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Abstract 19 
Although positive-strand RNA [(+)RNA] viruses have a limited coding capacity, they 20 
can replicate efficiently in host cells because of their ability to use host-derived proteins, 21 
membranes, lipids, and metabolites, and to rewire cellular trafficking pathways. 22 
Previously, we showed that a plant RNA virus, Red clover necrotic mosaic virus 23 
(RCNMV), hijacked Arf1 and Sar1, which are small GTPases that regulate the 24 
biogenesis of COPI and COPII vesicles, respectively, for viral RNA replication. These 25 
small GTPases are relocated from appropriate subcellular compartments to the viral 26 
RNA replication sites by p27 replication protein, which raises the possibility that 27 
RCNMV interferes with the cellular secretory pathway. Here, we examined this 28 
possibility by using green fluorescent protein-fused rice SCAMP1 and Arabidopsis 29 
LRR84A as secretory pathway marker proteins and showed that p27 inhibited the 30 
trafficking of these proteins. RCNMV-mediated inhibition of the host secretion pathway 31 
and its possible impact on plant–virus interaction are discussed. 32 
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Exploiting early secretory components for viral RNA replication 1 
The secretory pathway in eukaryotic cells has essential roles in biogenesis and proper 2 
intracellular distribution of a wide range of proteins and lipids. Anterograde transport of 3 
newly synthesized proteins and lipids is initiated at the endoplasmic reticulum (ER). 4 
Therefore, ER-to-Golgi transport represents a vital gateway to the endomembrane 5 
system.1 Coat protein complex II (COPII) drives the anterograde pathway from the ER, 6 
whereas COPI regulates the retrograde trafficking from the Golgi.1 The interdependence 7 
of the antero- and retrograde trafficking pathways are generally conserved across 8 
eukaryotes.1 The trans-Golgi network (TGN) conducts final sorting steps to post-Golgi 9 
destinations such as plasma membrane (PM) and exchanges material with the endocytic 10 
pathway.2 11 
 12 
Red clover necrotic mosaic virus (RCNMV) belongs to the genus dianthovirus in the 13 
family Tombusviridae. RCNMV encodes two replication proteins, an auxiliary 14 
replication protein p27, and RNA-dependent RNA polymerase p88pol. p27 has multiple 15 
functions during RNA replication and is an essential component of the RCNMV 16 
replicase complex, which assembles on the ER membranes and synthesizes progeny 17 
viral RNAs.3 p27 interacts with many partners such as p27 itself, p88pol, viral genomic 18 
RNAs, and host heat shock proteins, Hsp70 and Hsp90.4–7 Moreover, p27 induces ER 19 
membrane alternations.8,9 We previously showed that a host small GTPase, ADP 20 
ribosylation factor 1 (Arf1) plays an essential role during the replication of RCNMV.10 21 
Arf1 is implicated in the formation of COPI vesicles on Golgi membranes.1 Arf1 22 
function can be inhibited by brefeldin A (BFA) that is a well-known fungal 23 
metabolite.11 BFA inhibits the activation of Arf small GTPases by targeting 24 
BFA-sensitive guanine nucleotide-exchange factors (GEFs) via locking the abortive 25 
Arf–GDP–GEF complex, thereby blocking guanine nucleotide release.12–14 We found 26 
that down-regulation of Arf1 expression by virus-induced gene silencing decreased viral 27 
RNA accumulation in leaves of Nicotiana benthamiana inoculated with the virus, and 28 
that BFA or expression of dominant-negative forms of Arf1 inhibited RCNMV RNA 29 
replication in protoplasts, indicating that Arf1 plays an essential role in RCNMV 30 
replication.10 Moreover, BFA inhibited the accumulation of viral replicase complexes 31 
and disrupted p27-induced ER remodeling, suggesting that Arf1 is involved in the 32 
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formation of the membrane-bound RCNMV replicase complex. Direct interactions 1 
between p27 and Arf1 were shown by GST pull down assays in vitro and bimolecular 2 
fluorescent complementation assays in N. benthamiana epidermal cells. Consistent with 3 
this, p27 recruits Arf1 from the Golgi apparatus to the p27-positive perinuclear ER 4 
aggregated structures. From these findings, we concluded that RCNMV alters proper 5 
subcellular localization of Arf1 and actively utilizes it for viral multiplication. 6 
 7 
RCNMV interferes with the cellular secretory pathway 8 
Sar1 (secretion-associated RAS-related 1), which is a small GTPase, is also required for 9 
RCNMV replication, and is relocalized with p27 in p27-induced large aggregate 10 
structures of ER membranes.10 Sar1 is implicated in the biogenesis of the COPII 11 
vesicles at ER exit sites. Our recent affinity purification and liquid 12 
chromatography-tandem mass spectrometry analysis revealed that Sar1 potentially 13 
interacts with p27 (unpublished data). Since Arf1 and Sar1 are essential factors in the 14 
biogenesis of COPI and COPII vesicles, respectively, we hypothesized that p27 affects 15 
the cellular secretory pathway. To address this hypothesis, we used two secretory 16 
marker proteins fused with green fluorescent protein (GFP); OsSCAMP1 (rice secretory 17 
carrier membrane protein 1), a tetraspan transmembrane protein, and Arabidopsis 18 
LRR84A, a type I integral membrane protein belonging to the leucine-rich repeat 19 
receptor-like kinase protein family, and tested whether p27 affects subcellular 20 
localization of these marker proteins. Both OsSCAMP1 and AtLRR84A can reach the 21 
PM via the conventional ER-Golgi-TGN pathway in tobacco BY-2 protoplasts.15,16 22 
When transiently expressed in BY-2 protoplasts, both OsSCAMP1-GFP and 23 
AtLRR84A-GFP were found on the PM (Fig. 1A and 1C), as reported. 15,16 However, 24 
when coexpressed with p27, the PM localization of these proteins was partially 25 
inhibited (Fig. 1B and 1D). Instead, a fraction of these proteins was found in the 26 
p27-containing ER aggregate structures (Fig. 1B and 1D). Moreover, in BY-2 27 
protoplasts infected with a recombinant RCNMV in which the coat protein open reading 28 
frame was replaced by mCherry, the intracellular fluorescence of OsSCAMP1-GFP was 29 
observed (Fig. 1E). From these results, we propose that p27 interferes with the secretory 30 
pathway between the ER and the Golgi (Fig. 1F). The interference may be the result of 31 
p27-mediated sequestration of secretory pathway regulator proteins such as Arf1 and 32 
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Sar1 from their original compartments. 1 
The cellular secretory pathway is important for plant immunity for active defense 2 
against potential pathogens.17 By contrast, invasive pathogens have evolved a means to 3 
use these trafficking pathways for the suppression of plant defenses and for the benefit 4 
of microbial proliferation.17 For example, the Pseudomonas syringae pv tomato 5 
DC3000 effector HopM1 targets an Arf-GEF AtMIN7 that is required for both the 6 
pathogen-associated molecular pattern- and effector-triggered immunities.18,19 Moreover, 7 
Arf1 is required for both the nonhost resistance against a bacterial pathogen and N 8 
gene-mediated resistance against Tobacco mosaic virus in N. benthamiana.20 Therefore, 9 
it may be possible that p27-mediated interference of the cellular secretory pathway 10 
compromises plant immunity. It should be noted that the secretory pathway plays an 11 
important role not only in the delivery of antimicrobial molecules, but also in systemic 12 
acquired resistance, which provides broad-spectrum resistance against pathogens 13 
including viruses in plants.21–23 In animal viruses, enterovirus 3A protein binds to and 14 
inhibits the function of GBF1, a mammalian GEF for Arf1.24 This leads to inhibition of 15 
ER-to-Golgi transport, a function previously suggested to be important for viral 16 
suppression of immune responses.24 A virus carrying a 3A protein defective in 17 
inhibiting ER-to-Golgi transport is less virulent in mice.24 Hijacking of the host 18 
secretory pathway by RCNMV may be important not only for viral multiplication, but 19 
also for suppression of active defenses against viruses. Future studies will address this 20 
fascinating possibility. 21 
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 1 
 2 
Figure 1. Interference of protein trafficking mediated by dianthovirus p27 3 
replication protein. A plasmid expressing OsSCAMP1-GFP (5 µg) (A and B) or 4 
AtLRR84A-GFP (5 µg) (C and D) was cotransfected with a plasmid expressing empty 5 
vector (12.5 µg) or p27-mCherry (12.5 µg) into tobacco BY-2 protoplasts. Images were 6 
taken at 20 h by confocal laser scanning microscopy. (E) A plasmid expressing 7 
OsSCAMP1-GFP (5 µg) was cotransfected with RNA1-mCherry, in which the coat 8 
protein open reading frame was replaced by mCherry, and RNA2 into tobacco BY-2 9 
protoplasts. Images were taken at 24 h by confocal laser scanning microscopy. Scale bar 10 
= 10 µm. (F) Predicted model of the inhibition step of intracellular trafficking of 11 
AtLRR84A and OsSCAMP1 mediated by p27 replication protein. Appropriate 12 
trafficking of AtLRR84A and OsSCAMP1 (gray arrows) is likely to be inhibited by p27 13 
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at the ER-to-Golgi step. Arf1 and Sar1 are likely to be recruited to viral replication sites 1 
from their original compartments (as shown in the dashed-line square). Gray 2 
dashed-line arrows indicate retrograde trafficking route. ER, endoplasmic reticulum; 3 
Arf1, ADP ribosylation factor 1; Sar1, secretion-associated RAS-related 1; COPI, coat 4 
protein complex I, COPII, coat protein complex II. 5 
 6 


