Fle’jlz —+ F26y2z 4+ F36”3Z —+ F46y4z

- _ (2.14)
= Flel’lz —+ F26 viz —+ Fgey?’Z + F4€ vaz
= (F1 + Fy)coshvyz + (Fy — Fy)sinhvz
+ (F5 + Fy)coshvsz + (F5 — Fy)sinhvsz.
Finally, the general solution y can be expressed as
¥(2) = D()F, (2.15)

14



where

Ci(2) Si(2) C3(2)
D(Z) _ dlsl(Z) dlCl(z) d283(2)
6151 (Z) 6101 (Z) 6353(2)
C44d301(2) 044d351(2') C44d403(2’) C44d453(2)
F+ B
F, — F
F(z) _ 1 2
F;+ Fy
F3 — Fy

and

C1(z) = coshvy z
C5(z) = coshvsz
S1(z) = sinhvyz
S3(z) = sinhvsz
dy = c3zvy — ciske
dy = c3313 — Ci3kes
ds =k + vi€g

d4 =k + v3€3.
2.3 Computation of Rayleigh waves

2.3.1 Haskell method

dgCg(Z)
6303(2)

(2.16)

(2.17)

We assume a stacked-layer structure in which each layer is homogeneous as in

Figure 2.1. Here, we define z,_; = 0 < z < 2z, = h, as the n-th layer. If we define

the origin of the z axis to be at z,_1, from equation 2.15 the general solution of y,,
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within the n-th layer can be expressed as

Substituting z = 2,1 = 0 into equation 2.18, we obtain

Yn(0) = Dn(0)F s,

where

Cy4q dg 0 Cqq d4 0.

From equation 2.19, F,, is solved as

F, =D, (0)ya(0)

n

where
dy 1
ds 0 0 caqds
0 @ b 0
-1 o c33ds c33dg
Dn (0) - d 1
3 _
ds 0 0 cqads
€1 1
0 c33dg c33dg 0
and

d5 = V1€1 — l3€3 dﬁ — V3€1 — lV1€3.
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(2.21)

(2.22)
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Substituting equation 2.21 into equation 2.18, the general solution for the n-th layer

can be written as

yn(2) = An(2)yn(0), (2.24)

where A, is defined by

A, (2) = D,(2)D;H(0), (2.25)

which is called Haskell’ s layer matrix. Haskell’s layer matrices are listed in Appendix
A. By using these relationships among d; described in Appendix B, the layer matrices
described by 16 elements as in Mandal and Mitchell (1986) decrease to 10 elements,
which is the same number as for isotropic media. Equation 2.24 indicates that the
solution in the n-th layer can be obtained from the solution at the bottom of the n
th layer with elastic constants and the density of the n-th layer. Since the solution
of the upper surface in the n-th layer must be continuous with that of the bottom in

the (n + 1)-th layer, it can be expressed as

Yn+1(hn) = yu(hn) = An(hn)yna(0). (2.26)

Thus, the solution at the top of the (n + 1)-th layer can be generally expressed as

Ynt1(hng1 + hy) = Arp1 (Png1) A (hy)yn(0). (2.27)

By connecting the layer matrices to initial values at the bottom of the N-layered
medium, the general solution in the horizontally layered medium can be obtained. If

we define z = 0 as the boundary of the homogeneous half-space and z = H as the
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free surface, the solution on the free surface can be expressed as

yn(H) = Ax(hn)An_1(hn_1) - As(hs)As(hy)yi(0). (2.28)

If the boundary of the half-space is deep enough and a source is located at z > 0,
only down-going waves exist at z < 0. The solution under this condition must be

Fy = Fy = 0 in equation 2.13. Thus, if we define the following initial values:

1 1
dl d2
¥a(0) = ys(0) = (2.29)
€1 €3
C44d3 C44d4

and solutions for these initial values as y,(z), y,(z), respectively, the general solution

can be expressed as

y(2) = F1ya(2) + Fys(2). (2.30)
From the boundary condition of vanishing stress at the free surface,

[y(H)]2 = Filya(H)]2 + Fs[ys(H)]2 =0

(2.31)
[y(H)la = Filya(H)]a + F3[ys(H)]a = 0.
A nontrivial solution of equation 2.31 exists only when
Agr(e,w) = [ya(H)lalys(H)]s = [yo(H)]2lya(H)]s = 0, (2.32)

where A and equation 2.32 are called the characteristic function and the character-
istic equation of Rayleigh waves, respectively. Ag can be obtained from the elastic

constants, the density and thickness of each layer as functions of the phase velocity ¢
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and frequency. The phase velocity c that satisfies equation 2.32 is defined to be that
of Rayleigh waves. However, phase velocities at high frequencies cannot be obtained
accurately due to loss of numerical precision in the computation of the characteristic

functions.

2.3.2 Reduced delta matrix method

In this section, we apply the reduced delta matrix method ( Watson, 1970; Saito
and Kabasawa, 1993) for transversely isotropic media to prevent numerical instability
at high frequencies. First, we define the following minor referred to as a delta matrix

(also referred to as a compound matrix):

Yii(2) = lya(2)lilys(2)]; = s (2ilya(2)]5, i< (2.33)

Because of the following relationship,

there are only six independent elements in Y;;(z). The characteristic function of a

Rayleigh wave is defined in terms of Y;;(z) as

Ap =Y (H). (2.35)

The delta matrix elements satisfy a set of linear differential equations. By differ-
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entiating the defining equation 2.33 and using equation 2.6, we obtain

dYia(z) 13
dz KYia(z) = C33 £¥(2)
dYiz(z) 1 1
= Y, —Y
dz o 14(2) + Ca3 23(2)
dY; i
i =)+ (= 2 ] Y
z C33 C33
1
+ —You(2) + %kYM(z) (2.36)
C33 C33
dYas(z 1
;?;( ) _ kYio(2) — pw?Yis(z) + @YM(Z) — kY34(2)
dY: i
—24(2) = —pw?Yia(2) + [(cﬂ - m) K — pw?} Yas(2)
z C33
dY3(2) C13
- kYi4(2) + 033k 23(2)

The sixth-order equation can be reduced to a fifth-order equation. From the first and

last equations, we have

Wio(z) | dVaulz) _ (2.37)
dz dz
that is,
Yi2(z) + Y34(2) = const.. (2.38)

Because we are interested only in surface waves, Y;;(z) must satisfy the radiation

condition

Yii(2) =0  asz— —oo. (2.39)

Therefore, the constant on the right-hand side in equation 2.38 should be zero, and
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the delta matrix for surface waves satisfies

Yia(2) = —Yau(2). (2.40)

Thus Y34(2) can be eliminated in equation 2.36.
For a stacked layer structure, we can integrate equation 2.36 by the matrix method.

Substituting equation 2.24 into equation 2.33, we obtain

Yii(2) =D big(2) Y (0), (2.41)
k

>k

where

bijr(2) = [A(2)]i[A(2)]j1 — [A(2)]alA(2)]jk- (2.42)

The initial values at the boundary of the homogeneous half-space z = 0 can be

obtained from equation 2.29 as

Y12(0) = dy — dy

Y13(0) = €3 — &

Y14(0) = —cuuds

Ya3(0) = —c33ds (2.43)
Y54(0) = cas(drdy — dads)

Y34(0) = cas(erdy — €3ds)

= —Y12(0).

Because there are 5 independent values in Y;;(2), there are 25 elements in b;;;. Matrix
elements in the delta matrix method are described by 21 independent elements, which

is the same number as in Mandal and Mitchell (1986) due to symmetry. By using
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the relationships in Appendix B, 21 independent elements of the delta matrix method
further decreases to 15 independent elements (Appendix C), which is the same number
as in isotropic media. The terms Sy, C3S3,C%, C2, 5%, 52 are cancelled out in the
derivation of b;;ji; as in the case of isotropic media. This contributes to a decrease
in the order of the characteristic function and prevents loss of numerical precision at
high frequencies since C' and S increase exponentially with increasing frequency when
v is a real number.

Our derivation shows that the number of independent variables in the delta ma-
trices and matrix elements are decreased to 5 and 15, respectively, which are the same
as those in the reduced matrix method for isotropic media. In this way, we extend
the delta matrix method for transversely isotropic media to the reduced delta matrix
method. Connecting the matrix elements of each layer to initial values at the bottom
of the N-layered medium, the characteristic function can be obtained as equation
2.35.

For isotropic media, all the computations can be implemented in real numbers
(Buchen and Ben-Hador, 1996) in the Haskell or (reduced) delta matrix methods.
For transversely isotropic media, however, there is a possibility that v as described
in equation 2.12 becomes complex depending on the elastic constants, phase velocity,
and frequency. If v is complex, then the computation of complex numbers must be
implemented in the algorithm. Consequently more computational time is required
for transversely isotropic media. Because the coefficients of the differential equations
described in equations 2.6 and 2.36 are real, however, the layer matrices and matrix
elements themselves are also real, even if v is complex. In contrast, the computation
method of Takeuchi and Saito (1972), which directly solves the differential equations
by a numerical integral, can avoid the use of complex numbers. Note that in the RT
matrix method, complex numbers must be used even for isotropic media.

The characteristic function obtained by multiplying the matrix elements for each
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layer by the initial values becomes real for isotropic media because the initial values
are real. However, the initial values for transversely isotropic media described in
equation 2.43 are not real numbers when v is complex. In this case, €; and €3 become
complex conjugates because a branch of the square root of equation 2.12 can be taken
where v and v3 are complex conjugates. From these features, we can find values of

Y13(0) in equation 2.43 purely imaginary as follows:

V13(0) = €3 — €, = 2Tm(es). (2.44)

Other initial values can be found purely imaginary as well. As a result, even if v is
complex, the characteristic function can be defined as real by multiplying the initial
values by an imaginary number.

We obtain the phase velocities of Rayleigh waves by the following procedure.
First, the characteristic functions are calculated by changing the phase velocities by
a constant interval at a fixed frequency. Second, when the characteristic function
changes sign, its intermediate velocity is kept as the tentative phase velocity for the
frequency. Third, the estimation of the phase velocities is improved by using Newton’
s method with the tentative phase velocity as the initial value. Finally, the dispersion

curve can be obtained by repeating this procedure for necessary frequencies.

2.3.3 Computations of group velocity, ellipticity, and amplitude response

In this section, we explain the computation of group velocity, ellipticity, and ampli-
tude response of Rayleigh waves by using the delta matrix. Following Ben-Menahem

and Singh (1981), the group velocity U is defined as

_ 1 wde (2.45)
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where the derivative is taken along the dispersion curve. From the implicit function

theorem, the derivatives of the characteristic equation 2.32 can be expressed as

O0AR N 8AR@
Oow Oc dw

= 0. (2.46)

By using equations 2.45 and 2.46, the group velocity can be written as

c wdAR (OAR\
i ) 2.47
U Lee ¢ 0w ( Jc ) (2:47)

Because the dispersion curve is defined by Ag(c,w) = 0, the phase velocity in this
equation must be at the root of the characteristic function, and the partialderivatives
of the characteristic functions must be computed at this phase velocity. Although the
partial derivatives of the angular frequency and phase velocity can be easily computed
by numerical differentiation, they can be computed analytically by the delta matrix
method (Saito and Kabasawa, 1993).

The partial derivatives of equation 2.41 with respect to the phase velocity can be

written as

aY” Z Y s ab”’“’ Ykl )+ Z > biju(z aY’“l 0 (2.48)

>k >k

This equation indicates that the partial derivative of Y;;(z) with respect to the phase
velocity can be obtained by using the partial derivatives of b;;; and Y;;(0). For
stacked layer media, Y;; at the boundary of each layer is required and must be simul-

taneously computed by using equation 2.41. From equations 2.10 and 2.11, the partial
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derivatives of My, M,, and v with respect to the phase velocity can be expressed as

oM k?
861 = 2?[011033 + ciy — (13 + can)?]
oM. k?
ac2 — 2?[(011 + caq) pw? — 2c11044K? (2.49)
1
i — _ oM, + L (Ml oM, _ 2¢33C44 8M2) :
dc  4eszeql dc \/Mf — 4eszeqa My dc dc

By applying a similar procedure, the partial derivatives of ¢; and d; with respect to the
phase velocity can be also obtained. Although it is too complicated to transcribe the
partial derivatives of b;;1; and Y;;(0) with respect to the phase velocity, they can be
calculated by computer by using the differential formula. In this way, we can compute
the partial derivative of Y;;(2) with respect to the phase velocity without numerical
differentiation. The partial derivative of Y;;(z) with respect to the angular frequency
can obtained similarly. Finally, by substituting the calculated partial derivatives of
the characteristic functions at the free surface z = H into equation 2.47, the group
velocity of Rayleigh waves can be obtained.

The ellipticity and amplitude response of Rayleigh waves as defined by Harkrider
(1970) and Tokimatsu (1997) can be written as follows:

Y= =R .

Ap =~y <‘9YL(H)> - (2.51)
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2.4 Sample calculation

2.4.1 Transversely isotropic model

We computed Rayleigh waves on transversely isotropic media to verify the effec-
tiveness of the reduced delta matrix method. The computational model is a structure
with 20 horizontal layers overlying a halfspace of which 17 layers are transversely
isotropic used in Harkrider and Anderson (1962)(Table 2.1). Figure 2.2 shows the
calculated phase velocity, group velocity, ellipticity, and amplitude response of the
fundamental mode and the first higher mode for Rayleigh waves. The Rayleigh wave
results with the Haskell method by Harkrider and Anderson (1962) are also described
in Figure 2.2. Note that the results by Harkrider and Anderson (1962) are only for
the fundamental mode of Rayleigh waves and there are no results for the amplitude
response.

In the computation by Harkrider and Anderson (1962), if v was complex, the
elastic constants of its layer were replaced with ones from an isotropic layer to avoid
the computation of complex dispersion. Although the program we developed can
implement the computation of complex numbers, we also make the replacement if
v is complex in order to compute Rayleigh waves that correspond to the results of
Harkrider and Anderson (1962). We found that v becomes complex near the roots
of the characteristic functions for the 9 th, 10 th, 15 th, and 16 th layers depending
on the frequency.

The calculated phase velocity and ellipticity are almost the same. However, there
is a difference in the group velocity at about 8 Hz. This difference would come from
how the partial derivatives of the characteristic function are computed. Harkrider
and Anderson (1962) computed them by numerical differentiation which generates
numerical errors near the group velocity minimum due to a lack of significance in the

root k differences as written in their original paper. On the other hands, we analyti-
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cally computed them from the delta matrix, as described in the previous section. The
numerical accuracy in the calculation of partial derivatives by the implicit function

theorem depends only on machine precision (Cercato, 2007).

2.4.2 Computational efficiency

We compared the computational time by the reduced delta matrix method with
that by the delta matrix method. For the layered model described in Table 2.1, surface
waves were computed from 2nd to 21st layered models. Characteristic functions with
5000 (phase velocities) x 200 (frequencies up to 100 Hz with frequency spacing of
0.5 Hz) pixels were calculated for each model. Phase velocities, group velocities,
ellipticities and amplitude responses for all the modes were calculated. Figure 2.3
shows the comparison of the computational time by the reduced delta matrix method
with those by the delta matrix method using 21 and 15 independent matrix elements.
By using the reduced delta matrix method, the computational efficiency is increased
by about 15.8 and 3.0 percent compared with the delta matrix method using 21 and

15 independent elements, respectively.

2.5 Summary

We have developed the reduced delta matrix method to compute Rayleigh waves,
which has a better computational efficiency than the standard delta matrix method
for transversely isotropic media.

First, we obtained Haskell’s layer matrices for Rayleigh waves from P-SV waves
in transversely isotropic media. The matrix elements for the delta matrix method
were then derived from the delta matrix. We extended the delta matrix method
to the reduced delta matrix method by showing that the delta matrices and matrix
elements in the delta matrix method can be expressed by 5 and 15 independent

variables, respectively. These are the same number of independent variables as for
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isotropic media.

Moreover, we showed that if v for the initial values is complex, the initial values
for the delta matrix are purely imaginary. In this case, the characteristic function
can be defined as real by multiplying the imaginary numbers by the initial values,
although computer computation of complex numbers is required. We described how
to compute analytically the partial differential of the characteristic function. The
results of the computation example demonstrated the stability and computational
efficiency of the reduced delta matrix method. We can state that the computation of
Rayleigh waves in transversely isotropic media can be efficiently implemented by the

reduced delta matrix method without loss of numerical precision at high frequencies.
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Table 2.1: Parameters used for the transversely isotropic model used in Harkrider
and Anderson (1962)

Thickness Vo Vs Density
Layer Number  (feet)  (kfeet/s) (kfeet/s) (g/em?®) PHI ~NADA
1 5.00 1.2040 0.2600 2.0000  1.0000 1.0000
2 5.00 1.4880 0.4490 2.0000  1.0000 1.0000
3 5.00 1.3930 0.7320 2.0000  1.0000 1.0000
4 5.00 1.6060 1.0000 2.2500  1.0000 1.0000
D 5.00 1.7000 1.0860 2.2500  0.9060 0.9500
6 5.00 1.7000 1.0630 2.2500  0.9060 0.9500
7 5.00 1.7950 1.0630 2.2500  0.9060 0.8400
8 5.00 1.7950 0.9450 2.2500  0.9060 0.8400
9 5.00 1.8660 1.0000 2.2500  0.6280 0.8400
10 5.00 1.8660 1.0630 2.2500  0.6280 0.8400
11 5.00 2.0000 1.4170 2.2500  0.6280 0.7520
12 5.00 2.2440 1.4170 2.2500  0.6280 0.7520
13 5.00 3.8970 1.6060 2.5000  0.9500 0.9300
14 5.00 5.4080 1.6530 2.5000  0.9500 0.9300
15 5.00 5.4080 1.6300 2.5000  0.8500 0.9300
16 5.00 5.4080 1.6300 2.5000  0.8500 0.9300
17 5.00 5.6920 2.0310 2.5000  0.8500 0.9000
18 5.00 5.5970 1.7700 2.5000  0.8500 0.9000
19 5.00 5.5030 1.8420 2.5000  0.9000 0.9300
20 5.00 6.1170 1.7240 2.5000  0.9000 0.9300
21 00 6.2350 2.0000 2.6000  0.9000 0.9300

!Note that we analogize units of each parameter because they are not described in Harkrider
and Anderson (1962). PHI is squared ratio of vertical to horizontal traveling P-wave velocity and
NADA is squared ratio of 45° to horizontal traveling P-wave velocity.
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Figure 2.1: Coordinate axis for a stacked layer structure.
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Figure 2.2: Comparison of the fundamental and first higher modes of Rayleigh waves
for the transversely isotropic model shown in Table 2.1 used in Harkrider
(1964). (a) Phase velocity, (b) Group velocity, (c¢) Ellipticity, and (d)
Amplitude response. Note that the dimension of the amplitude response
corresponds to one when the units of the velocity and density are feet/s
and kg/m?, respectively.
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CHAPTER III

Joint inversion of spatial autocorrelation curves
with HVSR curves on the effect of Love wave

contribution

3.1 Introduction

Constructing near surface velocity structures is a very important task for evalu-
ating seismic hazard. In particular, an average S-wave velocity down to 30 m (Vsg)
is widely used for site classification. The direct measurement of S-wave velocities
at boreholes gives a good estimation but it is expensive to estimate a large spatial
distribution of S-wave velocity structures and it is difficult to apply it in an urban
area.

As a non-destructive seismic method to estimate near surface S-wave velocity
structures, much attention has been paid to the microtremor survey method in re-
cent decades (e.g. Okada, 2003). Microtremors are passive seismic data excited by
ambient noise from natural phenomena (e.g., winds and ocean waves) and human
activities (e.g., traffic noise and industrial noise). The microtremor survey method
usually extracts surface waves included in microtremors. S-wave velocity structures
are then obtained by inversion of surface waves. As the array techniques to infer

dispersion curves of surface waves, the spatial autocorrelation (SPAC) method (Akz,
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1957, 1965) and frequency-wavenumber (fk) analysis (Capon, 1969) are commonly
used. Recently, Cho et al. (2004, 2006) developed the centerless circular array (CCA)
method with miniature array by extending the SPAC method.

As a single station technique, the horizontal to vertical particle motion spectral
ratio (HVSR) method originally proposed by Nogoshi and Igarashi (1971) and widely
popularised by Nakamura (1989) uses a spectral ratio between vertical and horizontal
components of microtremors. Although the origin of HVSR curves is a still contro-
versial problem (e.g. Bonnefoy-Claudet et al., 2008), HVSR curves can be interpreted
as Rayleigh wave ellipticity on the assumption that surface waves are dominant in
microtremors. Fdh et al. (2003) and Arai and Tokimatsu (2004) obtained S-wave ve-
locity structures by inversion of HVSR curves using a prior information about S-wave
velocities or thicknesses of sedimentary layers.

In order to obtain improved estimates of S-wave velocity structures, joint inversion
of dispersion curves estimated by the array techniques and HVSR curves was proposed
by Scherbaum et al. (2003). After that, a number of authors applied joint inversion
(e.g. Arai and Tokimatsu, 2005; Parolai et al., 2005; Picozzi et al., 2005; Hobiger et al.,
2013). Most of them conclude that including HVSR curves in inversion constrains
the depth or S-wave velocity of bedrock.

However, several unknown factors other than Rayleigh waves are included in
HVSR curves observed in an actual wavefield. A Love wave contribution is usually
neglected or assumed as constant values over frequencies (e.g. Arai and Tokimatsu,
2004; Castellaro and Mulargia, 2009). The energy proportion between Love and
Rayleigh waves can be estimated by using the three-component SPAC method ( Ak,
1957; Kéhler et al., 2007) or £k method (Poggi and Fih, 2010). Hobiger et al. (2009)
also proposed the RayDec method to extract Rayleigh wave ellipticity based on the
random decrement technique. Observations of the energy proportion revealed that

it depends on not only frequencies (e.g. Okada, 2003; Kdéhler et al., 2007; Bonnefoy-
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Claudet et al., 2006a) but also time (Endrun, 2011).

Despite these observations, in some situations, we need to invert observed HVSR
curves under some assumption regarding the Love waves contribution because appli-
cable frequency ranges where the energy proportion of both Love and Rayleigh waves
can be determined from the three-component SPAC method are restricted (Bonnefoy-
Claudet et al., 2008). The RayDec method also fails in reproducing Rayleigh wave
ellipticity when vertical or horizontal component of Rayleigh waves vanishes (Hobiger
et al., 2009).

Moreover, the effect of body waves cannot be neglected for some combinations
of impedance contrast and source positions (Bonnefoy-Claudet et al., 2006a, 2008).
Higher modes of surface waves also affect the shape of HVSR curves as studied by
(Arai and Tokimatsu, 2004).

Due to above noise effects, absolute values of Rayleigh wave ellipticity are difficult
to reproduce in some cases. For example, the result of joint inversion of dispersion
curves with HVSR curves by Hayashi et al. (2011) shows that the absolute values
of the observed HVSR curve are not consistent with the theoretical curve, although
the shape of the HVSR curve is well retrieved. Therefore, in order to evaluate the
shape of HVSR curves rather than the absolute values, Zor et al. (2010) prefer to use
zero-lag crosscorrelations (ZLCC) in evaluating HVSR curves.

In this paper, we demonstrate the effectiveness of the joint inversion of the SPAC
method with the HVSR method in which HVSR curves are evaluated by ZLCC. In ad-
dition, we investigate the effects of the assumption of the Love wave contribution and
the weighting proportion between SPAC and HVSR curves. We apply the proposed

inversion to field data acquired in the Newcastle city, Australia.
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3.2 Method

3.2.1 SPAC method

The basic theory of the SPAC method can be summarized as follows (e.g. Okada,
2003; Asten, 2006). Suppose microtremors are obtained by a circle array with a radius
x and surface waves of fundamental mode are dominant in microtremors. Then, the
azimuthal average of complex coherencies between a central and a circumferential

receiver goes to the Bessel function, referred to as SPAC curves (coefficients) p,

(3.1)

pz, f)="Jo [%f:v] :

of)
where f is the frequency, c is the phase velocity, and .Jy is the Bessel function of the
first kind of zero order. In the SPAC method, dispersion curves of Rayleigh waves
can be estimated by fitting observed SPAC curves to the Bessel function for each x.
The fitting procedure is extended by using all possible pairs of x referred to as the
extended SPAC (ESPAC) method (Ling and Okada, 1993; Ohori et al., 2002).

As proposed by Asten et al. (2004) and Asten (2006), however, observed SPAC
curves can be directly compared with the theoretical curves. In this study, we prefer
to use the direct fitting inversion of SPAC curves because it doesn’t require the
interpretation of phase velocities intrinsically and it can reduce bias caused by the
conversion from SPAC curves to phase velocities. Wathelet et al. (2005) applied the
direct fitting of SPAC curves by using neighborhood algorithm and Ikeda et al. (2012)
also applied the direct fitting inversion including higher modes with genetic algorithm
(GA). Hobiger et al. (2013) combined the direct fitting method of SPAC curves with

HVSR curves as joint inversion.
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3.2.2 HVSR method

Following Arai and Tokimatsu (2004), observed HVSR curves (H/V') s consider-

ing Love and Rayleigh waves can be described as follows.

(H/V)oe( ) = \/ Dol oild), 32)

where Ppg is the horizontal-component power of Rayleigh waves, Py g is the vertical-
component power of Rayleigh waves and Pjy, is the horizontal-component power of
Love waves. Equation 3.2 can be expressed by using Rayleigh wave ellipticity (H/V')r

and Rayleigh to Love wave amplitude ratio for horizontal motion /3,

1

(H/V>obs<f> = 1+ @(H/V>R<f>7 (33)

where
(HVIn() = ] (3.4
B =\ s, 35)

Assuming the value of 3, theoretical HVSR curves corresponding observed curves
(equation 3.2 or 3.3) can be computed by Rayleigh wave ellipticity. Matsushima and
Okada (1990) and Arai and Tokimatsu (2000) indicated the value of the Rayleigh to
Love wave amplitude ratio § is stable at in the range 0.4-1.0. Therefore, Arai and
Tokimatsu (2004, 2005) assumed the value of 5 as 0.7 because it is an average between
0.4 and 1.0. To further investigate the effects of 8 in inversion, we apply firstly several
constant values of § (0.4, 0.7 and 1.0) and secondly a frequency dependent 3 estimated
by the three-component SPAC method.
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3.2.3 Joint inversion scheme

In joint inversion of SPAC curves with HVSR curves, the misfit function for SPAC

curves Fgp is defined as follows (Wathelet et al., 2005);

ng N
1

- - {pobs(xia f]) - ptheo<l’i7 fj)}2 1.6
ST ) 3.5)

Fsp =
i=1 j=1
where pgs is the observed SPAC curve, pye, is the theoretical SPAC curve, o is the
observed standard deviation, ng is the number of receiver spacings and np, is the
number of frequency samples for receiver spacing i.

HVSR curves are usually evaluated by comparing absolute values of observed
HVSR curves with theoretical curves (e.g. Arai and Tokimatsu, 2005; Parolai et al.,
2005; Hobiger et al., 2013). Scherbaum et al. (2003) evaluate the shape of HVSR
curves by using peak and trough frequencies. Asten et al. (2014) used both peak and
trough frequencies plus qualitative shapes of HVSR curves . In this study, we employ
ZLCC in log-scale proposed by Zor et al. (2010) to evaluate the shape of HVSR curves
rather than absolute values. The misfit function for HVSR curves Fpy is defined by

the inverse of ZLCC between observed and theoretical HVSR curves as follows;

Fuyy = ZLCC™, (3.7)

Zﬁil lOgloHVobs(fi)lOgloHWheo(fi)

ZLCC =
\/Ziil 10g10H Vons (f1)2 Xoity 10910 H Vineo( fi)?

: (3.8)

As the misfit function for joint inversion F', two misfit functions are combined by

using a weighting coefficient w as follows;

F:UJFSP+(1 —w)FHv. (39)
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Since the value of w is a matter of choice, we also investigate the effects of the choice
of w as well as that of S.

In order to search a wide model space without the effect of initial models, we
employ genetic algorithm (GA) (Goldberg, 1989; Sen and Stoffa, 1995) with elite se-
lection and dynamic mutation ( Yamanaka and Ishida, 1996) as an inversion method.
When ZLCC takes negative values for poorly correlated data, the corresponding Fyy
takes negative values. To avoid this problem, ZLCC with negative values are au-
tomatically replaced with very small positive values in GA inversion. Theoretical
dispersion curves and a Rayleigh wave ellipticity are computed by the compound

matrix method (Saito, 1988; Saito and Kabasawa, 1993; Ikeda and Matsuoka, 2013).

3.3 Application to field data

In this section, we apply the proposed joint inversion method to field data acquired
during the 2012 Newcastle and Sydney SPAC surveys (Asten et al., 2013; Volti et al.,
2013). Microtremor array measurements were conducted at 23 sites in the city of New-
castle and 2 sites in Sydney. The comprehensive results of the microtremor survey by
the direct fitting of SPAC curves using GEOPSY software package (www.geopsy.org)
and the software developed by Asten (2006) are summarized in Volti et al. (2013).
Asten et al. (2013) also reported on uncertainties due to local sources from adja-
cent road traffic and the effectiveness of the combined use of both SPAC and HVSR
methods to resolve bedrock using same dataset. We analyzed three dataset (BRD02,
HAMO03 and WIKO01) acquired in the city of Newcastle.

3.3.1 Data processing

Each array station used a Kelunji Echo recorder with a single Lenartz LE-3Dlite
1 Hz 3-component seismometer as a receiver. The sampling rate was 100 Hz and

the data length for each array was about 1 hour. Three-component microtremors are
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observed by 2 types of triangle arrays using 7 seismometers (Figure 3.1). Figure 3.2
shows an example of set up on a single station.

First we generated 100 datasets from the observed microtremor data. Each dataset
is about 30 sec with 30 % overlap and tapered with a 5 % cosine function. SPAC curves
are computed by the average of 100 datasets for each receiver spacing x. SPAC curves
derived from azimuthal averages of more than 3 pairs of coherencies are then used
in the subsequent inversion. HVSR curves are computed by the average of estimated
curves from 100 datasets from 3 component data for the central seismometer. Konno-
Ohmachi smoothing functions with b = 30 for BRD02 and 40 for HAMO03 and WIKO01

(Konno and Ohmachi, 1998) were applied to observed HVSR curves.

3.3.2 BRDO02

Figure 3.3 shows the observed SPAC curves and the HVSR curve for site BRD02
which used the triangle array described in Figure 3.1a. A sharp peak is observed
in the HVSR curve at about 1.9 Hz indicating a strong velocity contrast between
sedimentary layers and bedrock. The magenta line in Figure 3.3c is the set of val-
ues of § estimated by the three-component SPAC method. After we obtained the
dispersion curve of Rayleigh waves by the ESPAC method from vertical component
of microtremors, the values of 8 were estimated based on the method described in
Bozxberger et al. (2011). Values of § at frequencies below the peak of the HVSR curve
cannot be extracted because Love and Rayleigh wave dispersion curves don’t show
reasonable values in this range. For the purpose of the inversion, the value of 3 at
the lowest available frequency is assumed to apply at lower frequencies.

It can be seen that the observed SPAC curves at low frequencies don’t have the
shapes of the Bessel function. We can recognize two different reduction patterns of
SPAC curves. One is the reduction of coherencies depending on receiver spacings.

Generally, the longer receiver spacing is, the better coherencies can be estimated at
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low frequencies. The other is the loss of coherencies below 1.9 Hz corresponding to
the peak frequency of the HVSR curve, as pointed out by Scherbaum et al. (2003)
and Parolai et al. (2005). Thus, the lowest useful frequencies of SPAC curves used
in inversion are defined as the frequencies without any decrease of coherencies higher
than 2.1 Hz. The highest frequency of SPAC curves used in inversion was determined
where the phase velocities estimated by the ESPAC method show reasonable values.
As the frequency range of the HVSR curve in inversion, both flanks of the peak
frequency are used to give a better constrain the peak frequency (Hobiger et al.,
2013).

The next step is to estimate S-wave velocity structures by joint inversion of SPAC
curves together with HVSR curves, using in turn three different constant values of j3,
and the frequency-variable value of § obtained as in the previous step. In inversion,
5-layer structures are assumed. Table 3.1 shows the search range of thicknesses and
S-wave velocities for each layer. The S-wave velocity at an infinite half space was fixed
as 2000 m/s. P-wave velocities and densities were determined from S-wave velocities
by empirical equations (Kitsunezaki et al., 1990; Ludwig et al., 1970). The S-wave
velocities and thickness for each layer are digitized as 7 bit binary strings. The number
of the population and generations are 100 and 200, respectively. In order to avoid
convergence dependent on initial populations, we carried out 6 trials with randomly
seeded initial populations.

Figure 3.4 shows the minimum misfit functions of SPAC and HVSR curves for
different values of # and w. The values of ZLCC are also described in Figure 3.4b.
By including HVSR curves in the joint inversion, we observe a clear improvement of
the values of Fyy and ZLCC for values w <0.7. We have determined w =0.5 as the
optimal value for BRDO02 because it keeps enough weighting for both misfit functions.
It should be noted that the misfit functions are less dependent on the values of .

Figure 3.5 shows the inverted velocity models for w = 1.0 and w = 0.5 with
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B = 1.0, 0.7 and 0.4 and frequency-dependent, respectively. Color indicates the
differences from the minimum misfit function. When only SPAC curves are considered
in inversion (Figure 3.5a), there is an ambiguity in inverting velocity contrast at near
20 m. Moreover, there is no indication of bedrock because of a lack of SPAC curves
at low frequencies. On the other hand, including HVSR curves in joint inversion
generates clear velocity contrasts at about 23 m (Figures 3.5b-e) the depth of which
is consistent with the result of the seismic cone penetrometer (SCPT) (Volti et al.,
2013). Although the S-wave velocities for the 3rd layer (from about 20 to 30 m) is not
well constrained and differs in the value of /3, the existence of high S-wave velocity
layers at depths deeper than 35 m is suggested by joint inversion.

We prefer to describe an ensemble of accepted models (within 5 % for the velocity
model with the minimum misfit function) but velocity models with minimum misfit
functions are also analyzed. Figure 3.6 shows the comparison of observed SPAC and
HVSR curves with theoretical curves for velocity models with the minimum misfit
values (magenta lines in Figure 3.5). Although the theoretical HVSR curve is poorly
resolved when only SPAC curves are considered in inversion, the peak position and the
shape of HVSR curves are well retrieved by including HVSR curves in joint inversion
(Figure 3.6¢).

The observed SPAC curves broadly agree with theoretical curves for all cases. At
low frequencies, however, the observed SPAC curve for x = 99.9 m is more consistent
with theoretical SPAC curves obtained by joint inversion than when only SPAC curves
are considered (Figure 3.6b). The opposite result is observed for the SPAC curve
corresponding to x = 68.0 m (Figure 3.6a). It is considered that at low frequencies,
the theoretical SPAC curves by joint inversion are more reasonable because SPAC
curves with longer receiver spacings are more stable at lower frequencies. It should

be emphasized that the results of joint inversion are relatively insensitive to the values

of 3.
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3.3.3 HAMO3

The results for HAMO03 are similar to those for BRD02 and are summarized in the

appendix D.

3.3.4 WIKO1

Figure 3.7 shows the observed SPAC and HVSR curves and the estimated values
of B obtained by the three-component SPAC method for site WIKO01. The triangle
array described in Figure 3.1a was used. The observed HVSR curve has a peak at
1.35 Hz. The observed SPAC curves slightly decrease near the peak frequency of
the HVSR curve. In contrast to the results for BRD02 and HAMO03, however, SPAC
curves show good coherencies down to about 0.65 Hz which is well below the peak
frequency of the HVSR curve. Therefore, the lowest frequencies of SPAC curves used
in the inversion are determined to be 0.65 Hz. The estimated values of g at low
frequencies are larger than those for BRD02 and HAMO03.

As a second step we applied joint inversion for different values of g and w. Table
3.2 shows the search range of model parameters for WIK01. ZLCC are significantly
improved when values w < 0.5 are used in joint inversion (Figure 3.8). In contrast to
the case when the weighting value w = 1.0, the misfit functions for SPAC curves show
about 40 % increase when using values w < 0.5, indicating the discrepancy between
inverting SPAC and HVSR curves .

Figure 3.9 shows the velocity models obtained from joint inversion. Inverted veloc-
ity models by considering only SPAC curves, show ambiguity in estimating velocity
contrasts at depths from 30 to 40 m (Figure 3.9a). However, S-wave velocities at
deeper depths are well constrained without the use of the HVSR curve because the
lowest frequency of SPAC curves used in the inversion is enough to constrain deeper
velocity structures. Inclusion of HVSR curves in joint inversion generates apparent

velocity contrasts at about 31 m, which is consistent with the result of SCPT ( Volti
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et al., 2013). When we consider only SPAC curves, there is no indication of the exis-
tence of high S-wave velocity layers. However, the results of joint inversion indicate
existing transition layers at depths from 30 to 50 m and high S-wave velocity layers
at depth deeper than 50 m.

Figure 3.10 shows the comparison of theoretical SPAC and HVSR curves with the
observed curves. Theoretical SPAC curves at higher than 2.0 Hz are consistent with
observed curves. Theoretical SPAC curves for w = 1.0 are more consistent with the
observed values below 2.0 Hz, whereas the observed HVSR curve are well retrieved

by joint inversion.

3.4 Discussion

3.4.1 Exclusion of SPAC curves at low frequencies in inversions

For WIKO01, we have observed the discrepancy between inverting SPAC curves
below the peak frequency of the HVSR curve and HVSR curves. The observed SPAC
curves show small decreases of coherencies at near the peak frequency of the HVSR
curve. These decreases might be caused by low amplitudes of vertical component of
microtremors at the peak of the HVSR curve. To overcome this problem, we exclude
observed SPAC data below 1.6 Hz. We also note that use of g estimated by the
three-component SPAC method is restricted to frequencies above 1.6 Hz. Below 1.6
Hz, we assume a constant value f = 0.5.

Figure 3.11 shows the misfit functions for WIK01 when we remove SPAC curves
at low frequencies. For values w < 0.7, ZLCC take high values above 0.95 indicating
convergence of inverting HVSR curves. In this case, increments of the misfit functions
of SPAC curves are about 15 % compared to the case when the weighting value w
=1.0.

When only SPAC curves are considered in the inversion (Figure 3.12a), an ambi-
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guity of inverting S-wave velocities at depths deeper than 30 m is increased because
the lowest frequencies of SPAC curves are higher than those without the removal of
SPAC curves (Figure 3.9a). The strong velocity contrasts at about 33 m are well
emphasized in this case. The thick transition layers in Figure 3.9 might be artificial
ones because they become thinner in inverted models whereas the S-wave velocities
for the 3rd layer differs in the value of 5.

Figure 3.13 shows the comparison of the observed SPAC and HVSR curves with
the theoretical curves. By excluding low frequency data, the difference between the-
oretical SPAC curves for w = 1.0 and those for joint inversion can be interpreted as
not just a discrepancy between inverting SPAC and HVSR curves but low coherencies
of SPAC curves depending on receiver spacing as in BRD02 (Figure 3.6) because the
observed SPAC curve with longer receiver spacing (z = 99.9 m) is consistent with
theoretical curves from joint inversion at low frequencies.

From these examples we recommend exclusion of SPAC data when there is a
discrepancy between SPAC curves at low frequencies below a peak frequency of a

HVSR curve, and the corresponding HVSR curves.

3.4.2 Joint inversion using absolute values of HVSR

In order to investigate advantages of the use of ZLCC in evaluating HVSR curves
in joint inversion, we also applied joint inversion of SPAC curves with HVSR curves,
in which fitted HVSR curves are evaluated by root mean squares error (RMSE) com-
puted on logarithmic scales. This is an approach similar to that of Hobiger et al.
(2013) who used a neighborhood algorithm for the inversion. Here, we focus on the
difference of misfit functions depending on the choice of 5 and w.

Figures 3.14 and 3.15 show the misfit functions of joint inversion using RMSE
for BRD02 and WIKO1, respectively. For WIKO01, we used excluded SPAC curves
below 1.6 Hz. For values w < 0.9 for BRD02, and w < 0.7 for WIKO1, the misfit
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functions for HVSR curves are significantly improved. However, when the values of
[ are 1.0, applying further smaller values of w makes the misfit functions for SPAC
curves considerably worse. This result indicates that finding optimal values of w
is difficult when larger values of 5 (e.g., 1.0) are applied with the use of RMSE in
evaluating HVSR curves compared to the case with the use of ZLCC (Figures 3.4 and
3.11).

3.4.3 Bias of ESPAC method

We demonstrate a bias introduced by the intermediate step of conversion from
SPAC curves to phase velocities prior to inversion, by comparing dispersion curves
estimated by the ESPAC method with the theoretical dispersion curves for the previ-
ous above inversion. Theoretical dispersion curves for velocity models with minimum
misfit functions when w = 1.0 and w = 0.5 and the values of 5 estimated from the
three-component SPAC method are used.

Figure 3.16 shows the result of BRD02 and WIKO1 with the removal of SPAC
curves at low frequencies. The estimated phase velocities by the ESPAC method
agree with theoretical ones when only SPAC curves are considered in inversion (w =
1.0) for both sites. As long as we compare the results in phase velocity domain, the
mismatches between observed phase velocities and theoretical ones by joint inversion
are considered as a discrepancy between observed phase velocities and HVSR, curves.
However, if we compare observed data in SPAC curves as in Figures 3.6a and b or
Figures 3.13a and b, we notice that low coherencies depending on receiver spacings
also have an effect on these mismatches. Since SPAC curves for vertical component
data also take low values near the peak of HVSR curves, careful comparison of ob-
served SPAC and HVSR curves with inverted values are recommended to avoid the

bias introduced SPAC data at low frequencies.

45



3.5 Conclusions

In this paper, we investigated the effect of Love wave contribution in joint inversion
of SPAC and HVSR curves to construct S-wave velocities down to bedrock. We used
ZLCC as the misfit function of HVSR curves to assists in minimizing the noise effect
of wave modes other than Rayleigh waves.

We have applied the proposed joint inversion for field data acquired at Newcastle,
Australia. For some data sets a two-step process is possible whereby firstly the
frequency-dependent values of Rayleigh to Love wave contribution § are extracted
from the three-component SPAC method, with subsequent joint inversion of SPAC
and HVSR data. However, the frequency ranges of estimated (3 are generally restricted
to frequencies above the peak frequency of the HVSR curves. An added limitation
of this approach is that the use of three-component seismometers might be difficult
in some conditions. We have therefore evaluated the joint inversion method using
assumed constant values of f3.

Inclusion of HVSR curves in joint inversion provides some level of constraint on
estimates of the depth of velocity contrasts between sedimentary layers and high S-
wave velocity layers in the basement. Results are robust with respect to the choice
of B so a priori knowledge of 3, or successful extraction of a frequency-dependent
[ from preliminary ESPAC analysis, does not have a significant influence on the
depth of velocity contrasts in the joint inversion outcome. However, the velocity
contrasts between sedimentary layers and basements are not well constrained by the
joint inversion and differ for differing choices of 5.

When there is a discrepancy between observed and modelled SPAC curves at
frequencies below the peak frequency of HVSR curves (e.g., WIKO01), it is worth
excluding SPAC data at low frequencies because they are unstable near the peak
of HVSR curves at some conditions. In such a situation the observed HVSR curve

provides the necessary low-frequency data for a successful joint inversion. We find
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that when ZLCC is used in joint inversion, the misfit functions for SPAC curves are
less affected by the choice of the values of 5, compared to the case when RMSE
are used in evaluating HVSR curves. To further investigate the advantage of ZLCC,
additional quantitative studies using synthetic-noise microtremors will be necessary.

We also demonstrated existence of a bias caused by conversion of SPAC curves to
phase velocities by the ESPAC method, especially evident at low frequencies. This
bias has the potential to significantly affect construction of S-wave velocities and
depth at or near bedrock in the inversion process. Comparison of observed SPAC

curves with theoretical SPAC curves assists in recognition if such bias occurs.
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Table 3.1: Search range of thickness and S-wave velocity in the joint inversion for

BRD02 and HAMOS3.
Layer No. Thicknessyin(m) Thicknessmaz(m) Vsmin(m/s) Vsmar(m/s)

1 ) 15 100 250
2 5 25 150 300
3 b} 30 300 1000
4 20 100 200 2000
) 00 00 2000 2000

Table 3.2: Search range of thickness and S-wave velocity in the joint inversion for

WIKO1.

Layer No. Thicknessyin(m) Thickness,a:(m) Vsmm(m/s) Vsma(m/s)
1 5 20 100 250
2 5 30 150 300
3 5 50 350 1000
4 30 150 400 2000
5 00 00 2000 2000

(a) (b)
100 m
«— >
30m ﬁ\
< > Ye—
100m 30 m

Figure 3.1: Array shapes used in the survey for (a) BRD02 and WIKO1 and (b)
HAMO3. Black circles are central receivers used for computing HVSR
curves.
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Figure 3.2: Set up on a single station. The three-component seismometer is covered
with the bucket.
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Figure 3.3: The observed SPAC curves for BRD02 corresponding to (a) z = 17.2, 29.8
and 40.5 m and (b) x = 57.7, 68.0 and 99.9 m. (c) The observed HVSR
curve for BRD02. Gray lines are the peak frequency of the observed
HVSR curve. The magenta line is the values of 5 estimated by the three-
component SPAC method.
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Figure 3.4: Misfit functions for (a) SPAC curves and (b) HVSR curves corresponding
to BRD02. ZLCC are also described as dashed lines. 3C means the case
when the values of 8 are estimated from the three-component method
refer Figure 3.3c.

20



0r 5 o
o
10f @
=}
4 8
20+ =
o
3
30F =
3 35
£40 3
8 3
50+ 2 2
N
60" T
5
13
70¢ o
=}
- <
800 500 1000 1500 2000 o<
S-wave Velocity (m/s)
or (b)p=1.0,w=05 o (c)p=0.7,w=05
10+ Al 10 §
20+ 20+
30+ 30+
E E
£ 40 < 40
Q Q
a a
50+ 50+
60+ 60+
70+ - 70+
80 i l e -
0 500 1000 1500 2000 500 1000 1500 2000
S-wave Velocity (m/s) S-wave Velocity (m/s)
o (d)p=04,w=05 o (e)p=3C,w=05
10+ 10+
20+ 20+
30+ 30+
E E
£ 40 £ 40
Q. Qo
a a
50+ 50+
60~ 60+
70+ 70+

50 1000 500 2000 500 1000 1500 2000
S-wave Velocity (m/s) S-wave Velocity (m/s)

Figure 3.5: Inverted velocity models by joint inversion for BRD02 when (a) w = 1.0,
(b) (e) w = 0.5 with 5 = 1.0, 0.7, 0.4 and 3C, respectively. Magenta lines

are the velocity models with minimum misfit functions for each inversion.
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Figure 3.6: Comparison of theoretical SPAC curves for the inverted velocity models
with minimum misfit functions corresponding to (a) x = 68.0 and (b) 99.9
m and (c¢) HVSR curves with observed curves for BRD02 when (i) w =
1.0, (ii)-(v) w = 0.5 with g = 1.0, 0.7, 0.4 and 3C, respectively. Standard
errors of SPAC curves are described in (a) and (b).
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Figure 3.7: The observed SPAC curves for WIKO01 corresponding to (a) x = 17.2, 29.8
and 40.5 m and (b) x = 57.7, 68.0 and 99.9 m. (c) The observed HVSR
curve for WIKO01. Gray lines are the peak frequency of the observed
HVSR curve. The magenta line is the values of 3 estimated by the three-
component SPAC method.
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Figure 3.8: Misfit functions for (a) SPAC curves and (b) HVSR curves corresponding
to WIKO1. ZLCC are also described as dashed lines.
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Figure 3.10: Comparison of theoretical SPAC curves for the inverted velocity models
with minimum misfit functions corresponding to (a) x = 29.8 and (b)
99.9 m and (c) HVSR curves with observed curves for WIK01 when (i)
w = 1.0, (ii)-(v) w = 0.5 with g = 1.0, 0.7, 0.4 and 3C, respectively.
Standard errors of SPAC curves are described in (a) and (b).

(a) (b)

0.33 ‘ ‘ 13— ; ; "1
—e—p=1.0
——p=0.7
0.32 —o—B=0.4 1.25}
SN B=3C
0.31} ‘ 1 1.2}
o > N
Lo 03 1 LT 1150 =
(@]
0.29} 1.1}
0.28} 1.05}
027 L L L L 1 L L L L 075
04 06 08 1 04 06 08 1
w w

Figure 3.11: Misfit functions for (a) SPAC curves and (b) HVSR curves corresponding
to WIKO1 with the exclusion of SPAC data at low frequencies <1.6 Hz.
ZLCC are also described as dashed lines.
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99.9 m and (c) HVSR curves with observed curves for WIKO01 with the
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CHAPTER IV

Multimode inversion with amplitude response of
surface waves in the spatial autocorrelation

method

4.1 Introduction

The microtremor method (Okada, 2003) has been applied to the estimation of S-
wave velocity structures by using surface waves (e.g. Okada, 2003; Bonnefoy-Claudet
et al., 2006b). The method has been used mainly for geotechnical site characteriza-
tion (e.g. Tokimatsu, 1997; Roberts and Asten, 2004; Richwalski et al., 2007). Since
the method is non-destructive and needs no active sources, it is inexpensive and
easy to apply in various environments. The spatial autocorrelation (SPAC) method
(Aki, 1957, 1965) and the frequency-wavenumber (fk) method (Capon, 1969) are the
two main approaches for estimating the dispersion curves of surface waves from mi-
crotremor data. Recently, Cho et al. (2004, 2006) developed the centerless circular
array (CCA) method which uses a miniature circular array. Analysis using refraction
microtremors (ReMi) (Louie, 2001) and time domain analysis (Chdvez-Garcia and
Luzon, 2005) has also been proposed. In this paper, we focus on the SPAC method,
whose effectiveness has been demonstrated at various sites, and discuss how to per-

form a stable inversion with higher modes of surface waves included in microtremors.
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The SPAC method can extract the phase velocities of surface waves from mi-
crotremor array observations. The S-wave velocity structure is then estimated from
an inversion of the phase velocities. Surface waves have different modes of propaga-
tion. The mode which has lowest velocity is called fundamental mode, whereas the
modes which propagate faster than the fundamental mode are called higher modes.
Higher modes play an important role if a stiff layer overlies a soft layer or is embedded
in soft layers (Gucunski and Woods, 1992; Tokimatsu et al., 1992b). Xia et al. (2003)
showed that consideration of higher modes improves the resolution of the inversion
and makes its sensitivity deep. However, observed microtremors have been analyzed
on the assumption that the fundamental component is predominant in the SPAC
method, although some studies have shown that the effect of higher modes included
in microtremors is not negligible (e.g. Tokimatsu, 1997; Ohori et al., 2002; Foti, 2005;
Feng et al., 2005; Asten and Roberts, 2006). If higher modes of surface waves are
predominant in the observed microtremors, analysis without any considerations of
higher modes would make it difficult to determine a unique velocity model. Thus, a
method that considers higher modes in the SPAC method is required.

Aki (1957) proposed an implementation of the SPAC method when a wave is
composed of partial waves with different phase velocities. The proposal regards ob-
served spatial autocorrelation (SPAC) coefficients as a superposition of each mode
component weighted by its power fraction. By applying this idea to higher modes,
several multi-mode analysis methods in the SPAC method have been proposed. Asten
(1976, 2001) proposed an analysis method that separates each mode component by
solving the phase velocities and energy fractions of the two modes from the observed
data. Asten et al. (2004) and Asten and Roberts (2006) also proposed a method
to recognize higher modes in direct-fitting method of SPAC coefficients (Asten et al.,
2002, 2004), which is called multi-mode SPAC (MMSPAC). Asten and Roberts (2006)

demonstrated the effectiveness of MMSPAC, although they failed to identify higher
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mode propagation in a simulated data analysis.

Another multi-mode analysis method was proposed by Tokimatsu et al. (1992a,b);
Tokimatsu (1997). If the phase velocities of each mode cannot be separated, the
observed phase velocities may not be explained by only one mode. These velocities
are called apparent or effective velocities (Socco et al., 2010) or fallacious estimates of
phase velocities ( Yokoi, 2010). The approach is to evaluate numerically the theoretical
effective phase velocities corresponding to the observed ones by using the energy
fractions of each mode from the amplitude response (Harkrider, 1964, 1970) using
a given subsurface model. For inversion, this evaluated effective phase velocities
are compared with corresponding to the observed phase velocities. This multi-mode
method is superior to the former one in that the phase velocities and energy fractions
of each mode do not have to be extracted from the observed microtremors, which
makes it easier to increase the number of modes in an inversion. Furthermore, this
advantage contributes to the avoidance of mode misidentification, which sometimes
causes notable error in the results (e.g. Zhang and Chan, 2003; O’Neill and Matsuoka,
2005). Ohori et al. (2002) and Obuchi et al. (2004) applied this approach to the SPAC
method and performed a successful analysis. In addition, Yokoi (2010) derived the
power partition ratio of each mode in the SPAC and CCA methods by using the theory
of seismic interferometry, and showed better inversion performance with dual-mode
inversion than with single mode.

When higher modes are considered, the effective phase velocities are functions
of the receiver separation distance in addition to the frequency, whereas the phase
velocities of each mode are functions only of the frequency. This implies that the effect
of the receiver separation distance has to be considered when applying the extended
spatial autocorrelation (ESPAC) method (Ling and Okada, 1993; Okada, 2003), which
is more robust than the SPAC method and determines a phase velocity from the

observed SPAC coefficients obtained from all possible pairs of receivers. However,
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a method for analyzing the theoretical effective phase velocities corresponding to
the ones estimated by the ESPAC method has not yet been established. Moreover,
multi-mode analysis using amplitude response has not been applied to the direct-
fitting method of SPAC coefficients. As we will discuss later, multi-mode analysis
using amplitude response in the direct-fitting method is much simpler than in the
ESPAC method.

In this paper, we propose two analysis methods that consider the effect of higher
modes and multiple receiver separation distances in the SPAC method using ampli-
tude response. One is to calculate the theoretical effective phase velocities corre-
sponding to the observed phase velocities from the ESPAC method. The other is to
compare the observed SPAC coefficients with theoretical ones by a receiver separa-
tion distance when considering higher modes. We first simulated microtremors with
a model in which higher modes predominate to conduct a quantitative evaluation of
the proposed methods. We compared the observed dispersion curve and SPAC coeffi-
cients with theoretical ones. Then we estimated S-wave velocity models by inversions
using the proposed methods. We also apply our methods to field data obtained in

Tsukuba City, Japan.

4.2 Theory of the SPAC method

4.2.1 Fundamental mode

The basic theory of the SPAC method (Okada, 2003; Asten, 2006) is summarized
as follows. Here we assume that microtremors are mainly composed of surface waves
and that the fundamental mode of a surface wave is dominant. If microtremors are
observed by a circle array with radius r (Figure 4.1), the complex coherencies COH

between a central and a circumferential receiver can be defined as

COH (r,w,0,¢) = explirkcos(8 — ¢)], (4.1)
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where ¢ is the imaginary number, w is the angular frequency, k is the wavenumber,
0 is the azimuthal angle, and ¢ is the azimuth of propagation of a single plane wave

across the array. The azimuthal average of 6 for the complex coherencies p yields

SPAC coefficients,

2w

p(r,w) = % / explirkcos(0 — ¢)]d0 = Jo(rk) = Jo {ﬁr] : (4.2)

where Jj is the Bessel function of the first kind of zero order. The azimuthal aver-
age of ¢ for complex coherencies also yields the same result, which indicates that a
single pair of receivers is sufficient for plane waves coming from all directions. The
phase velocities are estimated by fitting the observed SPAC coefficients to the Bessel

function.

4.2.2 Extended spatial autocorrelation method

If we observe microtremors by using a circular array with radius ro, SPAC coeffi-

cient of angular frequency wy can be written as

Wo

c(wo)

Y [ ws

where A = [%ro} is constant. To estimate a unique phase velocity , it is necessary
to decide upon a unique value of A from the observed SPAC coefficients. However,
finding a unique A is difficult, especially near the minima and maxima of the Bessel
function.

To overcome this difficulty, Ling and Okada (1993) and Okada (2003) proposed
an analysis method called the extended spatial autocorrelation (ESPAC) method. If

microtremors are observed by multiple receiver separations, the SPAC coefficient of
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w = wy can be written as

Wo

c(wo)

Puo (1) = Jo { r] = Jo(Br), (4.4)

where B = [%ro} is constant. The optimum Bessel function can be found by using
the least squares method. To increase the receiver separation distance r, the array
observation does not always need to be repeated. As previously mentioned, if we
assume that microtremors come from all directions, the observed SPAC coefficients
go into the Bessel function without the azimuthal average of . Thus, possible pairs
of an array can be used in the ESPAC method based on this assumption. Bettig et al.
(2001) also extended the SPAC method in which arbitrarily shaped arrays can be

used by averaging the SPAC coefficients within two circles.

4.2.3 Multimode analysis

Before we analyze microtremors that include higher modes of surface waves, we
have to understand the description of the SPAC coefficients that consider higher
modes. The SPAC coefficients that include partial waves with different velocities

were derived by Aki (1957) and are defined as

oo~ 504 )

P@) =Y Pw) (4.6

where P; and ¢; are the power and the velocity of ith component, respectively. Equa-
tion 4.5 shows that SPAC coefficients that include partial waves with different veloc-
ities can be described as the summation of each component weighted by its power

fraction.
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Harkrider (1964) derived the relative vertical displacement of the ith Rayleigh
mode for a harmonic vertical point force, called the amplitude response (Harkrider,
1970). By extending Aki’s method to higher modes of surface waves with ampli-
tude response, Tokimatsu et al. (1992b) developed the multi-mode analysis method.
Tokimatsu et al. (1992b) extracted the mode contribution that depends only on the
frequency and regarded the value of its square as the power fraction in equation 4.5.

It can be written as

Pw) _ aw)Alw)
P) ~ Ta@)Aw)’

(4.7)

where A;(w) is the amplitude response of ith mode. Note that in Tokimatsu et al.
(1992a), Tokimatsu et al. (1992b), and Tokimatsu (1997) described the Bessel function
in equation 4.5 by the cosine function, as Tokimatsu et al. (1992a,b) and Tokimatsu
(1997) applied equation 4.7 to f-k analysis on the assumption of one-dimensional
stochastic Rayleigh waves. We assume the power of each mode as equation 4.7 in the
following discussion. Yokoi (2010) also derived the energy fractions of higher modes
from seismic interferometry. The energy fractions by Yokoi (2010) are different from
equation 4.7.

With this assumption, the theoretical SPAC coefficients (equation 4.5) can be cal-
culated for a horizontally layered medium by using a theoretical dispersion curve and
the amplitude response of each mode. In this study, we used DISPER80 (Saito, 1988),
a computer program that calculates a theoretical dispersion curve and amplitude re-
sponse. It is clear that if one mode of the surface waves is dominant, the observed
phase velocities obtained from the SPAC method correspond to the dominant modes.
However, if multi-mode components are predominant, the observed SPAC coefficients
are described by the summation of the Bessel function of each mode weighted by its

power fraction. As a result, the observed phase velocities cannot be explained by
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the theoretical ones of only one mode, and they are called effective (apparent) phase
velocities. When considering an inversion analysis, computation of the theoretical
effective phase velocities for an assumed layered model is necessary.

Theoretical effective phase velocities can be calculated by the following procedure
(Obuchi et al., 2004). First, the root mean square error (RMSE) between the Bessel
function and the theoretical SPAC coefficients is calculated by the following equation

by changing the phase velocity ¢(w) :

RMSE(c,w) = [Jo (ﬁr) - Z ];((;")) o (Cia)r)] 2, (4.8)

Next, the velocity that minimizes RMSE in equation 4.8 can be considered to be
the theoretical effective phase velocity c.(w) at angular frequency w. These effective
phase velocities correspond to the observed ones even if higher modes of surface waves
are predominant.

However, it is necessary to modify this method to calculate the effective phase
velocities when the ESPAC method is employed. Since the theoretical SPAC coeffi-
cients that consider higher modes are no longer described by the Bessel function, the
effective phase velocities differ by a receiver separation distance. Ohori et al. (2002)
compared observed phase velocities estimated from the ESPAC method with effective
phase velocities. Ohori et al. (2002), however, used only the shortest receiver distance
in the calculation of theoretical effective phase velocities. Thus, it is necessary to es-
tablish a method to calculate effective phase velocities that gives proper consideration
to the receiver separation distances used in the ESPAC method.

Asten et al. (2002, 2004) proposed a method of fitting SPAC coefficients directly.
In their method, S-wave velocity structures are directly inverted by comparing ob-
served SPAC coefficients with theoretical ones. Wathelet et al. (2005) estimated S-

wave velocity profiles from this method by introducing the neighborhood algorithm.
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This method has the advantage that there is no need to estimate phase velocities
from the observed SPAC coefficients. In spite of its simplicity, the method using the
amplitude response has not been applied to the direct-fitting method yet.

Here, we propose two multi-mode analysis methods that use the amplitude re-
sponse considering multiple receiver separation distances. One is to calculate theo-
retical effective phase velocities corresponding to the observed ones obtained by the
ESPAC method. The other is to compare the observed SPAC coefficients with theo-
retical ones using the amplitude response. We will explain details of these methods

in the next section.

4.3 Proposed multimode inversion methods

4.3.1 Method using theoretical effective phase velocities

We assume that higher modes are predominant in microtremors data and that
the phase velocities are estimated by the ESPAC method. Theoretical effective phase
velocities corresponding to the observed ones can be calculated by the following pro-
cedure. First, the RMSE between the Bessel function and the theoretical SPAC
coefficients are calculated by the following equation by varying the phase velocity

c(w):

N 2
1 w Pi(w) w
RMSE(c,w) =,| —= Jo| —=7r; | — Ji r; , 4.9

(ew) =\ 3 2 l °(c<w> ) 2P0 °(ci<w> )] (49)
where r; is the jth receiver separation distance in an array. Equation 4.9 differs from
equation 4.8 in that the effect of multiple receiver separation distances is evaluated
by the summation of the r;. Next, the velocity that minimizes RMSE in equation 4.9
can be considered as the theoretical effective phase velocity c.(w) and corresponds to

the observed one from the ESPAC method. If the effective phase velocities calculated
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from equation 4.8 have some differences by a receiver separation distance, equation 4.9
would be important to implement a stable inversion in comparison with the method
by Ohori et al. (2002), which uses the shortest receiver distance in the calculation
of theoretical effective phase velocities. The dependence of effective phase velocities
with a distance is discussed in appendix E. Here, we define the misfit function in an

inversion as

M
1
MZSth = Z Cobs Wk - Ce(wk)]27 (410)
k

where c.p; is the observed phase velocity obtained by the ESPAC method.

4.3.2 Method using theoretical SPAC coefficients

If we assume that the observed microtremors dominate the fundamental mode
of surface waves, the misfit function in an inversion in the direct-fitting method by

Asten et al. (2002, 2004) can be defined as

M N 2
. 1 Z Z Wk
MZSth = W g ] |:pobs Tj, Cdk JQ (m?"]>:| y (411)

where pgps is the observed SPAC coefficient. As Okada (2008) indicated, we can
easily introduce their interpretation method to multi-modal analysis using amplitude

response by equations 4.5-4.7. In this case, the misfit function can be defined as

Z (o

- 1 Py(w w :
Misfit = W;EJ: pobs(rj,wk)—zp((w:))Jo (Ci k)rj)] . (412)

4.3.3 Comparison of the two methods

Figure 4.2 shows a flowchart of the multi-mode analysis methods proposed in the

previous section. The left side is for the analysis of observed data and the right side

69



is for forward modeling of an assumed medium. The final elastic model is decided
upon by evaluating the errors between the observed and theoretical values (Figure
4.2, central panel). Here, we suppose that the ESPAC method is used in the estima-
tion of the phase velocities. If an analysis method using effective phase velocities is
employed, both observed and theoretical (effective) phase velocities will be approxi-
mately determined by the least squares fitting. In contrast, the direct-fitting method
for comparing SPAC coefficients generates no such estimation errors (Okada, 2008).
Because of this point, the direct-fitting method is superior to the method using effec-
tive phase velocities. It should be emphasized that neither proposed method needs
to identify the mode of the observed phase velocities and SPAC coefficients.

In the ESPAC method, however, the least squares fitting of observed SPAC coef-
ficients with different receiver separation distances to the Bessel function can reduce
errors of the observed SPAC coefficients of each receiver separation distance. In addi-
tion, it is beneficial to estimate a dispersion curve even if we analyze microtremors by
the direct-fitting of SPAC coefficients. It is known that the S-wave velocity structure
can be roughly estimated from observed phase velocities by transforming 1.1 times
phase velocities versus wavelength/a(a = 2 — 4) to S-wave velocities versus depth
(e.g. Abbiss, 1983; Heisey et al., 1982). This S-wave velocity structure can be useful
to determine an initial model or a search range of model parameters in an inversion

if there is no prior information about observation area.

4.4 Synthetics test

To evaluate the effectiveness of the proposed methods, a numerical simulation
study was conducted. It is well known that if the S-wave velocity decreases with
increasing depth, higher modes of surface waves play a significant role at some fre-
quencies (Gucunski and Woods, 1992; Tokimatsu et al., 1992b). In the 4-layered

model used for the simulation study, a high velocity layer is embedded in low-velocity
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layers (Figure 4.3). Figure 4.4 shows the theoretical dispersion curves and power
fractions up to the second higher mode. It can be seen that the first higher mode is
predominant in the frequency range from 5 to 7.5 Hz. The first higher mode of surface
waves would not be negligible in this frequency range. The anomalous predominance
of first higher mode can be seen at about 2.5 Hz (Figure 4.4b). This anomaly is
caused by the appearance of first higher mode with a high amplitude response at
a cut-off frequency (Figure 4.4a), although the amplitude response of fundamental
mode increases in this frequency range. The predominant higher modes in the low
frequency range were studied by Picozzi and Albarello (2007). A similar feature can
be seen in a field example. However, since we mainly use microtremors of the higher
frequency range, the predominance of the first higher mode at about 2.5 Hz has little
effect on our analysis.

Synthetic microtremors for a one-dimensional layered model have been success-
fully simulated by Bonnefoy-Claudet et al. (2006a), Bonnefoy-Claudet et al. (2004)
and Wathelet et al. (2005). We simulated microtremors by the following procedure.
The Discrete Wave-number Integral (DWI) method (Bouchon and Aki, 1977) was
employed for the calculation of waveforms. The source was a vertical force with an
8 Hz Ricker wavelet. For the simplicity, constant and sufficiently large quality fac-
tors (Q=10000) are given for each layer in order to ignore anelastic attenuation. A
triangular array with 10 receivers (Figure 4.5) was assumed in this simulation. One
thousand sources were randomly distributed on the surface at radii from 500 to 1000
m from the central receiver of the array and the waveforms were calculated for each
source independently. We assume that the wave propagates as a plane wave for the
central receiver. Only the vertical component of the waveforms was used to estimate
the Rayleigh wave dispersion. Simulated microtremors of about 30 s in duration were
synthesized by superposing 50 waveforms randomly chosen from the 1000 waveforms.

In this manner, 100 data sets were synthesized. Figure 4.6 shows an example of
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simulated microtremors from one data set.

Next, we applied the proposed methods to the simulated data. The SPAC coef-
ficients were obtained by averaging the azimuthal average of complex coherencies of
100 data sets with a cosine taper in time domain. Figure 4.7a shows the observed
SPAC coefficients for » = 25 and 50 m. In addition, the theoretical SPAC coeffi-
cients of the superposed modes and theoretical ones up to the first higher mode are
shown. The observed SPAC coefficients are in good agreement with the theoretical
ones of the superposed modes even if the observed SPAC coefficients are between the
fundamental and first higher mode.

By the ESPAC method, the phase velocities were estimated from observed SPAC
coefficients of 9 different receiver separation distances (Figure 4.7b). The frequency
range of the dispersion curve is determined by the following relation between the

wavelength A and the receiver separation distance r :

Wmin < A < Amaa, (4.13)

where A is the wavelength of the observed phase velocity, and r,,;, and 7,., are
the minimum and maximum receiver separation distance, respectively. The limit of
the shortest wavelength is based on the spatial aliasing, whereas the longest one is
determined empirically. The frequency range of SPAC coefficients used in an inversion
is the same as that of the estimated phase velocities. Although the observed dispersion
curve cannot be separated into dispersion curves for each mode in the frequency
range from 5 to 7.5 Hz, the effective phase velocities calculated from equation 4.9 are
consistent with the observed ones. It can be seen that both proposed methods are
effective for multi-mode analyses that consider multiple receiver separation distances.

S-wave velocity profiles were estimated by inversions in which the proposed meth-

ods were introduced into a forward modeling. A genetic algorithm (GA) (e.g. Gold-
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berg, 1989) with elite selection and dynamic mutation ( Yamanaka and Ishida, 1996)
was employed as the inversion method. The unknown parameters were the S-wave
velocity and thickness of each layer, since empirical equations (Ludwig et al., 1970;
Kitsunezaki et al., 1990) were used to obtain the P-wave velocity and density from
the S-wave velocity. The reference S-wave velocity model used in the inversion was
constructed only from the observed dispersion curve. The depth and S-wave velocity
(Vs) of the reference model are determined by the following wavelength transforma-

tion (Heisey et al., 1982):

1
Depth = g)\obs, (4.14)

Vi = 1.1 X Cyps. (4.15)

A 6-layered model was assumed in the inversion. The search range of the S-
wave velocity and thickness was £50 % for the reference model. The number of
generations and the population were 200 and 100, respectively. Twenty trials were
performed with the random seeds of an initial population. The final inverted model
was constructed by averaging the S-wave velocity and thickness for each layer over
20 trials. Theoretical dispersion curves and power fractions were calculated up to the
third higher mode in a forward modeling.

Figure 4.8 shows the average values of the misfit functions and the standard devi-
ations for each generation. The misfit functions of the last 150 generations show little
decrease and the standard derivation of the last generation is quite small, which indi-
cate convergence of the GA inversions. Since objective functions and their dimensions
of both methods are different, it is difficult to compare the values of standard devi-
ations. However, standard deviations of the inverted S-wave velocity models can be

compared because the dimensions of inverted models are same. The S-wave velocity
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profiles estimated from an inversion that introduces two kinds of proposed forward
modeling are shown in Figures 4.9 and 4.10. The final inverted models and their stan-
dard deviations are quite similar. The reversal of the S-wave velocity is well retrieved
by either multi-mode inversion analysis. However, the standard deviations near the
infinite half-space are relatively large. This is because the observed phase velocities
or SPAC coefficients do not have sufficient sensitivity to deep structure due to a lack
of estimated values at lower frequencies.

Figure 4.11 compared the inverted velocity models using only the fundamental
mode component with those using multimode components. The reversal of S-wave
velocities was overestimated by inversion using only the fundamental mode in both

inversion methods.

4.5 Field example

We also applied the proposed methods to field data. The survey site is located
in Tsukuba City, Japan. Geophones with a natural frequency of 2 Hz were used as
receivers. The array shape was similar to that shown in Figure 4.5, and the largest
aperture of the array was 30 m. The sampling time was 2 ms and each data set
consists of 8192 samples. Finally, 300 data sets of about 80 min were obtained.
Figure 4.12 shows an example of observed microtremors. P- and S-wave velocities
were obtained at this site by PS-logging (Suzuki and Takahashi, 1999). Figure 4.13
shows the theoretical dispersion curves and power fractions up to the second higher
mode constructed from PS-logging data. It can be seen that the power fraction of
the first higher mode is predominant near 7.5 Hz. Moreover, the second higher mode
has some influence at high frequencies.

The SPAC coefficients and dispersion curve were obtained from 300 data sets in the
same way as the synthetic test. Figure 4.14a shows the observed SPAC coefficients for

r = 15 and 30 m calculated from microtremor data. The theoretical SPAC coefficients

74



of the superposed modes and theoretical ones up to the second higher mode are also
shown. Figure 4.14b shows the observed phase velocities from the ESPAC method for
which the frequency range was determined by equation 4.13. Despite being within
this frequency range, phase velocities could not be obtained for frequencies higher
than 13.2 Hz because they did not show significant dispersion. In the frequency range
from 5 to 10 Hz where the observed SPAC coefficients and phase velocities lie between
the fundamental and first higher mode, the observed values are in good agreement
with the theoretical ones considering higher modes. However, there are discrepancies
between observed and theoretical values below 4 Hz. Figure 4.14a shows that the
observed SPAC coefficient agreed with theoretical one becomes slightly lower with the
increase of a receiver separation distance, which indicates the wavelength dependence
of these discrepancies. The phase velocities at lower than 4 Hz are also included in
the second and third reliable regions of 4 regions named as ’acceptable’ and ’critical’
according to the classification by Cornou et al. (2006). Thus, the discrepancies below
4 Hz would be generated from instability of estimated wavelengths.

The S-wave velocity profiles were estimated by inversions. The procedure and pa-
rameters of the inversions were the same as in the simulation study. Figure 4.15 shows
the average values of the misfit functions for each generation. The S-wave velocity
profiles estimated from inversions by two proposed methods of forward modeling are
shown in Figures 4.16 and 4.17. The standard deviations of inverted models using
effective phase velocities are much higher than those using SPAC coefficients. The
final S-wave velocity model by an inversion using effective phase velocities is poorly
resolved. It is considered this failure is caused by the discrepancies in the observed
phase velocities below 4 Hz. Although the inversion using SPAC coefficients is also
effected on the misfit below 4 Hz, the S-wave velocity consistent with logging data
can be inverted.

Figure 4.18 shows the comparison of the inverted velocity models using only the
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fundamental mode with those using multimode components. Compared to logging
data, the reversal of S-wave velocities obtained by inversion using only the fundamen-
tal mode is unrealistic.

Then, we considered giving a constraint in the inversion using effective phase
velocities in order to improve the S-wave velocity estimation. Since the discrepancies
of observed phase velocities below 4 Hz are considerably related with an infinite half-
space of inverted S-wave velocity, we constrained the velocity of an infinite half-space
to 700 m/s and the depth to 50 m as prior information in an inversion. Figure 4.19
shows the result of the inversion by effective phase velocities when prior information
is introduced. It can be seen that the S-wave velocity structure is better resolved.
From this result, we suggest the objective function using SPAC coefficients (equation
4.12) is robust than that using effective phase velocities (equation 4.10) in the point
that the former can give a better weighting for low frequencies when observed values

have significant errors.

4.6 Conclusions

In this study, we proposed two multi-mode analyses in the SPAC method using
amplitude response of surface waves. The use of amplitude response is superior in that
there is no need to identify the observed modes, and therefore mode misidentification
is avoided. Practical application point of view, this point becomes important since it
may solve an uncertainty problem by a lack of experimental knowledge of engineers.
The first method is to calculate the theoretical effective phase velocities corresponding
to the estimated ones by the ESPAC method. The second method is to fit SPAC
coefficients directly. The latter approach is simpler than the former one.

To conduct quantitative verification, we simulated microtremors with predomi-
nant higher modes of surface waves. Although the estimated phase velocities from

the ESPAC method were between theoretical phase velocities of fundamental mode

76



and first higher mode at some frequencies, the theoretical effective phase velocities
were consistent with the estimated ones. The observed SPAC coefficients were also
consistent with the theoretical ones. These methods were included in the forward
modeling of a GA inversion. The reversal layer of a S-wave velocity, which usually
plays an important role in higher modes, was successfully inverted by both proposed
methods although it was overestimated by inversion using only the fundamental mode.
In addition, we applied the proposed methods to field data in which higher modes
were considered to be predominant from PS logging data. The S-wave velocity esti-
mated by an inversion using SPAC coefficients is well consistent with that from log-
ging data. On the other hand, the inverted model using effective phase velocities was
poorly resolved. Introduction of prior information about the infinite half-space layer,
however, improved the result of the inversion. When we apply inversion using only
the fundamental mode, the unrealistic reversal of S-wave velocities was estimated.
The simulation study and field example demonstrated that results from our pro-
posed methods are mostly in good agreement with the observed phase velocities and
SPAC coefficients. However, these methods have to be applied carefully to an inver-
sion analysis without any prior information. If the observed values have low quality
for crucial S-wave velocities when applying the multi-mode analysis (e.g., below 4
Hz in Figure 4.14), the inverted models may be trapped in the local minimum as in
Figure 4.16. Meanwhile, the S-wave velocity structure was successfully estimated by
an inversion using SPAC coefficients without any constraints for the reference model.
Because of this, we suggest that the multi-mode inversion using SPAC coefficients has
a better weighting for low frequencies when observed values have significant errors
and therefore, it is more robust than an inversion using effective phase velocities.
To verify the effectiveness of the proposed methods, the observed microtremors need
to be applied to various areas where borehole data are available for a quantitative

evaluation.
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Figure 4.1: Geometry of a receiver array and an incident plane wave.
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Figure 4.2: Flowchart of proposed microtremor analyses that consider higher modes
and multiple receiver separation distances.
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Figure 4.3: Simulated 4-layered model.
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Figure 4.4: (a) Theoretical dispersion curves and (b) power fractions up to second
higher modes for simulated model (Figure 4.3).
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Figure 4.5: Assumed array shape.
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Figure 4.6: Simulated microtremors from one data set. The receiver number corre-
sponds to Figure 4.5.
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Figure 4.7: Comparison of the observed SPAC coefficients with theoretical ones (red
lines) corresponding to r = 25 and 50 m. Only the black circles among
the observed SPAC coefficients were used in an inversion. (b) Comparison
of the observed phase velocities (black circles) from the ESPAC method
with theoretical effective phase velocities (red line).
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Figure 4.8: The average of the misfit functions in each generation for simulated data.
The error bars show the standard deviations.
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Figure 4.9: Results of inversions using effective phase velocities. (a) Simulated model
(red), reference model constructed by equations 4.14 and 4.15 (cyan),
inverted models for each trial (black), and the search range in for the GA
inversion (yellow). (b) Final inverted model (blue) obtained by averaging
the S-wave velocities and thicknesses for each layer over 20 trials and their
standard deviations (green).
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Figure 4.10: Results of inversions using SPAC coefficients. (a) Simulated model (red),
reference model constructed by equations 4.14 and 4.15 (cyan), inverted
models for each trial (black), and the search range for the GA inversion
(yellow). (b) Final inverted model (blue) obtained by averaging the S-
wave velocities and thicknesses for each layer over 20 trials and their
standard deviations (green).
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Figure 4.11: Comparison of inverted velocity models using multimode components
with those using only the fundamental mode component for (a) effective
phase velocities and (b) SPAC coefficients.
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Figure 4.12: Observed microtremors from one data set. The receiver number corre-
sponds to Figure 4.5.
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Figure 4.13: (a) Theoretical dispersion curves and (b) power fractions up to second
higher modes for a layered model constructed by PS logging data.
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Figure 4.14: (a) Comparison of observed SPAC coefficients with theoretical ones (red
lines) corresponding to r = 15 and 30 m. Only the black circles among
the observed SPAC coefficients were used in an inversion. (b) Com-

parison of the observed phas

e velocities (black circles) from the ESPAC

method with theoretical effective phase velocities (red line).
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Figure 4.15: The average of the misfit functions in each generation for field data. The
error bars shows the standard deviations.
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Figure 4.16: Results of inversions using effective phase velocities. (a) Logging data
(red), reference model constructed by equations 4.14 and 4.15 (cyan),
inverted model for each trial (black), and the search range for the GA
inversion (yellow). (b) Final inverted model obtained by averaging the

S-wave velocities and thicknesses for each layer over 20 trials (blue) and
their standard deviations (green).
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Figure 4.17: Results of inversions using SPAC coefficients. (a) Logging data (red),
reference model constructed by equations 4.14 and 4.15 (cyan), inverted
models for each trial (black), and the search range for the GA inversion
(yellow). (b) Final inverted model (blue) obtained by averaging the S-
wave velocities and thicknesses for each layer over 20 trials and their

standard deviations (green).
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Figure 4.19: Results of inversions using effective phase velocities. The S-wave velocity
and the depth of the infinite half-space were fixed at 700 m/s and 50
m, respectively. (a) Logging data (red), reference model constructed by
equations 4.14 and 4.15 (cyan), inverted models for each trial (black),
and the search range for the GA inversion (yellow). (b) Final inverted
model (blue) obtained by averaging the S-wave velocities and thicknesses
for each layer of 20 trials and their standard deviations (green).
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CHAPTER V

Separating mixing modes by the multichannel
analysis of surface waves with deconvolution

analysis

5.1 Introduction

The surface wave method has been widely applied as a non-destructive means
for obtaining S-wave velocity structures (e.g. Miller et al., 1999; Ryden and Lowe,
2004; Lin et al., 2004; Foti et al., 2009; Socco et al., 2010; Tsugi et al., 2012). The
surface wave method utilizes the dispersion characteristics of surface waves. Nazarian
et al. (1983) have introduced the spectral analysis of surface waves method (SASW)
in which dispersion curves of surface waves are estimated from a pair of receivers.
The accuracy of dispersion curves estimates is improved by analysis of multichannel
seismic data with the multichannel analysis of surface waves (MASW) method (Park
et al., 1998, 1999a) or the f-k method (Foti, 2000, 2005). Because surface waves are
most sensitive to S-wave velocities, S-wave velocity structures can be estimated by
inversion of dispersion curves (e.g. Xia et al., 1999).

Surface waves have different propagation velocities at different frequencies. The
propagation mode with the slowest propagation velocity is the fundamental mode,

and the other modes are referred to as higher modes. The fundamental mode of
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surface waves is usually the focus of a surface wave analysis. However, higher modes
of surface waves cannot be ignored when a low-velocity layer is embedded between soft
layers (e.g. Tokimatsu et al., 1992b; Lu et al., 2007; Tsuji et al., 2012). In inversion
analysis, inclusion of higher surface wave modes improves the resolution of S-wave
velocity estimations, the result being an increase of the investigation depth (e.g. Xia
et al., 2003; Luo et al., 2007).

One of the difficulties associated with multimode analysis of surface waves is the
separation of multimode signals. The receivers must be spread out over a long dis-
tance to clearly separate multimode surface waves (Bergamo et al., 2012; Ikeda et al.,
2013b), and a large number of receivers is required to suppress noise effects. How-
ever, such field observations are sometimes difficult to conduct because of financial
or topographical restrictions. Even if the component of each mode is clearly sepa-
rated, there is still difficulty in identifying the observed mode number. Consequently,
the mode misidentification generates substanti