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RIMS Kôkyûroku Bessatsu
B27 (2011), 149–169

Quantum behavior of the integrated density of states

for the uniform magnetic field and a randomly

perturbed lattice

By

Naomasa Ueki∗

Abstract

For the Schrödinger operators on L2(R2) and L2(R3) with the uniform magnetic field

and the scalar potentials located at all sites of a randomly perturbed lattice, the asymptotic

behavior of the integrated density of states at the infimum of the spectrum is investigated. The

random lattice is the model considered by Fukushima and describes an intermediate situation

between the ordered lattice and the Poisson point process. In this note the scalar potentials

are assumed to decay rapidly and the effect of the kinetic part are investigated.

§ 1. Introduction

Let

H =
(
i
∂

∂x1
− Bx2

2

)2

+
(
i
∂

∂x2
+
Bx1
2

)2

−B

be the Landau Hamiltonian on L2(R2) with the uniform magnetic field B > 0 subtracted

B so that the lowest eigenvalue is 0, where i =
√
−1. Let Vξ(x) =

∑
q∈Z2 u(x− q − ξq)

be a random potential on R2, where ξ = (ξq)q∈Z2 is a collection of independently and

identically distributed R2-valued random variables with the distribution

(1.1) Pθ(ξq ∈ dx) = exp(−|x|θ)dx/Z(θ),

θ ∈ (0,∞), Z(θ) is the normalizing constant, and u is a nonnegative function belonging

to the Kato class K2 (cf. [2] p-53). We will consider the random Schrödinger operators

(1.2) Hξ = H+ Vξ,
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and the restriction Hξ of H to the complement of T (ξ) =
∪
q∈Z2 B(q + ξq : r0) by the

Dirichlet boundary condition, where r0 ∈ (0,∞) and B(p : r) := {x ∈ R2 : |x− p| < r}
is the open ball with the center p and the radius r. Vξ and T (ξ) are soft and hard

obstacles, respectively. We will consider the integrated density of states (N(λ))λ≥0 and

(N (λ))λ≥0 of Hξ and Hξ, respectively: (N(λ))λ≥0 is defined by

(1.3) R−2Nξ,R(λ) −→ N(λ) as R→ ∞

for any point of continuity of N(λ) and almost all ξ, where Nξ,R(λ) is the number of

eigenvalues not exceeding λ of the self-adjoint operator Hξ,ΛR
on the L2 space on the

cube ΛR := (−R/2, R/2)2 with the Dirichlet boundary condition. N(λ) exists as a

deterministic increasing function (cf. [2], [13]). (N (λ))λ≥0 is similarly defined for Hξ.

In this note, we first prove the following:

Theorem 1.1. (i) If

(1.4) essinf
|x|≤R

u(x) > 0

for some R > 0 and

(1.5) lim
|x|→∞

|x|−2 log u(x) = −∞,

then we have

(1.6) lim
λ↓0

(
log

1

λ

)−(1+θ/2)

logN(λ) ≥ −22+θ/2π

(θ + 1)(θ + 2)B1+θ/2

and

(1.7) lim
λ↓0

(
log

1

λ

)−1(
log log

1

λ

)−n
logN(λ) = −∞

for any n ∈ N. Moreover if θ > 4, then we have

(1.8) lim
λ↓0

(
log

1

λ

)−(1+(θ−4)/6)

logN(λ) ≤ −K
B1+(θ−4)/6

,

where K is a finite constant independent of B. The same estimates hold for (N (λ))λ≥0.

(ii) If (1.4) for any R ≥ 1 and

(1.9) u(x) = exp
(−|x|α

C0
(1 + o(1))

)
as |x| → ∞ with α = 2, then we have

(1.10) lim
λ↓0

(
log

1

λ

)−(1+θ/2)

logN(λ) ≥ −2π

(θ + 1)(θ + 2)

( 2

B
+ C0

)1+θ/2

.
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We next formulate the 3-dimensional problem by referring to the corresponding

result [9] for the Poisson case. We write any element x of R3 as (x⊥, x3) ∈ R2 ×R and

set

∥x∥θp :=

∥|x⊥|θ⊥ , |x3|θ3∥p = (|x⊥|θ⊥p + |x3|θ3p)1/p if p ∈ [1,∞),

|x⊥|θ⊥ ∨ |x3|θ3 if p = ∞,

for arbitrarily fixed θ = (θ⊥, θ3) ∈ (0,∞)2 and p ∈ [1,∞]. Let V ξ(x) =
∑

q∈Z3 u(x −
q−ξq) be a random potential on R3, where u is a nonnegative function belonging to the

Kato class K3 (cf. [2] p-53), ξ = (ξq)q∈Z3 is a collection of independently and identically

distributed R3-valued random variables with the distribution

(1.11) Pθ(ξq ∈ dx) = exp(−∥x∥θp )dx/Z(θ, p)

and Z(θ, p) is the normalizing constant. Let

H =
(
i
∂

∂x1
− Bx2

2

)2

+
(
i
∂

∂x2
+
Bx1
2

)2

−B − ∂2

∂x23

be the direct sum of the Landau Hamiltonian on L2(R2) subtracted the magnetic field

B and the Laplacian on L2(R). As in the 2-dimensional case and as in [20], we will

consider the integrated density of states (N(λ))λ≥0 of the random Schrödinger operator

(1.12) Hξ = H+ V ξ,

and that (N (λ))λ≥0 of the restriction Hξ of H to the complement of T (ξ) =∪
q∈Z3 B(q + ξq : r0) by the Dirichlet boundary condition, where r0 ∈ (0,∞) and B(p :

r) := {x ∈ R3 : |x− p| < r} is the open ball with the center p ∈ R3 and the radius r.

For this we prove the following:

Theorem 1.2. We assume

(1.13) u(x) =
C0

∥x∥αp̃
(1 + o(1))

as |x| → ∞ for some C0 ∈ (0,∞), p̃ ∈ [1,∞] and α = (α⊥, α3) ∈ (0,∞)2 satisfying

(1.14)
2

α⊥
+

3

α3
< 1.

We set

(1.15) µ1(α⊥,θ) =
3

α⊥ − 2
+

1

2
+

3θ⊥
2(α⊥ − 2)

∨ θ3
2

and

(1.16) µ2(α,θ) =
2/α⊥

1− 1/α3 − 2/α⊥
+

1

2
+

θ⊥/α⊥

1− 1/α3 − 2/α⊥
∧ θ3

2
.
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Then we have

lim
λ↓0

λµ1(α⊥,θ) logN(λ) > −∞,(1.17)

lim
λ↓0

λµ2(α,θ) logN(λ) < 0 ,(1.18)

lim
λ↓0

λ(1+θ3)/2

log(1/λ) logN (λ) > −∞(1.19)

and

(1.20) lim
λ↓0

√
λ logN (λ) < 0.

If suppu is compact, then (1.19) and (1.20) hold by replacing N (λ) by N(λ).

As in [20], the above results are extensions of the results in [7] and [8], where

the same problem is considered in the case without magnetic fields. As is discussed

in [7] and [8], our model describes an intermediate situation between a completely

ordered situation and a completely disordered situation since the point process {q +
ξq}q∈Z2 converges weakly to the Poisson point process with the intensity 1 as θ → 0

and converges weakly to the lattice Z2 as θ → ∞ by slightly modifying the definition

as Pθ(ξq ∈ dx) = exp(−(1 + |x|)θ)dx/Z(θ), which brings no essential changes for our

results. The results in [7] and [8] shows that the leading term of the integrated density

of states also tends to those for the Poisson case as θ → 0 and decays as θ → ∞ which

reflects that the infimum of the spectrum is strictly positive if the perturbations {ξq} of

sites are all bounded. In the case with uniform magnetic fields the asymptotics of the

integrated density of states has been investigated mainly for the Poisson case. For this

topic and the relation with other topics, refer to a recent survey by Kirsch and Metzger

[14]. The first result was given by Broderix, Hundertmark, Kirsch and Leschke [1]: they

determined the leading term for the case where d = 2, u(x) = C0|x|−α(1 + o(1)) as

|x| → ∞ is satisfied for some α > 2 and C0 > 0 and the point process {q + ξq}q∈Z2 is

replaced by the Poisson point process. As is discussed in [10] and [20], this leading term

coincides with that of the classical integrated density of states, which depends only on

the scalar potential, as in Pastur’s case [17] without magnetic fields. Then Erdős [5]

treated the same case where the single site potential u is replaced by a function with a

compact support and he determined the corresponding leading term of the integrated

density of states, which depends only on the magnetic field and the intensity of the point

process and is independent of other precise informations on the single site potential as

in Nakao’s case [15] without magnetic field referring to Donsker and Varadhan’s result

[3]. On this behavior we may say that the quantum effect appears. The borderline
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between the classical and quantum behaviors was determined by Hupfer, Leschke and

Warzel [10]. The borderline corresponds to the case of (1.9) with α = 2. They also

determined the leading term for the case of (1.9) with α ∈ (0, 2). The leading term

for the borderline case was determined by Erdős [6]. The leading term for the classical

case was determined also in the 3-dimensional case by Hundertmark, Kirsch and Warzel

[9]. For the 3-dimensional case, results appearing the quantum effect were obtained by

Warzel [21], where general bounds and the leading order for special cases were obtained.

In this note we try to extend the theory to our setting. We treat simple classical cases

in [20] and remaining cases in this note. Our results in this note give only upper and

lower estimates. By these upper estimates and Theorems 6.1 and 6.2 in [20], we see

that the quantum effect appears in the following five cases: (i) (1.4) for any R ≥ 1

and (1.9) with α ≥ θ + 2, (ii) (1.4) for any R ≥ 1 and (1.9) with α > 6 and θ > 4,

(iii) suppu is a nonempty compact set, (iv) essinf|x|≤R u(x) > 0 for any R ≥ 1 and

(1.13) with (1.14), and (v) suppu is a nonempty compact set. We conjecture that the

leading terms are close to our lower bounds in the 2-dimensional cases and are close

to our upper bounds in the 3-dimensional case. One reason is that the bounds tend to

the corresponding leading terms given in [5], [6] and [14] for the Poisson case as θ → 0.

Thus the borderline between the classical and quantum behaviors is expected to be the

case of Theorem 1.1 (ii) and the case of 2/α⊥ + 3/α3 = 1 in Theorem 1.2 as in the

Poisson case.

The organization of this note is as follows. We prove Theorem 1.1 in Sections 2, 3

and 4: we prove the lower estimates in Section 2, the upper estimate (1.8) in Section

3 and the upper estimate (1.7) in Section 4. We next prove Theorem 1.2 in Sections 5

and 6: we prove the lower estimate in Section 5 and the upper estimate in Section 6.

§ 2. Lower estimates for the 2-dimensional case

In this section we give lower estimates for Theorem 1.1. Let

Ñ(t) =

∫ ∞

0

e−tλdN(λ).

(1.10) is proven by the following, which we prove by referring to [1] and [10]:

Proposition 2.1. If (1.9) holds with α = 2, then we have

(2.1) lim
t↑∞

log Ñ(t)

(log t)1+θ/2
≥ −2π

(θ + 1)(θ + 2)

( 2

B
+ C0

)1+θ/2

.

The basic inequality for the proof is the following extension of (3.5) in [1]:
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Proposition 2.2. Ñ(t) ≥ Ñ1(t)/(4πt), where

Ñ1(t) =

∫
Λ1

dx Eθ

[
exp

(
− t

∫
R2

ϕB(y)Vξ(x+ y)dy
)]

and ϕB(x) = exp(−B|x|2/2)B/(2π).

Proof. In (2.4) of [20] we obtain

(2.2) lim
Ω↓0

Ω2t

π
Eθ[Tr[exp(−t(Hξ +Ω2|x|2))]] = Ñ(t).

Then the rest of the proof is same with that of (3.5) in [1].

Proof of Proposition 2.1. Ñ1(t) in Proposition 2.2 is rewritten as∫
Λ1

dxEθ

[
exp

(
− t

∑
q∈Z2

uB(x− q − ξq)
)]
,

where uB = u ∗ ϕB . By Lemma 3.5 (ii) in [10], we have

lim
|x|→∞

|x|−2 log uB(x) = −1/(C0 + 2/B) =: −1/CB.

By the same lower estimate of Section 3 in [20], we obtain

log Ñ1(t) ≥ −t exp(−(1− ε)4R2/CB)− (R+ 3ε+ 1)θ+2 2π

(θ + 1)(θ + 2)

for large enough R. By setting R =
√
CB(log t)(1−ε)−2, we can complete the proof.

Proof of ”(1.10) implies (1.6)”. For any η > 0, we can take a single site potential

uη satisfying uη ≥ u and (1.9) where α and C0 is replaced by 2 and η, respectively. The

corresponding integrated density of states Nη(λ) satisfies N(λ) ≥ Nη(λ) and

lim
λ↓0

(
log

1

λ

)−(1+θ/2)

logNη(λ) ≥
−2π

(θ + 1)(θ + 2)

( 2

B
+ η

)1+θ/2

.

Since η is arbitrary, we obtain (1.6).

§ 3. An upper estimate appearing quantum effects for the 2-dimensional

case

In this section we prove the following upper estimate which is enough for (1.8):
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Proposition 3.1. If θ > 4 and u(x) = C01B(r0)(x), then we have

(3.1) lim
t↑∞

log Ñ(t)

(log t)(2+θ)/6
≤ −C1

B(2+θ)/6

for some positive constant C1 independent of B, where B(r0) := B(0 : r0).

We reduce the proof to an estimate of the lowest eigenvalue of an operator with the

Dirichlet boundary condition following Section 6 in Erdős [5]: for any β, ε1 ∈ (0,∞),

(3.2) lim
t↑∞

log Ñ(t)

(log t)(2+θ)/6
≤ lim
t↑∞

1

(log t)(2+θ)/6
log

∫
Λ1

dzEθ

[
exp

(ε1 − t

4
λ1(H

B+β
ξ,B(z:s))

)]
.

In (3.2), s =
√

(8/β) log t and HB+β
ξ,B(z:s) is Hξ,B(z:s) where B is replaced by B + β. The

proof of (3.2) can be given by the same method of the proof of Theorem 6.3 in Erdős

[5], where we used the estimate

Tr
[
exp

(
− t

4
HB+β
ξ,B(z:s)

)]
≤ exp

(ε1 − t

4
λ1(H

B+β
ξ,B(z:s))

)cs2
ε1

exp
(ε1(B + β)

4

)
instead of (3.4) in [5].

The obstacles are reduced to the hard obstacles by the following:

Lemma 3.2. If u(x) = C01B(2r0)(x), then we have

(3.3) λ1(Hξ,B(z:s)) ≥
C0

2
∧
λ1(HB(z:s)\T (ξ))

4(1 + cr−2
0 )

.

Proof. We represent the Landau Hamiltonian by the creation and annihilation

operators: H = A∗A, where A = (i∂/(∂x1)−Bx2/2) + i(i∂/(∂x2) +Bx1/2). Thus the

lowest eigenvalue has the representaion

λ1(Hξ,B(z:s)) = ∥Aφ0∥2 + (Vξφ0, φ0),

where φ0 is a normalized ground state of Hξ,B(z:s). Since

(Vξφ0, φ0) ≥ C0∥φ0∥2L2(B(z:s)∩
∪

q∈Z2 B(q+ξq :2r0))
,

we have

∥φ0∥2L2(B(z:s)∩
∪

q∈Z2 B(q+ξq :2r0))
≤ λ1(Hξ,B(z:s))/C0.

On the other hand, we take a smooth function ϑ on R2 such that ϑ = 0 on
∪
q∈Z2 B(q+

ξq : r0), ϑ = 1 on (
∪
q∈Z2 B(q + ξq : 3r0/2))

c, 0 ≤ ϑ ≤ 1 and |∇ϑ|2 ≤ 9/r20. Then we

have

∥Aφ0∥2 ≥ ∥ϑAφ0∥2 ≥ 1

2
∥Aϑφ0∥2 −

9

r20
∥φ0∥2L2(B(z:s)∩

∪
q∈Z2 B(q+ξq :3r0/2))

≥ 1

2
λ1(HB(z:s)\T (ξ))∥ϑφ0∥2 −

9

r20

λ1(Hξ,B(z:s))

C0
.
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Moreover we have

∥ϑφ0∥2 ≥ 1−
∫
B(z:s)∩

∪
q∈Z2 B(q+ξq:3r0/2)

|φ0(x)|2dx ≥
(
1−

λ1(Hξ,B(z:s))

C0

)
+
.

Therefore, if 1− λ1(Hξ,B(z:s))/C0 ≥ 1/2, then we have

λ1(Hξ,B(z:s)) ≥
1

4
λ1(HB(z:s)\T (ξ))−

9

r20

λ1(Hξ,B(z:s))

C0
,

from which we obtain (3.3).

To estimate λ1(HB(z:s)\T (ξ)), we develop Erdős’s isoperimetric inequality stating

(3.4) λ1(HD) ≥ λ1(HB(L))

for any bounded domain D of R2 with the area |D| = |B(L)| = πL2 and a smooth

boundry [4]. The right hand side is dominated from below by exp(−BL2(1 + ε)/2) for

sufficiently large L, where ε is an arbitrarily small positive constant. We need more

precise estimates for more complicated domains. In this note we prove the following:

Proposition 3.3. Let D be a bounded domain of R2 with the area |D| = πL2

whose boundary is a finite union of smooth curves. Let ρ be the radius of the largest

disk contained in D. Then we have

(3.5) λ1(HD) ≥
C1

L2
exp(−C2BL(1 ∨ ρ)3),

where C1 and C2 are universal positive constants.

Proof. By the same proof of the inequality (17) in [4], we have

λ1(HD) ≥ inf
{∫

|e−Λ(ψ(x))∇eΛ(ψ(x))ψ(x)|2dx
/∫

ψ(x)2dx

: 0 ≤ ψ ∈ C∞(D) ∩ Cω(D), ψ = 0 on ∂D,

Λ(c) = B

∫ ∞

c

dξ|{ψ > ξ}|
(∫

{ψ=ξ}
|∇ψ(x)|L(dx)

)−1}
,

where Cω(D) is the set of all analytic functions on D and L(·) is the measure corre-

sponding to the length of curves. Λ is a nonnegative, strictly monotone decreasing,

continuous function on the range of ψ. It is also included in the set C∞
∗ of all real

valued functions on R which are smooth everywhere except for finitely many points. As

in the equations (19) and (20) in [4], we rewrite the quatities in the infimum as follows:∫
|e−Λ(ψ(x))∇eΛ(ψ(x))ψ(x)|2dx = B

∫ ∞

0

(Θ′(b))2e−2bF (b)db



Integrated density of states 157

and ∫
ψ(x)2dx =

∫ ∞

0

Θ(b)2e−2bF ′(b)db,

where Θ(b) = Λ−1(b)eb and F (b) = |{x ∈ D : h(x) < b}| with h(x) = Λ(ψ(x)). We now

apply Lemma 3.4 below. Then we have

L({x : h(x) = b}) ≥ C1(1 ∨ ρ)

√
|{x : h(x) < b}|

(
1−

(√|{x : h(x) < b}| − ρ
√
π√

|{x : h(x) < b}|+ ρ
√
π

)2

+

)−1

and

F ′(b) ≥ C2(1 ∨ ρ)2

B
(
1−

(√
F (b)−ρ

√
π√

F (b)+ρ
√
π

)2

+

) .
Therefore (23) in [4] is rewritten as follows:

λ1(HD)

≥ inf
{
B

∫ b0

0

(Θ′(b))2e−2bF (b)db
(∫ b0

0

Θ(b)2e−2bF ′(b)db
)−1

: F,Θ ∈ C∞
∗ ,Θ ≥ 0,Θ is bounded, F is strictly monotone increasing,

F ′(b) ≥ C2(1 ∨ ρ)2

B
(
1−

(√
F (b)−ρ

√
π√

F (b)+ρ
√
π

)2

+

) for a.a. 0 < b < b0,

F (0) = 0, F (b0) = |D|,Θ(b0) = 0
}
.

As in [4], if we set h∗(r) = F−1(πr2), a(r) = (h∗)′(r) and q(r) = Θ(h∗(r)) exp(−h∗(r)),
then q, q′ ∈ L2((0, L), rdr) and q(L) = 0. (25) and (26) in [4] also hold:

2π

∫ L

0

(q′(r) + a(r)q(r))2rdr ≤ B

∫
(Θ′(b))2e−2bF (b)db

and

2π

∫ L

0

q(r)2rdr =

∫
(Θ(b))2e−2bF ′(b)db.

(24) in [4] is rewritten as

0 ≤ a(r) = (h∗)′(r) =
2πr

F ′(F−1(πr2))
≤ C3(1 ∨ ρ)2Br

(
1−

(r − ρ

r + ρ

)2

+

)
=: aρ(r).

Therefore we have

λ1(HD) ≥ inf
{
2π

∫ L

0

(q′(r) + a(r)q(r))2rdr
(
2π

∫ L

0

q(r)2rdr
)−1

: q, q′ ∈ L2((0, L), rdr), q(L) = 0, q(r) ≥ 0, 0 ≤ a(r) ≤ aρ(r)
}
.
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By Lemma 3.1 in [4], we have

λ1(HD) ≥ inf
{
2π

∫ L

0

(q′(r) + aρ(r)q(r))
2rdr

(
2π

∫ L

0

q(r)2rdr
)−1

: q, q′ ∈ L2((0, L), rdr), q(L) = 0, q(r) ≥ 0
}
.

(3.6)

We rewrite q as q(r) = exp(−Aρ(r))Q(r), where

Aρ(r) =

∫ r

0

aρ(s)ds.

Since Aρ(r) is monotone increasing, by the uniform estimate, we have

λ1(HD) ≥ inf
{
2π

∫ L

0

Q′(r)2 exp(−2Aρ(r))rdr
/
2π

∫ L

0

Q(r)2 exp(−2Aρ(r))rdr

: Q,Q′ ∈ L2((0, L), rdr), Q(L) = 0, Q(r) ≥ 0
}

≥λ1(−∆B(L)) exp(−2Aρ(L)),

where λ1(−∆B(L)) is the lowest eigenvalue of the Dirichlet Laplacian of B(L). By the

scaling, we have λ1(−∆B(L)) = λ1(−∆B(1))/L
2. By a simple calculation, we have

(3.7) Aρ(r) ≤ C4B(1 ∨ ρ)3L.

Thus we obtain (3.5).

The following is the estimate used in the proof of the last proposition:

Lemma 3.4. Suppose that the domain D is defined by B(R) \
∪
i∈NB(ai : r0)

for some 0 < r0 < R < ∞ and {ai : i ∈ N} ⊂ R2 and that ρ is the radius of the

largest open disk contained in D. Then for any domain D contained in D such that its

boundary ∂D is a finite union of rectifiable Jordan curves, we have

(3.8) (1 + cρ)2
(
1−

(√L(∂D)− ρ
√
π√

L(∂D) + ρ
√
π

)2)
≥ 4π|D|
L(∂D)

2

,

where c is a finite constant depending only on r0.

Proof. This estimate has its origin in the classical isoperimetric inequality stating

L(∂D)2 ≥ 4π|D| for any domain D in R2 bounded by a finite union of rectifiable Jordan

curves. This inequality has been improved for more complicated domains. Many such

inequalities are known as Bonnesen type isoperimetric inequalities (see Ossermann [16]

and references therein). Among them we apply the following inequality by Ossermann:

if D is a domain of R2 bounded by a rectifiable Jordan curve, then we have

(3.9) L(∂D)2 − 4π|D| ≥ L(∂D)2
(R− ρ

R+ ρ

)2

,
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where R is the radius of the smallest disc including D and ρ is the radius of the largest

disc included in D ((23) in Ossermann [16]). To apply (3.9), D should be simply

connected. Now for any domain D in D = B(R) \
∪
i∈NB(ai : r0), we classify its holes

to two groups: let {Hk}Kk=1 and {Ĥi}i∈I be simply connected closed domains such that

Hk ∩
∪
i∈N

B(ai : r0) ̸= ∅, Ĥi ∩
∪
i∈N

B(ai : r0) = ∅

and D +
∪K
k=1Hk +

∪
i∈I Ĥi is a simply connected domain. Therefore {Hk}Kk=1 are

holes intersecting the holes of D and {Ĥi}i∈I are holes apart from the holes of D. We

may erase the holes {Ĥi}i∈I to replace D by the domain D̂ := D +
∪
i∈I Ĥi, since

the radius of the largest disc included in D̂ is still ρ. For the holes {Hk}Kk=1, we have

K ≤ L(∂D)/(2πr0), since L(∂D) ≥ 2πr0. By erasing K numbers of line segments

{Ck}Kk=1 of the length L(Ck) less than or equal to 2ρ, the domain D̂ becomes a disjoint

union of finite number of simply connected domains {Dj}Jj=1: D̂ \
∑K
k=1 Ck =

∑J
j=1 Dj .

Then Ossermann’s inequality (3.9) gives

L(∂Dj) ≥

√
4π|Dj |

/(
1−

(√|Dj | − ρ
√
π√

|Dj | − ρ
√
π

))
by dominating also the radius of the smallest disc including Dj by

√
|Dj |/π. By using

Lemma 3.5 below, we have

L(∂D̂) + 2
K∑
k=1

L(ck) ≥

√√√√√4π|D̂|
/(

1−
(√|D̂| − ρ

√
π√

|D̂| − ρ
√
π

))
,

from which we easily obtain (3.8).

Lemma 3.5. Let H(F1, · · · , Fn) be a function of F1, . . . , Fn ≥ 0 defined by

H(F1, · · · , Fn) =
n∑
i=1

{
Fi

1−
(√

Fi−β√
Fi+β

)2

+

}1/2

with β ∈ (0,∞). Then we have

H(F1, · · · , Fn) ≥ H
( n∑
i=1

Fi, 0, · · · , 0
)
.

Proof. Let H1(f) := H(F1 + f, F2 − f, F3, · · · , Fn). This function is increasing

in small f ≥ 0. By using also the symmetry in (F1, · · · , Fn), we can complete the

proof.
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Finally we complete the proof of Proposition 3.1.

Proof of Proposition 3.1. We have only to show

lim
t↑∞

1

(log t)(2+θ)/6
log

∫
Λ1

dzEθ

[
exp

(
c1
ε1 − t

s2
exp(−c2(B + β)ρ1(z, s, ξ)

3s)
)]

≤ −K1(θ)/B
(2+θ)/6

(3.10)

for some β by (3.2), Lemma 3.2 and Proposition 3.3, where ρ1(z, s, ξ) := 1 ∨ ρ(z, s, ξ),
ρ(z, s, ξ) is the radius of the largest disk contained in B(z : s) \ T (ξ), c1, c2 ∈ (0,∞)

and K1(θ) ∈ (0,∞) depends on θ. For this, we have only to show

(3.11) lim
t↑∞

1

(log t)(2+θ)/6
log

∫
Λ1

dz

∫ s−2

0

dRec3(ε1−t)RPθ(R̂ ≤ ρ1(z, s, ξ))

is less than or equal to the right hand side of (3.10), where R̂ = {(log(R−1s−2))/(c2(B+

β)s)}1/3. The qunatity in (3.11) is dominated from above by

(3.12) − lim
t↑∞

1

(log t)(2+θ)/6
inf

0<R≤s−2,z∈Λ1

{c3(t− ε1)R− logPθ(R̂ ≤ ρ1(z, s, ξ))}

The probability can be estimated as follows:

Pθ(R̂ ≤ ρ1(z, s, ξ)) ≤ Pθ(B(a : R̂) ⊂ B(s) \ T (ξ) for some a ∈ B(s))

≤
∑

a∈B(s)∩(ε2Z2)

Pθ(|ξq| ≥ R̂+ r0 − |q − a| − ε2 for ∀q ∈ B(a : R̂− ε2) ∩ Z2)

≤#{B(s) ∩ (ε2Z2)} exp
(
− (1− ε3)

∑
q∈B(a:R̂−ε2)∩Z2

(R̂+ r0 − |q − a| − ε2)
θ
+ + c4R̂

2
)

≤c5s2 exp
(
− (1− ε3)

2π(R̂− 1− ε2)
θ+2
+

(θ + 1)(θ + 2)
+ c4R̂

2
)
,

where ε2 and ε3 are arbitrarily small positive constants, and c4 and c5 are finite constants

depending ε2 and ε3. Thus the quantity (3.12) is less than or equal to

(3.13) − lim
t↑∞

1

(log t)(2+θ)/6
inf

0<R≤s−2

{
c3(t− ε1)R+ c6

((1
s
log

1

Rs2

)1/3

− c7

)θ+2

+

}
,

where c6 = (1−2ε3)2π{(θ+1)(θ+2)(c2(B+β))(θ+2)/3}−1 and c7 = (1+ε2)(c2(B+β))1/3.

For an arbitrary positive number v, a sufficient condition for ((log(R−1s−2))/s)1/3−c7 ≥
vc7 is R ≤ exp(−s(v + 1)3c37)/s

2. Then we have(1
s
log

1

Rs2

)1/3

− c7 ≥ v

v + 1

(1
s
log

1

Rs2

)1/3
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and

inf
{
c3(t− ε1)R+ c6

((1
s
log

1

Rs2

)1/3

− c7

)θ+2

+
: 0 < R ≤ exp(−s(v + 1)3c37)/s

2
}

≥ inf{F (R) : 0 < R ≤ exp(−s(v + 1)3c37)/s
2},

where

F (R) = c3(t− ε1)R+ c8

(1
s
log

1

Rs2

)(θ+2)/3

with c8 = c6(v/(v + 1))θ+2. The infimum of F (R) is attained at R = R(t) satisfying

R(t) =
c8(θ + 2)

3c3(t− ε1)s(θ+2)/3

(
log

1

R(t)s2

)(θ−1)/3

.

Since R(t) = (1 + o(1))(log t)(θ−4)/6/t as t→ ∞, R(t) ≤ exp(−s(v + 1)3c37)/s
2 and

inf{F (R) : 0 < R ≤ exp(−s(v + 1)3c37)/s
2} = F (R(t))

for sufficiently large t. It is easy to see that

lim
t→∞

F (R(t))

(log t)(2+θ)/6
= c8

(β
8

)(2+θ)/6

.

On the other hand, by only the effect of the first term, we have

inf{c3(t− ε1)R+ c6

((1
s
log

1

Rs2

)1/3

− c7

)θ+2

+
: exp(−s(v + 1)3c37)/s

2 ≤ R ≤ s−2
}

≥ c3
t− ε1
s2

exp(−s(v + 1)3c37) ≥ c9
√
t.

Thus the quantity (3.13) is less than or equal to −c8(β/8)(2+θ)/6. By taking the limit

ε3 ↓ 0 and v → ∞, we see that the quantity (3.13) is less than or equal to

−2π

(θ + 1)(θ + 2)

( β

8c22(B + β)2

)(2+θ)/6

.

This becomes the optimal value, the right hand side of (3.10), when β = B.

§ 4. A general upper estimate for the 2-dimensional case

In this section we prove the following upper estimate which is enough for (1.7):

Proposition 4.1. If u(x) = C01B(r0)(x) with C0, r0 ∈ (0,∞), then we have

(4.1) lim
t↑∞

log Ñ(t)

(log t)(log log t)n
= −∞ for any n ∈ N.
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To prove this proposition, we modify Erdős’s upper estimate for the Poisson case

[5]. For the estimate, he applied his method of enlargement of obstacles referring to

Sznitman’s theory (cf. [19]). As in [5], we assume 0 < r0 < 1. We fix β and ε > 0

arbitrarily, and take s =
√
(8/β) log t, ℓ = 10

√
(log t)/B and b > 10r0 specified later.

In his theory, the points {q+ ξq} corresponding to the centers of obstacles are classified

to two groups: ℓΛ1(m) ∋ q + ξq is defined to be ”good” if

|(ℓΛ1(m)) ∩B(q + ξq : 10k+1b) ∩
∪

q′+ξq′∈ℓΛ1(m)

B(q′ + ξq′ : b)|

≥ ε

9
|(ℓΛ1(m)) ∩B(q + ξq : 10k+1b)|

for any k ∈ Z+ ∩ [0, (log(ℓ/(2b)))/(log 10)], and the other ℓΛ1(m) ∋ q + ξq is defined to

be ”bad”. Then bad obstacles B(q+ξq : r0) are erased and good obstacles B(q+ξq : r0)

are enlarged to B(q + ξq : b). In his theory, b is fixed to be a constant. We now take b

as an increasing function of t. A sufficient condition for his theory to be generalized to

this setting is

(4.2) lim
t→∞

b2
( ℓ
b

)−k(ε,b)
= 0,

where k(ε, b) = (4 log 10)−1 log{(1− c(b)p(ε))−1}, c(b) = P (inf{t : r(t) = r1/b} < inf{t :
r(t) = 6}, r(t) is a 2-dimensional Bessel process starting at 2, r1 ∈ (0, 1) and p(ε) is

a [0, 1]-valued function decaying as ε ↓ 0 (cf. Lemma 7.5 in [5]). Indeed the condition

(4.2) is sufficient to obtain (7.23) in [5] from the last estimate in the proof of Lemma

7.5 (i) in [5]. By a result on 1-dimensional diffusion process, we can rewrite

c(b) = (log 3)
/
log

6b

r1

(cf. Theorem VI-3.1 in [11], [12]). Then we see that b = (log log t)γ satisfies (4.2) for

any γ > 0. The rest of the proof is same.

§ 5. Lower estimates for the 3-dimensional case

In this section we prove (1.17). We first assume (1.13) with α ∈ (0,∞)2. For R⊥

and R3 ∈ N, we consider the event{
|q⊥| ≤ 3R⊥ and |q3| ≤ 3R3 ⇒ |q⊥ + ξq,⊥| ≥ 2R⊥ or |q3 + ξq,3| ≥ 2R3,

”|q⊥| > 3R⊥ or |q3| > 3R3” and
( |q⊥|
R⊥

)α⊥
≥

( |q3|
R3

)α3

⇒ |ξq,⊥| ≤ K⊥|q⊥|,

”|q⊥| > 3R⊥ or |q3| > 3R3” and
( |q⊥|
R⊥

)α⊥
<

( |q3|
R3

)α3

⇒ |ξq,3| ≤ K3|q3|
}
,

(5.1)
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where K⊥ = (1− 3−(1∧(α3/α⊥)))/2 and K3 = (1− 3−(1∧(α⊥/α3)))/2. We have

(5.2) V ξ(x) ≤ c1R
2
⊥R3(R

α⊥
⊥ ∧Rα3

3 )−1

for x ∈ Λ2R⊥ × I(R3) on this event. Here and in the following, I(R) = (−R,R) for any
R > 0. To prove (5.2) we divide the summation as

V ξ(x) =
∑

q∈Z3∩(B(3R⊥)×I(3R3))

u(x− q − ξq)

+
∑

q∈Z3\(B(3R⊥)×I(3R3)):(|q⊥|/R⊥)α⊥≥(|q3|/R3)α3

u(x− q − ξq)

+
∑

q∈Z3\(B(3R⊥)×I(3R3)):(|q⊥|/R⊥)α⊥<(|q3|/R3)α3

u(x− q − ξq).

(5.3)

The first term in the right hand side is easily dominated from above by R2
⊥R3/(R

α⊥
⊥ ∧

Rα3
3 ). Since ∥x∥αp̃ ≥ |x⊥|α⊥ , the second term is dominated by

∑
q∈Z3\(B(3R⊥)×I(3R3)):(|q⊥|/R⊥)α⊥≥(|q3|/R3)α3

(
(1−K⊥)|q⊥| −R⊥

)−α⊥
.

By taking the summaton with respect to q3 and replacing the summation by the inte-

gration, this is dominated by∫
q⊥∈R2:|q⊥|>31∧(α3/α⊥)R⊥

R3(|q⊥|/R⊥)
α⊥/α3(

(1−K⊥)|q⊥| −R⊥

)α⊥ dq⊥.

Since 1 > 2/α⊥+1/α3 and (1−K⊥)3
1∧(α3/α⊥)−1 > 0, this is dominated by R3R

2−α⊥
⊥ .

Simirarly the third term in the right hand side of (5.3) is dominated by R2
⊥R

1−α3
3 .

Therefore we obtain (5.2).

The probability is estimated as

(5.4) logPθ( the event (5.1) occurs ) ≥ −c2R2
⊥R3(R

θ⊥
⊥ ∨Rθ33 ).

Indeed we have

logPθ( the event (5.1) occurs )

=
∑

q∈Z3∩(B(3R⊥)×I(3R3))

logPθ(|q⊥ + ξq,⊥| ≥ 2R⊥ or |q3 + ξq,3| ≥ 2R3)

+
∑

q∈Z3\(B(3R⊥)×I(3R3)):(|q⊥|/R⊥)α⊥≥(|q3|/R3)α3

logPθ(|ξq,⊥| ≤ K⊥|q⊥|)

+
∑

q∈Z3\(B(3R⊥)×I(3R3)):(|q⊥|/R⊥)α⊥<(|q3|/R3)α3

logPθ(|ξq,3| ≤ K3|q3|).

(5.5)
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The first term in the right hand side is dominated from below by

R2
⊥R3 logPθ(|ξ0,⊥| ≥ 5R⊥ or |ξ0,3| ≥ 5R3).

Since the probability is rewritten as

Pθ(|ξ0,⊥| ≥ 5R⊥ or |ξ0,3| ≥ 5R3)

=R2
⊥R3

∫
|y⊥|≥5 or |y3|≥5

exp(−∥|R⊥y⊥|θ⊥ , |R3y3|θ3∥p)
dy

Z(θ, p)

=R2
⊥R3Pθ(|ξ0,⊥| ≥ 5 or |ξ0,3| ≥ 5)

× E
[
exp(−(∥|R⊥ξ0,⊥|θ⊥ , |R3ξ0,3|θ3∥p − ∥ξ∥θp )

∣∣∣|ξ0,⊥| ≥ 5 or |ξ0,3| ≥ 5
]
,

this probability is dominated from below by exp(−c3(Rθ⊥⊥ ∨ Rθ33 )). Therefore the first

term in the right hand side of (5.5) is dominated from below by −R2
⊥R3(R

θ⊥
⊥ ∨ Rθ33 ).

The second and the third terms in the right hand side (5.5) is dominated from below

by −R3 exp(−c4Rθ⊥⊥ ) and −R2
⊥ exp(−c5Rθ33 ), respectively, by using log(1−X) ≥ −2X

for 0 ≤ X ≤ 1/2. Therefore we obtain (5.4).

We now recall

N(λ) ≥ 1

8R2
⊥R3

Pθ

(
λ1(HB(R⊥)) + λ1

(
−
( d2

dx2

)
I(R3)

)
+

∫
dx|ψR⊥(x⊥)|2ϕR3(x3)

2V ξ(x) ≤ λ

and the event (5.1) occurs
)
,

(5.6)

where HB(R⊥) and (d2/(dx2))I(R3) are the restrictions to the disk B(R⊥) and the inter-

val I(R3), respectively, of H and the d2/(dx2), respectively, by the Dirichlet boundary

condition, and ψR⊥ and ϕR3 are the normalized eigenfunctions corresponding to HB(R⊥)

and (d2/(dx2))I(R3), respectively (cf. Theorem (5.25) in [18]). By Erdős’s bound

λ1(HB(R⊥)) ≤ exp
(
− B

2
R2

⊥(1− ε1)
)

and λ1

(
−
( d2

dx2

)
(−R3,R3)

)
=

( π

2R3

)2

,

we have

logN
(
exp

(
− B

2
R2

⊥(1− ε1)
)
+

( π

2R3

)2

+
c1R

2
⊥R3

Rα⊥
⊥ ∧Rα3

3

)
≥ −c6R2

⊥R3(R
θ⊥
⊥ ∨Rθ33 ),

where ε1 is an arbitrarily fixed positive constant.

By specifying as R⊥ = Rβ3 with β ∈ (0,∞), we have

logN(c7/R
2∧{(α⊥−2)β−1}∧(α3−1−2β)
3 ) ≥ −c8R2β+1+(βθ⊥)∨θ3

3
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and logN(λ) ≥ −c9/λf(β;α,θ), where

f(β;α,θ) =
2β + 1 + (βθ⊥) ∨ θ3

2 ∧ {(α⊥ − 2)β − 1} ∧ (α3 − 1− 2β)
.

The function f(β;α,θ) attains µ1(α⊥,θ) at β = 3/(α⊥−2). Therefore we obatin (1.17).

For the operator Hξ, we consider a simpler event, (5.1) with α⊥ = α3. On this

event we have T (ξ) ∩ (Λ2R⊥ × I(R3)) = ∅ for large R⊥ and R3. Thus we have

logN
(
exp

(
− B

2
R2

⊥(1− ε1)
)
+
( π

2R3

)2)
≥ −c6R2

⊥R3(R
θ⊥
⊥ ∨Rθ33 ).

By taking R⊥ = 2
√
(logR3)/(B(1− ε1)) so that exp(−BR2

⊥(1−ε1)/2) ≤ R−2
3 , we have

logN (c7/R
2
3) ≥ −c8R1+θ3

3 logR3

and logN (λ) ≥ −c9λ−(1+θ3)/2 log(1/λ).

§ 6. Upper estimates for the 3-dimensional case

In this section we prove (1.18). We may assume that u is continuous since the

essential condition is only (1.13). Following Proposition 5.11 in Warzel [21], we have

(6.1) Ñ(t) ≤ B

2π(1− e−2Bt)

∫
Λ1

dxEθ[exp(−t(−∂
2
3 + V ξ(x⊥, ·)))(x3, x3)],

where exp(−t(−∂23+V ξ(x⊥, ·)))(x3, x′3) is the integral kernel of the heat semigroup gen-

erated by the Schrödinger operator −∂23 +V ξ(x⊥, ·) on L2(R) and ΛR := (−R/2, R/2)3

for any R > 0. By the Neumann-bracketing, the right hand side is dominated by

B

2π(1− e−2Bt)R3

∫
Λ1

dx⊥Eθ[Tr[exp(−t(−∂
2
3 + V ξ(x⊥, ·))NI(R3/2)

)]]

≤ c1
R3

∫
Λ1

dx⊥Eθ[exp(−(t− ε1)λ1(−∂23 + V ξ(x⊥, ·))NI(R3/2)
)],

(6.2)

where (−∂23+V ξ(x⊥, ·))NI(R3/2)
is the restriction to the interval I(R3/2) by the Neumann

boundary condition and ε1 is an arbitrary small positive constant.

The eigenvalue is estimated as

λ1(−∂23 + V ξ(x⊥, ·))NI(R3/2)

≥ inf
{
λ1

(
− ∂23 +

M∑
j=1

u(x− bj)
)N
I(R3/2)

: b1, . . . , bM ∈ ΛR⊥ × I(R3/2)
}

≥ inf
{
λ1

(
− d2

dt2
+

c2M

∥Rα⊥
⊥ , |t− b|α3∥p̃

)N
I(R3/2)

: b ∈ I(R3/2)
}
,

(6.3)
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where M = #{b ∈ Z3 ∩ (ΛR⊥ × I(R3/2)) : b + ξb ∈ ΛR⊥ × I(R3/2)}. We take small

positive numbers ε2, ε3 and ε⊥. Then

(6.4) ε2R
2
⊥R3 ≥ #{b ∈ Z3 ∩ (ΛR⊥ × I(R3/2)) : |ξb,⊥|∞ > ε⊥R⊥/2 or |ξb,3| > ε3R3/2}

implies

(6.5) M > {(1− ε⊥)
2(1− ε3)− ε2}R2

⊥R3.

Indeed since M ≥ #{b ∈ Z3 ∩ (Λ(1−ε⊥)R⊥ × I((1− ε3)R3/2)) : |ξb,⊥|∞ ≤ ε⊥R⊥/2 and

|ξb,3| ≤ ε3R3/2}, the right hand side of (6.4) is less than or equal to

#{b ∈ Z3 ∩ (Λ(1−ε⊥)R⊥ × I((1− ε3)R3/2)) : |ξb,⊥|∞ > ε⊥R⊥/2 or |ξb,3| > ε3R3/2}
> (1− ε⊥)

2(1− ε3)R
2
⊥R3 −M.

(6.5) implies the right hand side of (6.3) is greater than or equal to

inf
{
λ1

(
− d2

dt2
+

c3R
2
⊥R3

∥Rα⊥
⊥ , |t− b|α3∥p̃

)N
I(R3/2)

: b ∈ I(R3/2)
}
.

This equals

(6.6)
1

h2
inf

{
λ1

(
− d2

dt2
+

c3R
2
⊥R3

hα3−2∥Rα⊥
⊥ /hα3 , |t− b|α3∥p̃

)N
I(R3/(2h))

: b ∈ I(R3/(2h))
}

for any h ∈ (0,∞) by changing the variables. Referring λ1(−d2/(dt2) + 1[0,1]/R)
N
[0,R] ≥

c4/R
2 for any R ≥ 2 and the condition (1.14), we let h = (R⊥R3)

2/(α3−1) and

(6.7) c5 ≤ R
α⊥(α3−1)/(2α3)−1
⊥ ≤ R3

so that hα3−2/(R2
⊥R3) = R3/h ≥ 2 and Rα⊥

⊥ /hα3 ≤ 1. Thus the quantity in (6.6)

is dominated from below by R−2
3 and we obtain λ1(−∂23 + V ξ(x⊥, ·))NI(R3/2)

≥ c6/R
2
3.

Therefore we have

Pθ(λ1(−∂
2
3 + V ξ(x⊥, ·))NI(R3/2)

< c6/R
2
3)

≤Pθ(#{b ∈ Z3 ∩ (ΛR⊥ × I(R3/2)) : |ξb,⊥|∞ > ε⊥R⊥/2 or |ξb,3| > ε3R3/2} > ε2R
2
⊥R3).

Since the event in the probability on the right hand side implies∑
b∈Z3∩(ΛR⊥×I(R3/2))

∥ξb∥θp ≥ ε2R
2
⊥R3

{(ε⊥R⊥

2

)θ⊥
∧
(ε3R3

2

)θ3}
,

we have

(6.8) Pθ(λ1(−∂
2
3 + V ξ(x⊥, ·))NI(R3/2)

< c6/R
2
3) ≤ exp(−c7R2

⊥R3(R
θ⊥
⊥ ∧Rθ33 )).
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We take β ∈ (0,∞) to specify as R⊥ = Rβ3 . Then the condition (6.7) becomes β ≤
(2/α⊥)/(1−2/α⊥−1/α3) =: β and the right hand side of (6.8) becomes exp(−c7R2f(β;θ)

3 ),

where f(β;θ) = β + 1/2 + ((βθ⊥) ∧ θ3)/2. The function f(β;θ) attains its maximum

µ2(α,θ) defined in (1.16) at β = β. Thus our optimal estimate is

Pθ(λ1(−∂
2
3 + V ξ(x⊥, ·))NI(R3/2)

< c6/R
2
3) ≤ exp(−c7R2µ2(α,θ)

3 ).

By (6.2), we have

Ñ(t) ≤ c1
R3

exp(−c7R2µ2(α,θ)
3 ) +

c1
R3

exp
(
− (t− ε1)c6

R2
3

)
.

Since

Ñ(t) = t

∫ ∞

0

dλe−tλN(λ) ≥ t

∫ ∞

η/R2
3

dλe−tλN
( η

R2
3

)
= exp

(
− t

η

R2
3

)
N

( η

R2
3

)
,

we have N(η/R2
3) ≤ exp(−c8R2µ2(α,θ)

3 ) for large R3 by taking η = c6/2 and t =

c7R
2+2µ2(α,θ)
3 /(2η). By taking λ = η/R2

3, we obtain (1.18).

For N and the case that suppu is compact, we may assume u = C01B(r⊥)×I(r3)
with 0 < r⊥, r3 < 1/2. Then we apply a standard Brownian estimate to reduce to an

estimate of the eigenvalue of the operator with the Dirichlet boundary condition:

Ñ(t) ≤ B

2π(1− e−2Bt)

∫
Λ1

dx⊥Eθ[Tr[exp(−t(−∂
2
3 + V ξ(x⊥, ·))I(t)]] + e−c0t

≤c1
∫
Λ1

dx⊥Eθ[exp(−(t− ε1)λ1(−∂23 + V ξ(x⊥, ·))I(t))] + e−c0t

(cf. [12] Section 1.7). Then we use Theorem 3.1 in the page 123 in [19] to have

λ1(−∂23 + V ξ(x⊥, ·))I(t) ≥ π2/(sup
k

|Ik|+ c2)
2,

where {Ik}k are the random open disjoint intervals such that∑
k

Ik = I(t) \
∪

q∈Z3:q⊥+ξq,⊥∈B(x⊥:r⊥)

[q3 + ξq,3 − r3, q3 + ξq,3 + r3]

and |Ik| is the length of Ik. If supk |Ik| ≥ s, then there exists p ∈ Z ∩ I(t) such that

[p, p+ s− 2] ∩
∪

q∈Z3:q⊥+ξq,⊥∈B(x⊥:r⊥)

[q3 + ξq,3 − r3, q3 + ξq,3 + r3] = ∅.

Then we have (0, 0, q) + ξ(0,0,q) ̸∈ B(x⊥ : r⊥) × [p − r3, p + s − 2 + r3] for any q ∈
[p− r3, p+ s− 2 + r3] ∩ Z. Thus the probability of this event is estimated as

Pθ(sup
k

|Ik| ≥ s) ≤
∑

p∈Z∩I(t)

∏
Pθ(ξ(0,0,q3),⊥ ̸∈

q∈[p−r3+1,p+s−3+r3]∩Z

B(x⊥ : r⊥) or |ξ(0,0,q3),3| > 1)

≤ 2t exp(−c3(s+ 2r3 − 4))
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if s ≥ 4. Therefore we have

Pθ(λ1(−∂23 + V ξ(x⊥, ·))I(t) ≥ π2/(s+ c2)
2) ≤ 2t exp(−c3(s+ 2r3 − 4))

for s ≥ 4. The rest of the proof is same.
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