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This letter reports synchronization phenomena and mathematical modeling on a frustrated system of living
beings, or Japanese tree frogs (Hyla japonica). While an isolated male Japanese tree frog calls nearly periodically,
he can hear sounds including calls of other males. Therefore, the spontaneous calling behavior of interacting males
can be understood as a system of coupled oscillators. We construct a simple but biologically reasonable model
based on the experimental results of two frogs, extend the model to a system of three frogs, and theoretically
predict the occurrence of rich synchronization phenomena, such as triphase synchronization and 1:2 antiphase
synchronization. In addition, we experimentally verify the theoretical prediction by ethological experiments on
the calling behavior of three frogs and time series analysis on recorded sound data. Note that the calling behavior
of three male Japanese tree frogs is frustrated because almost perfect antiphase synchronization is robustly
observed in a system of two male frogs. Thus, nonlinear dynamics of the three-frogs system should be far from
trivial.
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I. INTRODUCTION

Synchronization is ubiquitous in real systems, and has been
attracting a great deal of attention in physics as well as in
many other disciplines since the seminal work on Huygens’
clocks [1]. In addition, theoretical studies revealed plausible
synchronization mechanisms for accomplishing cooperative
phenomena in the real world, including phase-oscillator mod-
els [1], a phase-reduction method for a general class of noisy
oscillators [2], feedback control [3] and coevolution of phases
and coupling strengths [4] in coupled oscillator systems, and a
general chemotactic model of oscillators [5]. However, those
theoretical studies mainly focused on in-phase synchronization
and nonlinear dynamics of antiphase synchronization in a
coupled system had not been sufficiently investigated [6].
In particular, antiphase synchronization is widely observed
in acoustic communications by a pair of living beings,
including birds, mammals, crickets, and frogs [7–9]; such
alternating calling behavior plays an important role in their
communications to transmit sound information included in
the interacting calling behavior by mutually avoiding overlaps
of their calls.

From theoretical points of view, antiphase synchronization
between a pair raises an interesting fundamental problem
in a coupled system with many oscillators [6]; antiphase
synchronization between a pair cannot be realized in every
pair of three oscillators because, when two pairs of the three
synchronize in antiphase, respectively, the remaining third pair
must synchronize in-phase. Thus, such a system of more than
two oscillators is generally frustrated. Note that a similar
situation of the frustration can be seen in antiferromagnetic
spin systems [10]. From the viewpoint of frustration, however,
the coupled-oscillator systems show an important difference
from the spin systems; while the state of a spin is limited to

up or down [10], that of a phase oscillator is described with a
phase variable θ ∈ S1 [6,9].

To clarify possibly complex behavior in such a frustrated
system of coupled phase oscillators, it is reasonable to first
investigate the simplest case of the frustration. In this paper, we
theoretically and experimentally study the spontaneous calling
behavior of three male Japanese tree frogs Hyla japonica
shown in Fig. 1(a) [6,9] as a frustrated system of living beings
because our experimental observations revealed that, while
a single male Japanese tree frog calls nearly periodically, a
couple of males generate robust antiphase synchronization [9]
[see Figs. 1(b) and 1(c)].

The paper is organized as follows. In Sec. II, we construct
a possible phase oscillator model representing interactive
calling behavior by three frogs and theoretically predict
synchronization phenomena. In Sec. III, we empirically verify
the theoretical prediction shown in Sec. II by ethological
experiments and time series analysis. In Sec. IV, we discuss the
relationship between the modeling and experimental results,
biological implications by the model analysis, and possible
biological meanings of synchronized behavior by frogs.

II. MATHEMATICAL MODELING

To predict the possible synchronized behavior of three
Japanese tree frogs, we first construct a simple but biologically
reasonable model based on the experimental results of two
frogs shown in Fig. 1(c) that two frogs robustly synchronize in
antiphase [9]. Let us model calling behavior of the two frogs
α and β [1,9], as follows:

dθα

dt
= ωα + K{sin(θα − θβ) − γ sin[2(θα − θβ)]}, (1)
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FIG. 1. (Color online) Calling behavior of one or two frogs. (a) Japanese tree frog Hyla japonica. (b) Periodic calling behavior of a single
male frog. (c) Antiphase synchronization of two frogs. Figs. 1(b) and 1(c) represent sound data of a single frog and those of two frogs,
respectively.

dθβ

dt
= ωβ + K{sin(θβ − θα) − γ sin[2(θβ − θα)]}, (2)

where phases θα and θβ represent the call timings of the frogs
α and β (i.e., when θα = 0, we consider that the frog α calls),
ωα and ωβ are the natural frequencies of respective frogs (i.e.,
2π/ωα and 2π/ωβ are the intrinsic intercall intervals [8]), K

is the positive coupling strength between two frogs due to their
acoustic communication, and γ is a positive parameter which
represents the effect of the second-order component in the
interaction term or changes the stability between the antiphase
and in-phase states [9]. Our experimental observations on
the interactive calling behavior of two frogs show that, while
antiphase synchronization of two frogs is robustly observed,
in-phase synchronization is detected only transiently [9]. Next,
we introduce suitable parameter values in Eqs. (1) and (2)
to explain the experimental results of two frogs. First, it is
experimentally shown that the intrinsic frequencies ωα and
ωβ tend to take close values under the same experimental
condition [9]. Hence we assume ωα = ωβ for the sake
of simplicity. Note that, under this first assumption, both
antiphase and in-phase synchronization states (i.e., φ = π and
φ = 0 with φ ≡ θα − θβ) become equilibrium points, namely
dφ

dt
|φ=π = 0 and dφ

dt
|φ=0 = 0. In addition, γ is assumed to take

a positive value of less than 0.5. The linear stability of the
antiphase state and that of the in-phase state can be analyzed

by ∂
∂φ

dφ

dt
|φ=π = −2K(1 + 2γ ) and ∂

∂φ

dφ

dt
|φ=0 = 2K(1 − 2γ ),

respectively. When ωα = ωβ and 0 � γ < 0.5, the former is
negative and the latter positive. Therefore, under these two
assumptions of ωα = ωβ and 0 � γ < 0.5, the experimental
results on a two-frogs system [9] is qualitatively explained;
namely, antiphase synchronization of two frogs is represented
as a stable equilibrium and the in-phase synchronization is
described as an unstable one.

Extending Eqs. (1) and (2) to a system of three coupled
oscillators, we model the spontaneous calling behavior of three
frogs as follows:

dθi

dt
= ωi +

∑

j=A,B,C

Kij {sin(θi − θj ) − γ sin[2(θi − θj )]},

(3)

where θi (i = A,B,C) represents the timing of successive calls
by the frog, i, ωi is its intrinsic frequency, and Kij is the
positive coupling strength between the frogs i and j with Kij =
Kji [6]. Let us consider suitable parameter values in Eq. (3)
which qualitatively explain the experimental situation shown
in Fig. 2(a), and perform bifurcation analysis with bifurcation
parameters γ and KAC to theoretically predict the possible
synchronized calling behavior of three frogs. First, we assume
ωA = ωB = ωC for the same reason as in a system of two
frogs. Second, since male frogs interact through sounds and
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FIG. 2. (Color online) Calling behavior of three frogs. (a) Schematic diagram describing the experimental situation; three frogs were put
in cages, respectively, and set along a straight line at a distance of 50 cm. Spontaneous calling behavior was recorded by three microphones
placed close to each frog. (b) Triphase synchronization of A → B → C; the three frogs A, B, and C call in turns with the phase difference
of 2π/3. (c) 1:2 antiphase synchronization of B vs AC; the two frogs A and C synchronize in-phase of 0, and the remaining one of frog B
synchronizes in antiphase of π with the others. In Figs. 2(b) and 2(c), sound data of respective frogs are separated by independent component
analysis.
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the distance between frogs A and B is identical to that between
frogs B and C in the experiments [see Fig. 2(a)], we assume
that the adjacent pairs interact with the same strength (i.e.,
KAB = KBC = 1.0, for simplicity). Then, we vary bifurcation
parameters γ and KAC within 0 � γ < 0.5 and 0 � KAC <

1.0, and calculate stable phase differences of φAB ≡ θA − θB

and φAC ≡ θA − θC . The former assumption of 0 � γ < 0.5
is consistent with that in the model analysis on a two-frogs
system. In addition, since the distance between frogs A and C

is longer than that between frogs A and B as shown in Fig. 2(a),
KAC is assumed to be less than KAB = 1.0.

The results of the bifurcation analysis are summarized in
Fig. 3. Note that, throughout the model analysis, we set the
error bound of π/6 for detection on synchronization modes, the
same as in the time series analysis performed on experimental
data where the phase differences between frogs (i.e., φAB

and φAC) can fluctuate even in almost synchronized states.
As a result, it is theoretically predicted that, depending on
values of KAC and γ , two types of triphase synchronization
(A → B → C and A → C → B) and three types of 1:2
antiphase synchronization (A versus BC, B versus AC, and C
versus AB) can be observed under the experimental situation
shown in Fig. 2(a). For example, triphase synchronization
of A → B → C means φAB � 2π/3 and φAC � 4π/3; 1:2
antiphase synchronization of A versus BC means that, while
the two oscillators B and C synchronize in nearly in-phase,
the remaining one A synchronize in nearly antiphase with B

and C. Details of the synchronization properties are explained
in the caption of Fig. 3.

III. EXPERIMENTS

We experimentally verified the model prediction. Spon-
taneous calling behavior of three male Japanese tree frogs
was recorded with microphones placed close to each frog,
as shown in Fig. 2(a). The experiments were carried out a
total of 44 times on May and June, both in 2008 and 2009,
and four trials where three frogs successively called were
obtained corresponding to Data (1)–(4) in Figs. 4(b)–4(e) and
Table I. In those experiments, the recording time for each
trial was about 4 hours. Recorded sound data were analyzed
to separate individual calling signals by the independent
component analysis (ICA) [11]. During the calling behavior
of three frogs, various types of synchronization were robustly
observed as typically shown in Figs. 2(b) and 2(c) (listen also
to supplementary sound files [12]): The first one in Fig. 2(b)
represents the triphase synchronization of A → B → C that
the three frogs A, B, and C called in turns with the phase
difference of almost 2π/3; the second one in Fig. 2(c) is 1:2
antiphase synchronization of B versus AC that two of the three
frogs (frogs A and C) synchronized almost in-phase, while the
remaining one (frog B) synchronized almost in antiphase with
the others.

Separated sound signals were analyzed to estimate the
phase differences of three frogs (i.e., φAB ≡ θA − θB and
φAC ≡ θA − θC) according to the methods shown in the
supplemental materials [12]. Consequently, we stably ob-
served various types of synchronized behavior and switching
phenomena as shown in Figs. 4(b)–4(e), including three types
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FIG. 3. (Color) Bifurcation analysis on the model of Eq. (3) with the bifurcation parameters KAC and γ . (a) Phase diagram of synchronization
states on the KAC-γ plain. Here, we set the error bound of π/6 to detect synchronization modes and compare with the experimental
data. Region (I), depicted with blue dots, represents parameter values at which the 1:2 antiphase synchronization of (φAB,φAC) � (π,0) is
stable. Region (II) with green dots is the multistable state for three types of 1:2 antiphase synchronization (φAB,φAC) � (π,0), (0,π ), and (π,π ).
Region (III) with red dots is for two types of triphase synchronization (φAB,φAC) � (2π/3,4π/3) and (4π/3,2π/3). Region (IV) with purple
dots is for one of the 1:2 antiphase synchronization (φAB,φAC) � (π,0) and two types of triphase synchronization. Region (V) with yellow dots
is for three types of 1:2 antiphase synchronization and two types of triphase synchronization. Region (VI) with gray dots is for one of the 1:2
antiphase synchronization (φAB,φAC) � (π,0) and the synchronization states different from both triphase and 1:2 antiphase synchronization.
Region (VII) with black dots is for the synchronization states different from both the triphase and 1:2 antiphase synchronization. Dotted lines
give exact bifurcation sets obtained by the bifurcation stability analysis [6]. (b) Bifurcation structure along KAC = 1.0 in Fig. 3(a), where the
vertical axis represents a stable phase difference of φAB . While two types of triphase synchronization with (φAB,φAC) = (2π/3,4π/3) and
(4π/3,2π/3) are bistable in 0 � γ < γ∗, two types of triphase synchronization and three types of 1:2 antiphase synchronization are multistable
in γ∗ � γ < 0.5 with γ∗ = 1/6; the former state corresponds to Region (III) in Fig. 3(a), and the latter corresponds to region (V).
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FIG. 4. (Color) Synchronization and switching dynamics experimentally observed in a three-frogs system. (a) Definition of synchronization
states on the phase plain of φAB (the abscissa) and φAC (the ordinate), setting the error bound of π/6. Regions of triphase synchronization,
1:2 antiphase synchronization, and in-phase synchronization are shown with red, green, and yellow rectangles, respectively. (b–e) Plots of the
phase differences φAB and φAC obtained from four experimental trials. Note that the phase plots shown by blue dots are localized not around
the in-phase state but around the triphase and 1:2 antiphase states. Transitions between different states are indicated by pink lines.

of 1:2 antiphase synchronization (A versus BC, B versus AC,
and C versus AB) and two types of triphase synchronization
(A → B → C and A → C → B); Fig. 4(b) represents the
occurrence of three types of 1:2 antiphase synchronization (A
versus BC, B versus AC, and C versus AB), Fig. 4(c) represents
that of mainly only one of the 1:2 antiphase synchronization

(A versus BC), Fig. 4(d) shows that of the three types of 1:2
antiphase synchronization (A versus BC, B versus AC, and
C versus AB) and the two types of triphase synchronization
(A → B → C and A → C → B), and Fig. 4(e) shows that of
the two types of triphase synchronization (A → B → C and
A → C → B) and one of the 1:2 antiphase synchronization

TABLE I. Summary of synchronized behavior obtained from the experimental data of calling frogs. Total calling durations of a single
frog, two frogs, and three frogs, and temporal sums of detected synchronization modes are shown for four experimental trials (see Ref. [12]).
As for the calling of two frogs, antiphase synchronization is robustly observed, but in-phase synchronization is rarely detected. During
the calling of three frogs, triphase synchronization and 1:2 antiphase synchronization can be stably observed compared with the in-phase
synchronization.

Total Antisync Trisync 1:2 Antisync In-Sync

Data (1)
One Frog 173.1 s
Two Frogs 378.2 s 138.7 s (36.6%) 11.7 s (3.1%)
Three Frogs 660.8 s 34.7 s (5.2%) 64.0 s (9.6%) 0 s (0%)

Data (2)
One Frog 732.2 s
Two Frogs 1416.4 s 595.3 s (42.0%) 39.6 s (2.8%)
Three Frogs 298.3 s 15.5 s (5.2%) 60.4 s (20.2%) 2.5 s (0.8%)

Data (3)
One Frog 104.8 s
Two Frogs 1088.2 s 396.7 s (36.4%) 41.3 s (3.8%)
Three Frogs 1265.8 s 91.4 s (7.2%) 33.2 s (2.6%) 0 s (0%)

Data (4)
One Frog 101.7 s
Two Frogs 976.7 s 621.1 s (63.5%) 22.4 s (2.2%)
Three Frogs 350.6 s 52.8 s (15.0%) 4.2 s (1.1%) 0 s (0%)
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(A versus BC). Moreover, the (pink) solid lines in
Figs. 4(b)–4(e) show the existence of complex switching
dynamics in this frogs’ system.

Moreover, we categorize the obtained phase differences
φAB and φAC into synchronization modes to estimate the
stability or durations of respective modes as shown in Table I
(see also supplemental materials [12]). During the calling
behavior of two frogs, while antiphase synchronization is
robustly observed, in-phase synchronization is rarely detected.
In addition, during the total recording time of three frogs,
triphase synchronization and 1:2 antiphase synchronization
can be robustly observed compared with the in-phase syn-
chronization by all three frogs.

IV. DISCUSSION

We show that mathematical modeling with Eq. (3) quali-
tatively explains the experimental results on the synchronized
calling behavior of three frogs summarized in Figs. 4(b)–4(e)
assuming ωA = ωB = ωC and 0 � γ < 0.5. The multistability
between three types of 1:2 antiphase synchronization in Data
(1), and the stability of one of the 1:2 antiphase synchronization
(A versus BC) in Data (2) are qualitatively described in region
(II) in Fig. 3(a). The multistability between two types of
triphase synchronization and three types of 1:2 antiphase
synchronization in Data (3), and that between two types
of triphase synchronization and one of the 1:2 antiphase
synchronization (A versus BC) in Data (4) are reproduced
in region (V) in Fig. 3(a). Note that, although mathematical
modeling in our previous study [6] gave a similar framework
with only the first-order component in the interaction terms of
Eq. (3), this cannot explain the complicated multistability as
shown in Figs. 4(b)–4(e) with fixed parameter values. Since an
experimental condition in respective trials is almost stationary,
parameter values in model analysis should be constant for
describing each datum. In this sense, mathematical modeling
with Eq. (3) successfully explains complex synchronization
phenomena by three frogs compared with our previous study
[6]. From the viewpoint of mathematical modeling, however,
it is an important future problem to clarify mechanisms
responsible for the transitive and switching phenomena shown

in Figs. 4(b)–4(e), by considering effects such as background
noise [2] and time delay [13] as well as those of chaotic dy-
namics [14]; note that chaotic systems also generate antiphase
synchronization [15].

Now, let us discuss the biological implications from the
model analysis. The important point is that triphase synchro-
nization of three frogs can be stably observed as shown in Data
(3) and (4) and qualitatively explained with the model analysis
by assuming the condition of KAC � KAB = KBC such as
regions (III), (IV), and (V) in Fig. 3(a). Since the coupling
coefficient of Kij represents how strongly the frogs i and
j interact, the condition of KAC � KAB = KBC biologically
implies that, during the interactive calling behavior of three
frogs in the straight setting of Fig. 2(a), everyone can
equally recognize the other two individuals and then triphase
synchronization is realized. It should be noted that the similar
calling property is reported in another species of frogs, Puerto
Rican tree frogs; a single frog avoids acoustic overlap with
two neighbors [16].

From an ethological point of view, it is important that
our experiment clearly shows the existence of complex
synchronized behavior by three male frogs to maintain their
mutual intercall intervals each other (i.e., the triphase synchro-
nization and 1:2 antiphase synchronization). Such alternating
phenomena by three frogs would be biologically meaningful
both for males and females to keep their own territories and
localize calling males, the same as discussed in our previous
study on a two-frogs system [9].
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