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Highlights 1 

 Radiocesium concentrations in tree stems of pine and oak were determined. 2 

 Vertical distributions of radiocesium were different between the species. 3 

 Radial distributions of radiocesium in wood were similar in both species. 4 

 Radiocesium distributions among stem parts differed between the species. 5 

 Transportation and allocation of radiocesium would differ between the species. 6 
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Abstract 1 

The radial and vertical distributions of radiocesium in tree stems were investigated to 2 

understand radiocesium transfer to trees at an early stage of massive contamination from the 3 

Fukushima nuclear disaster. A conifer species (Japanese red pine) and a broad-leaved species 4 

(Japanese konara oak) were selected to determine whether the radiocesium contamination 5 

pattern differs between species. Stem disks were collected at several heights and separated 6 

into outer bark, inner bark, and wood. The radiocesium concentration was the highest in the 7 

outer bark, followed by that in the inner bark and wood. The vertical distribution of the 8 

radiocesium concentration at each stem part differed between the species. The difference 9 

between species in radiocesium concentration of the outer bark could be explained by 10 

presence or absence of leaves at the time of the disaster. However, the reasons for the 11 

differences between species in the radiocesium concentration of the inner bark and wood are 12 

unclear. The radial distribution in the wood of the studied species showed a common pattern 13 

across stem disk heights and species. However, the radiocesium concentration ratio between 14 

sapwood and inner bark was significantly different between species. Although the radial 15 

contamination pattern in the wood was similar in the studied species during the early stage of 16 

contamination, the radiocesium transport pathway and allocation would be different between 17 

the species, and the contamination pattern will likely be different between the species at later 18 

stages. Continued investigations are important for understanding the radiocesium cycle and 19 

the accumulation of radiocesium in the tree stems of each species. 20 

 21 
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1. Introduction 26 

A considerable amount of radiocesium (
134

Cs and 
137

Cs) was emitted into the atmosphere by 27 

the Fukushima Dai-ichi nuclear disaster in March 2011. The fallout was largely deposited in 28 

forests because they cover much of the land (71% of Fukushima Prefecture). Radiocesium 29 

would be well mixed with stable Cs within the biological cycle in forest ecosystems (Yoshida 30 

et al., 2004), and 
137

Cs, which has a long physical half-life (30.2 y), will remain in forest 31 

ecosystems for many decades. Therefore, understanding radiocesium dynamics is critical to 32 

forest management in contaminated areas. In particular, 
137

Cs accumulation in trees is one of 33 

the most important concerns for timber use and forest decontamination. 34 

Radiocesium may enter a tree via root uptake, translocation from the foliar surface, or even 35 

from the bark surface (Ertel and Ziegler, 1991; Tagami et al., 2012). In a tree stem, 36 

radiocesium is mobile and passes through tree rings (Kohno et al., 1988; Kudo et al., 1993; 37 

Momoshima and Bondietti, 1994), resulting in whole-stem contamination. Some radiocesium 38 

may form ionic bonds with carboxylic groups in cell walls, the cytoplasm of living cells, and 39 

the cell debris of the heartwood, the inner part of wood (Brown, 1964). Because heartwood is 40 

composed of dead cells and hence does not function in water transport, radiocesium that 41 

transferred to heartwood is likely to remain there for a long time. Parallel distribution of 
137

Cs 42 

to that of 
40

K in a Japanese cedar (Cryptomeria japonica) stem (Kudo et al., 1993) and to 43 

those of alkaline metals in Scots pine (Pinus sylvestris) stems (Yoshida et al., 2011) suggests 44 

that radiocesium transferred to heartwood stayed there and reached to an equilibrium 45 

distribution to the elements with similar chemical properties. 46 

Previous studies have indicated that the radiocesium distribution among sapwood (the 47 

outer part of wood, which transports water and has living cells) and heartwood differs 48 

between species. For example, Japanese cedar and cypress (Chamaecyparis obtusa) 49 

reportedly have higher 
137

Cs concentration in the heartwood than in the sapwood (Kohno et 50 
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al., 1988), whereas Scots pine is reported to have a higher 
137

Cs concentration in the sapwood 51 

than in the heartwood (Thiry et al., 2002; Yoshida et al., 2011). Soukhova et al. (2003) 52 

reported different 
137

Cs distributions in Scots pine and silver birch (Betula pendula) and 53 

attributed the difference to the different radial ray compositions of those species. 54 

Although 
137

Cs accumulation in tree stems is understood to a certain extent, further 55 

research is needed to improve our understanding and ability to predict 
137

Cs accumulation in 56 

wood. Research into the early stages of contamination is particularly lacking. Moreover, for 57 

proper forest management in Fukushima, native species growing in the local environment 58 

must be studied. Kuroda et al. (2013) reported that 
134

Cs and 
137

Cs were detected in the 59 

heartwood of three species (Pinus densiflora, Quercus serrata, and Cryptomeria japonica) 60 

collected from Fukushima forests half a year after the Fukushima Dai-ichi nuclear accident. 61 

This fact indicates that there is rapid inflow of radiocesium to tree stems and rapid 62 

translocation to heartwood, highlighting the importance of research into the early stages of 63 

contamination. 64 

In the present study, we investigated the radial and vertical distributions of radiocesium in 65 

tree stems of two dominant species, Japanese red pine (P. densiflora Sieb. & Zucc.) and 66 

Japanese konara oak (Q. serrata Thunb.), 1.5 y after the Fukushima Dai-ichi nuclear disaster, 67 

focusing on whether the radiocesium transfer pattern differs between species. 68 

 69 

2. Material and methods 70 

2.1. Study sites and sampling 71 

A Japanese red pine forest (pine forest) and a deciduous broad-leaved forest (oak forest) in 72 

Kawauchi Village, about 20 km southwest of the Fukushima Dai-ichi Nuclear Power Plant, 73 

were selected for the study (Fig. 1). Pine and oak forests were representative forest types in 74 

the village. Samples were collected from trees that were adjacent to a 40 m × 40-m census 75 
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plot in the pine forest (520 m above sea level) and a 50 m × 30-m census plot in the oak 76 

forest (530 m above sea level). In the pine plot, tree density (diameter at breast height > 5 cm) 77 

was 1,513 ha
−1

 and Japanese red pine (P. densiflora) accounted for 73% of the trees. The 78 

forest canopy was completely dominated by the red pines, but was not fully closed; the 79 

remaining 27% of the trees in the plot vegetated in the understory (e.g., Toxicodendron 80 

trichocarpum 5%, Q. serrata 4%, and Swida controversa 4%). In the oak plot, the tree 81 

density was 1,413 ha
−1

 and Japanese konara oak (Q. serrata) accounted for 38% of the trees, 82 

followed by Japanese clethra (Clethra barbinervis; 12%), Japanese wild cherry (Cerasus 83 

jamasakura; 6%), sawtooth oak (Q. acutissima; 5%), and Japanese mizunara oak (Q. 84 

crispula; 5%). The forest canopy was dominated by Q. serrata, Q. acutissima, and Q. 85 

crispula, but was not closed, forming a multistory vertical structure. The air dose rate was 0.2 86 

μSv h
−1

 at the pine forest and 1.8 μSv h
−1

 at the oak forest, as measured in late July 2012 at 1 87 

m above the ground using an ionization chamber-type survey meter (ICS-331B; Hitachi 88 

Aloka Medical Ltd., Tokyo, Japan). The 
137

Cs contamination in soil (the sum of the 89 

contamination found in the litter layer, fermentation layer, humus layer, and mineral soil) was 90 

1.1 × 10
5
 Bq m

−2
 (a standard deviation (σ) = 3.0 × 10

4
 Bq m

−2
) at the pine plot and 1.5 × 10

5
 91 

Bq m
−2

 (σ = 4.9 × 10
4
 Bq m

−2
) at the oak plot in September 2012. These values were the 92 

means of three sampling points collected diagonally at each plot and were used to calculate 93 

the aggregated transfer factor (Tag; m
2
 kg

−1
) from soil to tree. The sampling points were at 94 

least 2 m away from tree stems in order to avoid thick roots. The litter layer, fermentation 95 

layer and humus layer were collected from a 50 cm × 50-cm area at each point. The mineral 96 

soil (brown forest soil) to a depth of 20 cm was collected using cylindrical soil samplers. 97 

Three pines (P. densiflora) and three oaks (Q. serrata) that were adjacent to the respective 98 

census plots were logged in early September 2012. The diameter at breast height (DBH), tree 99 

height, and age of each tree are shown in Table 1. The trees were selected from individuals of 100 
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different diameter classes growing in the dominant tree layer in order to represent the 101 

diameter distribution of each species. The diameters of both species in their respective census 102 

plots showed normal distributions: mean DBH of P. densiflora in the pine plot was 24.5 cm 103 

(σ = 5.8 cm, n = 175) and that of Q. serrata in the oak plot was 19.8 cm (σ = 5.8 cm, n = 82). 104 

All pines and oaks selected were considered to be mature as the youngest was 36 y of age. 105 

Disk samples that were approximately 5 cm thick were removed from each logged stem at 0.3, 106 

1.3, 5, and 10 m above ground. Additional disk samples were removed from pines at 15 m 107 

above ground, from a short oak tree at 7.5 m, and from tall oaks at 12.5 m.  108 

 109 

2.2. Sample preparation and analysis 110 

The disks were separated into three parts: outer bark (cork), inner bark (phloem), and wood 111 

(xylem). The outer bark was removed from the disks using a chisel, after which the inner bark, 112 

including the cambium, was removed. The disks collected at the following stem heights were 113 

used for xylem analysis: pine1 (1.3 and 15 m), pine2 (1.3, 5, 10, and 15 m), pine3 (1.3 and 15 114 

m), oak1 (1.3 and 7.5 m), oak2 (1.3, 5, and 10 m), and oak3 (1.3 and 10 m). Each disk was 115 

further separated along tree-ring boundaries into sub-samples of several rings each. Each 116 

sub-sample weighed ca. 50 g (dry mass at 80°C). This sample separation resulted in sufficient 117 

material for γ-ray spectrometry and provided enough resolution for investigation of the radial 118 

migration of radiocesium in the tree stems. Distances from the pith to each separated ring 119 

boundary were measured along four radii and their average was used as the distance between 120 

pith and ring boundary. The distance of the sapwood–heartwood boundary from the pith was 121 

measured in the same way. 122 

All samples, except mineral soil samples, were ground using a Wiley mill before packing 123 

into plastic containers. Mineral soil samples were packed after drying for at least 7 d, and 124 
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sieving with 2-mm mesh. About 1 g of each sample was dried at 80°C for 48 h to calculate 125 

the dry mass. 126 

The radioactivity of 
134

Cs (605 keV) and 
137

Cs (662 keV) in tree and soil samples were 127 

measured using a high-purity Ge semiconductor detector (Tennelec, Tennessee, USA) at the 128 

Radioisotope Research Center of Kyoto University. The γ-ray detection efficiency was 129 

calibrated with the standard, which was prepared by using a reference standard QCY.44 130 

supplied by Radiochemical Center Ltd., Amersham (Veronica et al., 1992), and provided by 131 

the Radioisotope Research Center, Kyoto University. The measuring time was 7,200–50,000 132 

s, depending on the radioactivity of each sample. The detection limit of each radionuclide 133 

was calculated using Cooper’s equation (Cooper, 1970; eq. 8, Am = 3). The radioactivity was 134 

decay-corrected to September 1, 2012. All radiocesium concentrations in the present study 135 

are shown in dry mass (at 80°C) base. 136 

 137 

3. Results and Discussion 138 

3.1. Radiocesium distribution among stem parts 139 

In both species, radiocesium concentration (Bq kg
−1

) was the highest in the outer bark, 140 

followed by that in the inner bark and whole wood (Table 2). The ratio of 
134

Cs to 
137

Cs was 141 

about 0.6 in most samples. The burden of radiocesium (Bq) in each disk was also the largest 142 

in the outer bark, followed by that in the whole wood and inner bark. The burdens followed 143 

the same order at all analyzed heights. The concentration was reportedly the highest in the 144 

inner bark or cambium about 10 y after the Chernobyl accident (Thiry et al., 2002; Yoshida et 145 

al., 2011). Thiry et al. (2002) showed that 7% of the total 
137

Cs in the stem was distributed in 146 

the outer bark, 18% in the inner bark, and 75% in the whole wood of 58-year-old Scots pine 147 

trees 12 y after the Chernobyl accident. In the present study, 74% was distributed in the outer 148 

bark, 6% in the inner bark, and 20% in the whole wood of Japanese red pine trees (collected 149 
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at 1.3 m above the ground). Thus, 1.5 y after the disaster, the remaining surface 150 

contamination was still serious and further transfer to the interior of the stem might occur.  151 

 152 

3.2. Vertical distribution of radiocesium in each stem part 153 

The vertical distribution of the radiocesium concentration in the outer bark was different 154 

between the species (Fig. 2). In oaks, the radiocesium concentration in the outer bark was 155 

higher in the upper stem than in the lower stem and had a significant correlation with 156 

sampling height (n = 14, p < 0.001). In pines, however, the radiocesium concentration in the 157 

outer bark did not vary significantly with sampling height. The remarkably high deposition 158 

on the upper part of the outer bark of oaks might have occurred because the leafless canopy at 159 

the time of the initial massive deposition promoted direct capture of radiocesium by the bark 160 

surface.  161 

The vertical distribution of radiocesium concentration in the inner bark was almost uniform 162 

in both species. However, the distribution pattern differed among individual oaks, whereas 163 

the distribution pattern was similar among individual pines: although oak1 and oak2 did not 164 

show a significant correlation between radiocesium concentration and sampling height, oak3 165 

did (n = 5, p < 0.01). This difference between species in individual variation may be due to 166 

branching. The pines had living branches only at the top part of the main stem, whereas the 167 

oaks had living branches at multiple heights. Accordingly, in the oaks, radiocesium in the 168 

foliage would be supplied to the main stem at multiple heights via the inner bark (phloem), 169 

and that might result in individual differences in radiocesium vertical distribution patterns. 170 

In the wood of both species, there was a significant correlation between radiocesium 171 

concentration and sampling height (Fig. 3). The radiocesium concentration in the whole wood 172 

of the pines was slightly higher in the upper stem than in the lower stem (regression 173 

coefficient = 1.1). On the other hand, that in the oaks was significantly higher in the upper 174 
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stem than in the lower stem (regression coefficient = 7.4). The slight increase of radiocesium 175 

concentration toward the upper stem of the pines can be explained well by the vertical 176 

variation in heartwood ratio. The upper stem contained less heartwood than the lower stem, 177 

and the sapwood contained more radiocesium than the heartwood. In addition, the 178 

radiocesium concentration in the sapwood of the pines was almost constant across sampling 179 

heights. Therefore, the radiocesium contamination to the stem wood of the pines likely 180 

progresses uniformly regardless of stem height. This agrees with the report by Thiry et al. 181 

(2002), 
137

Cs concentrations in the stem wood of Scots pines 12 y after the Chernobyl 182 

accident were largely unaffected by stem height. On the other hand, the vertical distribution 183 

of radiocesium in the oaks cannot be explained by the vertical variation in heartwood ratio 184 

alone because in this species, the sapwood in the upper stem had a significantly higher 185 

radiocesium concentration than that in the lower stem. One possible reason for the 186 

relationship between radiocesium concentration and height in oaks is direct radiocesium 187 

transfer from the outer bark. Several studies have suggested the possibility of radiocesium 188 

absorption by bark (Ertel and Ziegler, 1991; Tagami et al., 2012). The remarkably high 189 

radiocesium concentrations in the outer bark and whole wood in the upper part of oaks and 190 

their significant correlation (n = 7, p < 0.01) imply the possibility of bark absorption; 191 

however, this must be demonstrated in a future study. Although the reason remains unclear, 192 

the vertical contamination pattern differs between the species examined. 193 

 194 

3.3. Radial distribution of radiocesium in wood 195 

The radial distribution of the radiocesium concentration had a similar pattern among the 196 

analyzed heights and species (Figs. 4 and 5). The concentration was (1) the highest at the 197 

outermost part; (2) almost uniform throughout the sapwood, except for the outermost part; 198 

and (3) reduced toward the center in the heartwood.  199 
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One reason for the relatively high concentration in the outermost part of the stems is that 200 

the contamination occurred recently. In addition, radiocesium may be preferentially 201 

translocated to the young growing part of stem wood, as suggested by the analysis of Scots 202 

pine 12 y after the Chernobyl accident (Yoshida et al., 2011). 203 

The uniform radiocesium concentration observed throughout the sapwood would be due to 204 

both diffusion and active transport. Thiry et al. (2002) indicated that the distribution pattern 205 

of 
137

Cs in sapwood is in good agreement with the distribution of free water in wood, which 206 

increases from the inner sapwood to the outer sapwood. In addition, active radial transport 207 

through rays must be taken into account. The radial solute exchange between xylem and 208 

phloem occurs via the rays (van Bel, 1990). In Japanese cedar, alkali metals are transported 209 

actively from the sapwood to the outer heartwood via rays (Okada et al., 2012). Moreover, 210 

Soukhova et al. (2003) explained that the radial 
137

Cs distribution in pine differs from that in 211 

birch because of the different ray composition between these species. The proportion of 212 

tracheid and parenchyma cells in the rays affects radial transport characteristics. In the 213 

present study, the radiocesium concentration ratio of sapwood to inner bark was significantly 214 

higher in oaks than in pines (Welch’s t-test; p < 0.001), at 0.23 (σ = 0.041, n = 7) in oaks and 215 

0.088 (σ = 0.026, n = 7) in pines. This difference seems to suggest that oaks transport more 216 

radiocesium from phloem to sapwood via rays than do pines. The active radial transport 217 

through rays is an important point that must be considered in a future study. 218 

In the heartwood, the movement of radiocesium toward the center must be caused by 219 

diffusion alone because there are no living cells in heartwood. The decrease in the 220 

radiocesium concentration in proportion to the distance from the sapwood–heartwood 221 

boundary in both species confirms movement by diffusion. However, species-specific radial 222 

distribution patterns of 
137

Cs concentration might appear after several years. Uniform 223 

distribution patterns have also been observed in Scots pines (Thiry et al., 2002; Soukhova et 224 
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al., 2003; Yoshida et al., 2011), whereas increasing radiocesium concentration toward the 225 

center of the heartwood has been reported for Japanese cedar, cypress (Kohno et al., 1988), 226 

and birch (Soukhova et al., 2003). These different patterns of 
137

Cs accumulation would result 227 

from different radial distributions of water, different heartwood compositions, and different 228 

processes of heartwood formation between species or individuals. These factors must be 229 

observed carefully and reviewed periodically after radioactive fallout in order to understand 230 

the mechanism of radiocesium accumulation in heartwood. 231 

 232 

3.4. Radiocesium transfer to pine and oak 233 

Radiocesium transfer from the outside to the inside of the tree may occur via three routes: the 234 

roots, foliage, and bark surface (Ertel and Ziegler, 1991; Tagami et al., 2012). The 235 

contribution of bark absorption seems to be low in the pines of the present study because 236 

there was no correlation between the radiocesium concentration of the outer bark and the 237 

inner parts along the stem. On the other hand, the bark absorption might have occurred in the 238 

oaks as there was a significant correlation between the radiocesium concentration in the outer 239 

bark and that in the inner parts of these trees.  240 

Absorption from the foliar surface, in the case of the Fukushima disaster, might have 241 

occurred in evergreens (the pines), but not in deciduous species (the oaks). This is because 242 

the disaster occurred during the leafless period for deciduous species. Tagami et al. (2012) 243 

reported that woody plants with old leaves at the time of the accident showed higher 
137

Cs 244 

concentrations in newly emerged leaves than did plants without old leaves; however, plants 245 

with waxy leaf surfaces had lower concentrations than plants with old leaves without a waxy 246 

surface. This suggests that, because pines have waxy leaf surfaces, the contribution of foliar 247 

absorption to radiocesium concentration in the pines of the present study was low. The 248 

vertically uniform distribution of radiocesium concentration in the inner bark and sapwood of 249 
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the pines also implies that contamination from the upper part of the tree via foliar absorption 250 

was not significant. However, Thiry et al. (2002) estimated that a significant portion of 251 

radiocesium incorporation in stem wood was likely due to foliar absorption in the old Scots 252 

pines affected by the Chernobyl accident. Furthermore, Tagami and Uchida (2010) reported 253 

that trees do not take up large amounts of stable Cs from the soil. Therefore, it is difficult to 254 

determine the contribution of foliar absorption to radiocesium concentration in the stems of 255 

pines from our results alone. 256 

To understand the respective contributions of root, foliar, and bark absorption, periodic 257 

monitoring of Tag (aggregated transfer factor) is necessary. The Tag of inner bark and wood 258 

(Table 2) were on the same order (10
4

) as those reported for the Chernobyl accident (Calmon 259 

et al., 2009). However, the present study was conducted during the early stages of 260 

radiocesium dynamics and Tag values are changeable. If the Tag values increase with time, the 261 

contribution of root absorption can be estimated. On the other hand, if the Tag values do not 262 

change significantly, it can be concluded that the dominant route of radiocesium 263 

contamination in these trees was foliar or bark absorption. 264 

 265 

4. Conclusion 266 

In the early stages of contamination, there was a common pattern in the radial distribution of 267 

radiocesium in whole wood in Japanese red pines and Japanese konara oaks at different 268 

heights. The radiocesium concentration ratio of sapwood to inner bark was significantly 269 

different between the species, indicating differential radiocesium allocation and radial 270 

transport via rays between the species. The outer bark of oaks had significantly higher 271 

radiocesium concentration in the upper stem than in the lower stem, which is likely due to 272 

their leafless canopy at the time of the disaster. The radiocesium concentration in the 273 

sapwood was vertically constant in the pines, but it was higher in the upper stem than in the 274 



12 

 

lower stem in the oaks. Although the reason is unclear, the vertical contamination pattern in 275 

the wood differs between these two species. Further periodic investigations are necessary to 276 

reveal the species-specific patterns and mechanisms of radiocesium accumulation in tree 277 

stems. 278 

 279 
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Figure 1 

 
Figure 1. Radiocesium deposition on the ground surface (MEXT, 2012) and locations of 

study sites. The map has been modified from the original version. 

 The oak forest 

 The pine forest 

Background image: Denshi Kokudo 

Total deposition amount 
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Figure 2 

 
Figure 2. Vertical distribution of 

137
Cs concentration in each stem part of pines (Pinus 

densiflora) and oaks (Quercus serrata). Black symbols are the mean value from three 

individuals, gray symbols are the mean values from two individuals, and error bars indicate 

the maximum and minimum values. White symbols show the values from one individual. 
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Figure 3 

 
Figure 3. Relationships between the sampling height of wood disk and 

137
Cs concentration in 

the wood of pines (Pinus densiflora) and oaks (Quercus serrata). 
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Figure 4 

 
Figure 4. Radial distribution of 

137
Cs and 

134
Cs concentrations in wood disks collected at 

different vertical positions from three pines (Pinus densiflora). Gray bars indicate 
137

Cs 

concentration and gray circles indicate 
134

Cs concentration. Error bars indicate standard 

deviations from counting statistics (σ). White bars and white circles indicate that 
137

Cs and 

134
Cs were not detected and show the detection limit. Broken lines indicate the position of the 

sapwood–heartwood boundary. HW: heart wood.  
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Figure 5 

 
Figure 5. Radial distribution of 

137
Cs and 

134
Cs concentrations in wood disks collected at 

different vertical positions from three oaks (Quercus serrata). Gray bars indicate 
137

Cs 

concentration and gray circles indicate 
134

Cs concentration. Error bars indicate standard 

deviations from counting statistics (σ). White bars and white circles indicate that 
137

Cs and 

134
Cs were not detected and show detection limits. Broken lines indicate the position of the 

sapwood–heartwood boundary. HW: heartwood. 
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Table 1 

Table 1. Description of sample trees. 

Species No. DBH 

(cm)  

Height 

(m) 

Age 

(y) 

Pine (Pinus densiflora) 1 15.1 17.9 36 

 2 25.3 21.7 44 

 3 36.9 20.9 54 

Oak (Quercus serrata) 1 13.9 11.8 43 

 2 20.3 16.7 43 

 3 29.2 17.6 43 

DBH: diameter at breast height 



Table 2 

Table 2. Cesium-137 concentration and radioactivity distribution in stem disks collected at 

1.3 m above the ground and aggregated transfer factor (Tag) from soil to each stem part 

Species No. Parta Concentrationb 

(Bq kg−1) 

Radioactivity distribution 

(% of whole disk) 

Tag
c 

(m2 kg−1) 

Pine (Pinus densiflora) 1 Outer bark 2.0 × 103 (1%) 78 1.7 × 10−2 

  Inner bark 5.0 × 102 (4%) 7 4.2 × 10−3 

  Sapwood 2.9 × 10 (5%) 14 2.4 × 10−4 

  Heartwood 5.5 (19%) 1 4.7 × 10−5 

 2 Outer bark 1.8 × 103 (1%) 76 1.5 × 10−2 

  Inner bark 4.0 × 102 (5%) 4 3.4 × 10−3 

  Sapwood 3.4 × 10 (3%) 19 2.9 × 10−4 

  Heartwood 1.2 × 10 (14%) 1 1.0 × 10−4 

 3 Outer bark 1.7 × 103 (1%) 73 1.4 × 10−2 

  Inner bark 8.3 × 102 (2%) 6 7.0 × 10−3 

  Sapwood 4.6 × 10 (1%) 19 3.9 × 10−4 

  Heartwood 1.1 × 10 (5%) 1 8.9 × 10−5 

 Mean Outer bark 1.8 × 103 (1%) 74 1.5 × 10−2 

  Inner bark 5.8 × 102 (2%) 6 4.9 × 10−3 

  Sapwood 3.6 × 10 (1%) 19 3.1 × 10−4 

  Heartwood 9.4 (5%) 1 7.9 × 10−5 

Oak (Quercus serrata) 1 Outer bark 1.1 × 104 (1%) 90 5.6 × 10−2 

  Inner bark 4.5 × 102 (2%) 4 2.3 × 10−3 

  Sapwood 9.9 × 10 (4%) 4 5.2 × 10−4 

  Heartwood 1.8 × 10 (10%) 2 9.5 × 10−5 

 2 Outer bark 9.0 × 103 (< 1%) 93 4.7 × 10−2 

  Inner bark 3.4 × 102 (3%) 3 1.8 × 10−3 

  Sapwood 5.0 × 10 (2%) 3 2.7 × 10−4 

  Heartwood 5.7 (12%) 1 3.0 × 10−5 

 3 Outer bark 8.5 × 103 (< 1%) 88 4.4 × 10−2 

  Inner bark 2.4 × 102 (3%) 3 1.3 × 10−3 

  Sapwood 6.6 × 10 (2%) 8 3.5 × 10−4 

  Heartwood 1.1 × 10 (9%) 1 5.7 × 10−5 

 Mean Outer bark 9.4 × 103 (< 1%) 90 4.9 × 10−2 

  Inner bark 3.4 × 102 (2%) 3 1.8 × 10−3 

  Sapwood 7.2 × 10 (1%) 6 3.8 × 10−4 

  Heartwood 1.2 × 10 (6%) 1 6.1 × 10−5 
a Transition part from sapwood to heartwood was included in sapwood. 

b Percentage figures in parentheses are relative standard deviations from counting statistics. 

c Although 137Cs in outer bark is not transferred from the soil, Tag was calculated as a reference of deposition. 
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