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Direct observations of neutron stars could tell us an imprint of modified gravity. However, it is generally
difficult to resolve the degeneracy due to the uncertainties in the equation of state of neutron star matter and
in gravitational theories. In this paper, we have successfully found the observational possibility to
distinguish Eddington-inspired Born-Infeld gravity (EiBI) from general relativity. We show that the radii of
neutron stars with 0.5M⊙ are strongly correlated with the neutron skin thickness of 208Pb independently of
the equation of state, while this correlation depends on the coupling constant in EiBI. As a result, via the
direct observations of the radius of the neutron star with 0.5M⊙ and the measurements of a neutron skin
thickness of 208Pb by the terrestrial experiments, one could not only discriminate EiBI from general
relativity but also estimate the coupling constant in EiBI.
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I. INTRODUCTION

Up to now, several modified theories of gravity are
proposed in spite of the fact that general relativity has been
successful in explaining the phenomena and experiments
in a weak-field regime such as the Solar System [1].
Meanwhile, the tests of general relativity in a strong-field
regime are quite poor. This could be one of the reasons why
the modified gravitational theories are considered.
Additionally, in order to explain the unsolved issues such
as singularities in cosmology and/or inside black holes, one
might take into account the correction due to the higher
order curvature. Anyway, since the technology is develop-
ing more and more, one will be able to observe compact
objects with high accuracy and use it as tests of modified
gravity [2–5].
Among the several modified gravitational theories,

Eddington-inspired Born-Infeld gravity (EiBI) [6] has
recently attracted attention in the context to avoid the big
bang singularity [7,8], while EiBI becomes equivalent to
general relativity in vacuum. EiBI is based on the Eddington
action [9] and the nonlinear electrodynamics of Born and
Infeld [10], where the metric and the connection are
considered as independent fields, as in the Palatini-type
approach to general relativity. EiBI can deviate from general
relativity only when the matter exists, and one can expect
the significant deviation especially in a high-density region.
That is, the compact objects might be suitable laboratories to
probe the gravitational theory. Previously, there are several
attempts to examine the structures of compact objects in
EiBI [11–15], which showed the significant deviations in
stellar properties from the predictions in general relativity,
depending on the coupling constant. We remark on some of
the problems associated with the EiBI, i.e., the appearance

of the curvature instabilities at the surface of polytropic stars
is pointed out [16], while the validity of the continuous fluid
approximation adopted in astrophysical and cosmological
studies is also discussed [17].
However, the stellar structures also depend on the unfixed

equation of state (EOS), which is a relation between the
pressure and density of nuclear matter. That is, it must be
generally difficult to resolve the degeneracy due to the
uncertainties in the EOS and in gravitational theory, even if
one would measure the mass and radius of the neutron star.
In this paper, we find the observational possibility to

distinguish EiBI from general relativity via the measure-
ments of neutron skin thickness by the terrestrial experi-
ments, in addition to the astronomical observations of
neutron stars. Since the neutron stars are also regarded as
neutron-rich giant nuclei, the neutron star radius could be
correlated with the properties of neutron-rich nuclei. In fact,
in general relativity, it is suggested that the radii of neutron
stars with 0.5M⊙ are strongly correlated with the neutron
skin thickness [18].
In particular, we adopt the realistic EOS, which are

consistent with the empirical date of the masses and radii of
stable atomic nuclei obtained from the terrestrial experi-
ments, and show that the radii of neutron stars with 0.5M⊙
can be written as a linear function of the neutron skin
thickness of 208Pb independently of the adopted EOS.
Additionally, this linear correlation depends strongly on the
coupling constant in EiBI. Therefore, one could distinguish
EiBI from general relativity via the measurements of
neutron skin thickness and the radii of neutron stars with
0.5M⊙. Furthermore, we are also successful in eliminating
the value of the coupling constant in EiBI as a function of
the neutron skin thickness of 208Pb and stellar radius with
0.5M⊙. With this estimation, at least, one may be able to
observationally see how valid general relativity is. In this*sotani@yukawa.kyoto‑u.ac.jp
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paper, we adopt geometric units, c ¼ G ¼ 1, where c and
G denote the speed of light and the gravitational constant,
respectively, and the metric signature is ð−;þ;þ;þÞ.

II. EDDINGTON-INSPIRED
BORN-INFELD GRAVITY

EiBI proposed by Bañados and Ferreira [6], is described
with the action

S ¼ 1

8πκ

Z
d4x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgμν þ κRμνj

q
− λ

ffiffiffiffiffiffi
−g

p �
þ SM½g;ΨM�;

(1)

where Rμν is the symmetric part of the Ricci tensor
constructed with the connection Γμ

αβ, while SM denotes
the matter action depending on the metric and matter field.
jgμν þ κRμνjmeans the absolute value of the determinant of
the matrix of ðgμν þ κRμνÞ. It should be remarked that this
action for SM ¼ 0 can recover the Einstein-Hilbert action;
i.e., EiBI in vacuum is identical to general relativity [6].
The dimensionless constant λ is associated with the
cosmological constant as Λ ¼ ðλ − 1Þ=κ. In this paper,
we adopt λ ¼ 1 to focus on the relativistic stars with
asymptotically flatness. Additionally, the constraints on
the Eddington parameter κ are also discussed in term of
the solar observations, big bang nucleosynthesis, and the
existence of neutron stars [6,11,19,20]. We should remark
that the stellar structures could depend on the value of λ,
which should be considered somewhere.
As a feature of this theory, the metric gμν and the

connection Γα
μν are considered as the independent fields.

Then, the field equations can be obtained by varying the
action [6];

Γμ
αβ ¼

1

2
qμσðqσα;β þ qσβ;α − qαβ;σÞ; (2)

qμν ¼ gμν þ κRμν; (3)

ffiffiffiffiffiffi
−q

p
qμν ¼ ffiffiffiffiffiffi

−g
p

gμν − 8πκ
ffiffiffiffiffiffi
−g

p
Tμν; (4)

where qμν is an auxiliary metric and Tμν is the standard
energy-momentum tensor with indices raised with the
metric gμν. In addition to the above field equations, the
energy-momentum conservation should be satisfied, i.e.,
∇μTμν ¼ 0, where ∇μ is defined with the physical metric
gμν. It is noticed that qμν is the matrix inverse of qμν, which
is different from gμαgνβqαβ if matter exists.
Now, we consider the spherically symmetric relativistic

stars. Previously, the structures of compact objects in EiBI
have already been examined by several groups [11–15].
The metric describing the spherically symmetric objects
can be written as

gμνdxμdxν ¼ −eνðrÞdt2 þ eλðrÞdr2 þ fðrÞdΩ2; (5)

qμνdxμdxν ¼ −eβðrÞdt2 þ eαðrÞdr2 þ r2dΩ2; (6)

where dΩ2 ¼ dθ2 þ sin2θdϕ2. We remark that we use the
gauge freedom to fix that qθθ ¼ r2. In particular, we
consider the neutron stars composed of the perfect fluid,
which is given by

Tμν ¼ ðϵþ pÞuμuν þ pgμν; (7)

where ϵ and p denote the energy density and pressure,
while uμ corresponds to the four velocity of matter given as
uμ ¼ ðe−ν=2; 0; 0; 0Þ. Using Eq. (4), one can obtain the
relation

abf ¼ r2; eα ¼ eλab; eβ ¼ eνb3=a; (8)

where a≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8πκϵ

p
and b≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 8πκp
p

. On the other
hand, using Eq. (3), one can get the equations describing
the structures of relativistic stars;

ðre−αÞ0 ¼ 1 −
r2

2κ

�
a
b3

−
3

ab
þ 2

�
(9)

e−αð1þ rβ0Þ ¼ 1þ r2

2κ

�
a
b3

þ 1

ab
− 2

�
; (10)

where the prime denotes a derivative with respect to r.
In addition to these equations, the energy-momentum
conservation law gives us the additional equation:

ν0 ¼ −
2p0

ϵþ p
: (11)

At last, combining Eqs. (8)–(11), one can derive the
Tolman-Oppenheimer-Volkoff (TOV) equations in EiBI;

m0 ¼ r2

4κ

�
a
b3

−
3

ab
þ 2

�
;

e−α ¼ 1 −
2m
r

; (12)

p0 ¼ −eα
�
2m
r2

þ r
2κ

�
a
b3

þ 1

ab
− 2

��

×

�
2

ϵþ p
þ 4πκ

�
3

b2
þ 1

a2c2s

��
−1
; (13)

where cs denotes the sound speed. We remark that these
equations in the limit of κ → 0 can reduce to the standard
TOV equations in general relativity. With the relation
between ϵ and p, i.e., the EOS, the equation system is
closed. After one adopts the central density ϵc, the TOV
equations are integrated outward with the conditions
mð0Þ ¼ 0. Then, the stellar surface should become the
position where the pressure vanishes. Since EiBI is
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equivalent to general relativity in vacuum and ϵ ¼ p ¼ 0 at
the stellar surface (r ¼ R), one can find that e−α ¼ e−λ ¼
1 − 2M=R at r ¼ R. As a result, the stellar mass is defined
as M ¼ mðRÞ. Additionally, in order to allow for self-
gravitating objects, the condition of κ is obtained [11] as

8πpcκ < 1 for κ > 0 (14)

8πϵcjκj < 1 for κ < 0; (15)

where pc denotes the central pressure. Hereafter, we adopt
8πϵ0κ as a normalized constant, where ϵ0 is the nuclear
saturation density given by 2.68 × 1014 g cm−3. We remark
that ϵ0 ¼ 1.99 × 10−4 km−2 in geometric units with
c ¼ G ¼ 1.

III. RELATIVISTIC STELLAR MODELS IN EIBI

In order to construct relativistic stellar models, we need
to prepare the EOS. In this paper, we adopt the realistic
EOS proposed by the different theoretical approaches, i.e.,
the phenomenological models, the relativistic mean field
models, and the ones based on the Skyrme-type effective
interactions (see [21] for more information about EOS
adopted here). As the phenomenological models, we adopt
the EOS constructed by Oyamatsu and Iida [22,23], where
they made EOS for various values of incompressibility K0

and the density dependence of the nuclear symmetry
energy at the saturation point L. K0 and L are parameters
characterizing the stiffness of neutron-rich nuclear matter.
Hereafter, we refer to this phenomenological EOS as OI
(a; b), where a and b denote the adopted values of K0 and
L. As the relativistic mean field models, we adopt two EOS,
i.e., the Shen EOS [24] and the Miyatsu EOS [25]. We also
adopt five EOS based on the Skyrme-type effective
interactions, i.e., FPS [26], SLy4 [27], BSk19, BSk20,
and BSk21 [28–30]. We remark that every EOS adopted in
this paper is consistent with the terrestrial experimental data
for masses and radii of stable nuclei. It is important to
consider the neutron stars with 0.5M⊙, because the density
inside such objects is less than a few times the saturation
density, which should be strongly constrained from the
terrestrial experiments [21].
As an example of neutron star models in EiBI, we show

the mass and radial relations constructed from the FPS EOS
in Fig. 1, where the solid line denotes the results in general
relativity (κ ¼ 0), while the broken and dotted lines
correspond to those in EiBI with 8πϵjκj ¼ 0.01 and
0.02, respectively. From this figure, one can observe the
obvious deviation from the predictions in general relativity.
However, as mentioned the above, this difference, depend-
ing on the coupling constant κ, must be buried in the
uncertainties due to the EOS of neutron star matter. That is,
it could be quite difficult to distinguish EiBI from general
relativity only if one would measure the mass and radius of
neutron stars.

With respect to such a difficulty, we are successful in
finding an observational possibility to discriminate EiBI
from general relativity, i.e., via the terrestrial experiments
for the neutron skin thickness of neutron-rich atomic
nuclei. Using the various realistic EOS mentioned above,
we determine the radii of neutron stars with 0.5M⊙ by
varying the value of 8πϵ0κ and then show it in Fig. 2 as a
function of the neutron skin thickness of 208Pb, where R05

and ΔR denote the stellar radii with 0.5M⊙ and the neutron
skin thickness of 208Pb. In particular, in order to estimate
the value of ΔR for each EOS, we adopt the formula
proposed by Oyamatsu and Iida [22], where the neutron
skin thickness can be expressed as functions of neutron
excess, the atomic mass number, and the value of L. Since
the estimation of ΔR could depend a little on theoretical
models, the plots in Fig. 2 may be slightly modified.
Anyway, the value of ΔR dose not depend on κ at all. From
this figure, one clearly observes that R05 can be written as a
linear function of ΔR almost independently of the adopted

FIG. 1 (color online). Neutron star mass-radius relations in
EiBI constructed from FPS EOS. The labels on lines denote the
values of 8πϵ0κ. The solid line corresponds to that in general
relativity.

FIG. 2 (color online). Radii of neutron stars with 0.5M⊙, R05,
as a function of neutron skin thickness of 208Pb for 8πϵ0κ ¼
−0.02, 0, and 0.02, using the various EOS. The solid line denotes
the fitting line in general relativity, while the broken and
dotted lines denote that in EiBI for 8πϵ0κ ¼ 0.02 and −0.02,
respectively.
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EOS, while the correlation between R05 and ΔR strongly
depends on the coupling constant κ. In practice, one can
write the linear fitting with each value of 8πϵ0κ as

R05 ¼ c0 þ c1ΔR; (16)

where c0 and c1 are constants depending on the value of
8πϵ0κ. Since the units of R05 and ΔR in this fitting are km
and fm, the units of c0 and c1 become km and km/fm.
Regarding the suitability of this fitting, we can estimate
that the root mean fractional variation (RMFV) from
the original values are 1.44%, 1.09%, and 0.90% for
8πϵ0κ ¼ −0.02, 0, and 0.02, respectively. Here, RMFV
for each κ is calculated as

RMFV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
N

ðRex
05 − Rð16Þ

05 Þ2
Rex
05

2

vuut ; (17)

where Rex
05 and Rð16Þ

05 denote the stellar radius with 0.5M⊙
calculated with each EOS and that estimated with Eq. (16),
while N is the number of adopted EOS, i.e., N ¼ 11 in this
paper. The number of RMFV expresses how good the fits
are. Thus, we consider that the linear fitting (16) is enough
to distinguish the gravitational theory.
Moreover, we also examine the dependence of c0 and c1

on 8πϵ0κ in the range of −0.02 ≤ 8πϵ0κ ≤ 0.04. Figure 3
shows the values of c0 and c1 as a function of 8πϵ0κ. From
this figure, one finds that the coefficients in the linear fitting
(16), i.e., c0 and c1, can be written as linear functions of
8πϵ0κ. In fact, we can derive such linear functions as

c0=km ¼ 8.21þ 60.3 × ð8πϵ0κÞ; (18)

c1=km=fm ¼ 31.0 − 125.8 × ð8πϵ0κÞ: (19)

Consequently, combining Eqs. (16), (18), and (19), one can
obtain the value of 8πϵ0κ as a function of R05 and ΔR;

8πϵ0κ ¼
ðR05=kmÞ − 8.21 − 31.0ðΔR=fmÞ

60.3 − 125.8ðΔR=fmÞ : (20)

Using this empirical formula, at least, one must be able to
check how valid general relativity is. Namely, with the
observational values of R05 and ΔR, one can estimate the
value of κ, where κ should be zero in general relativity.
On the other hand, we should also emphasize that this
empirical formula could be adopted to distinguish EiBI
from most of the modified theories of gravity, because the
stellar properties with 0.5M⊙ in most of the modified
theories of gravity are almost the same as those in general
relativity.
At last, we should also mention an uncertainty in 8πϵ0κ

due to the observational uncertainties in R05 and ΔR. If the
observations of R05 and ΔR have �10% variances, one can
estimate that the variances on 8πϵ0κ arise up to �0.04 for
R05 ¼ 12 km and �0.06 for R05 ¼ 14 km, using Eq. (20),
even if general relativity is the correct gravitational theory.

IV. CURRENT OBSERVATIONAL STATUS

In order to estimate the coupling constant κ with
Eq. (20), one needs to measure the neutron skin thickness
of 208Pb,ΔR, and the radius of the 0.5M⊙ neutron star, R05.
That is, depending on some finite precision in the mea-
surements ofΔR and R05, the estimation of κ could become
blurry. In this section, we discuss the current observational
status and how well κ may be constrained withΔR and R05.
The current best measurement of ΔR could be the

data by PREX experiment [31], which tells us that
ΔR ¼ 0.33þ0.16

−0.18 fm. Unfortunately, within this precision
of ΔR, we cannot constrain κ even if the exact value of R is
known. In fact, since ΔR ¼ 0.33 fm is out of Fig. 2, it may
be questionable to adopt Eq. (20) in such region to
estimate κ.
The measurement of R05 must be more difficult than that

of ΔR, because 0.5M⊙ is an exceptionally small mass for
the neutron star and the measurement of the stellar radius
itself is quite challenging. The masses of neutron stars in a
binary system have been determined [32,33]. Among them,
the lowest mass of a neutron star observed so far could be
0.87� 0.07M⊙ with an eccentric orbit or 1.00� 0.10M⊙
with a circular orbit observed in the high-mass x-ray binary
4U1538-52 [34]. We hope that the measurement of an
extremely low-mass neutron star will be successful in the
future. In that time, perhaps, we may not need the exactly
0.5M⊙ neutron star, because the stellar radius is theoreti-
cally predicted to be quasiconstant for the neutron star with
M ¼ 0.5 − 0.7M⊙, where the difference in radius could be
less than a few percent [35]. In fact, in a similar way in
Sec. III, we find that the radii of 0.7M⊙ stellar models, R07,
can be also expressed as a linear function of ΔR almost
independently of the adopted EOS, although the values
of RMFV become slightly worse, i.e., 2.00%, 1.44%,
and 1.08% for 8πϵ0κ ¼ −0.02, 0, and 0.02, respectively.

FIG. 3 (color online). Coefficients in the fitting formula (16) as
a function of 8πϵ0κ, where the circles and squares denote the
obtained coefficients c0 and c1, respectively.
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Using the obtained linear relation between R07 and ΔR
with Eq. (16), the relative deviations between R05 and R07

for ΔR ¼ 0.1 fm become 1.16%, 2.24%, and 3.32%, while
those for ΔR ¼ 0.22 fm become 0.33%, 0.79%, and 1.41%
for 8πϵ0κ ¼ −0.02, 0, and 0.02, respectively. Thus, one
might estimate the value of 8πϵ0κ on some level from
Eq. (20) with R07 instead of R05.
On the other hand, the measurement of the stellar radius

is notoriously difficult. Recently, the stellar radius of a
neutron star has been estimated with the observations of
thermonuclear x-ray bursts and thermal spectra from
quiescent low-mass x-ray binaries [36–39]. However, it
is still quite difficult to determine the stellar radius with less
than ∼� 10% accuracy. In order to determine the value of
8πϵ0κ within the range of �0.01, one should measure the
stellar radius at least with � a few % accuracy, even if ΔR
will be exactly measured.

V. CONCLUSION

Compact objects must be suitable laboratories to test the
gravitational theory. However, due to the uncertainties of
the EOS of neutron star matter, it is generally difficult to
distinguish the gravitational theory by only using the
observations of neutron stars. To solve this difficulty, we
find an observational possibility to discriminate EiBI from
general relativity via the measurements of a neutron skin
thickness of 208Pb by the terrestrial experiments, in addition
to the astronomical observations of neutron stars. We show
that the stellar radii with 0.5M⊙ can be written as a linear
function of the neutron skin thickness almost independently
of the adopted EOS, which strongly depends on the
coupling constant in EiBI. Additionally, we show that
the coupling constant can be estimated with the observable

properties, such as the stellar radii with 0.5M⊙ and a
neutron skin thickness of 208Pb. This estimation could be
also useful to observationally probe how valid general
relativity is.
In this paper, we especially focus on the neutron skin

thickness of 208Pb, but the linear correlation between the
stellar radii with 0.5M⊙ and neutron skin thickness could
be satisfied for the different neutron-rich nuclei. If so, one
could make estimations of the coupling constant in EiBI via
the different measurements of neutron skin thickness of
various nuclei, which tells us a more accurate value of the
coupling constant. On the other hand, it could be difficult to
discuss the similar correlation by using the radius with a
massive neutron star, because the density inside the massive
neutron star becomes much higher than the nuclear
saturation density, where there exist many theoretical
uncertainties to construct EOS models and the additional
components such as hyperon and/or quark could appear.
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